ISSP International Workshop and Symposium: Foundation and Application of DFT August 8, 2007

Molecular Theory For Large Systems

T.Tsuneda, T. Nakajima, and K. Hirao The University of Tokyo

UT Research Activities

Ab initio Theory MRMP, MCQDPT CASVB, QCAS, SPS-SCF&PT Linear Scaling Method (PS, RI, Local MP2, Plane wr

DFT OP Correlation Parameter-Free Exchange Long-range corrected functional TDDFT Dual-level DFT

<u>UTChem</u>

Relativistic Theor

RESC, DK3 Dirac-Hartree-Fock Dirac-Kohn-Sham *Ab initio* Model Potential Relativistic Basis Sets

Dynamics

Ab initio dynamics (TD)DFT dynamics Hybrid QM/MM VSCF,VCI UTChem APro

A Program Suite for ab initio Quantum Chemistry

Ab initio MO, DFT, and Dynamics

Non-relativistic and Relativistic (Two- and Four-component relativistic)

> CISD, CISDT, CISDTQ, CCSD, CCSDT, CCSDTQ, MP2, MP3, and MP4,

are implemented into UTChem.

Limitted to developers

Login Information

http://utchem.qcl.t.u-tokyo.ac.jp/

Copyright © 2002, 2003, 2004 UTChem developers group. All right reserved.

Two Approaches to Molecular Theory

> Wave Function Method

Huge and successful efforts in the last 30 yearsState-of-the-art methodologySystematic, Converging to exact solutionAccurate results for small systemsSteep *N* dependence of the computational effort

> Density Method (Density Functional Theory)

Not reached such a mature stage as wave function method
Not *ab initio*, but best semi-empirical
Simple and conceptual, Applicable to large systems
Accuracy depends on *xc* functionals

Spectroscopic Constants of Diatomic Hydrides

Main-group elements across the second- through fifth-period of the periodic table

J.Chem.Phys. 120, 3297 (2004)

BH	CH	NH	OH	FH
AlH	SiH	PH	SH	ClH
GaH	GeH	AsH	SeH	BrH
InH	SnH	SbH	TeH	IH

DK3-CCSD, DK3-CCSDT, DK3-CCSDTQ Re-contracted relativistic cc-pVnZ (n=2-5) Extrapolation

DK3 is the third-order Douglas-Kroll approximation.

Spectroscopic Constants of CH and InH

	¹² CH (² I	T)	¹¹⁵ InH(¹ 2	+)
	Theory	Exp.	Theory	Exp.
r _e / Å	1.120	1.120	1.841	1.838
r_0 / Å	1.131	1.130	1.855	1.851
$B_{\rm e}$ / cm ⁻¹	14.449	14.457	4.977	4.995
$B_0 / \text{ cm}^{-1}$	14.182	14.190	4.905	4.923
$\alpha_{\rm e}$ / cm ⁻¹	0.534	0.534	0.144	0.143
$D_{\rm e}$ / cm ⁻¹	0.00148	0.00145	0.000229	0.000223
$\omega_{\rm e}$ / cm ⁻¹	2860	2859	1467	1476
$x\omega_{\rm e}$ / cm ⁻¹	66	63	26	26
$v_0 / \text{ cm}^{-1}$	1413	1413	727	732
v_1 / cm ⁻¹	4141	4146	2142	2157
v_2 / cm ⁻¹	6743	6752	3510	3535
$\bar{D_0^0}$ / eV	3.47	3.47	2.46	2.48

Theory (DK3-CC) can predict the experimental

Bond lengths (r_e or r_0) within 0.002 Å Rotational constants (B_e or B_0) within 0.02 cm⁻¹ Vibration-rotation constants (α_e) within 0.01 cm⁻¹ Centrifugal distortion constants (D_e) within 2 % Harmonic vibrational constants (ω_e) within 9 cm⁻¹ Anharmonic vibrational constants ($\chi \omega_e$) within 2 cm⁻¹ Dissociation energies (D_0^0) within 0.02 eV (0.4 kcal/mol)

The theoretical best estimate will substitute for the missing experimental data for some fourth- and fifth-row hydrides.

	Theory	Exptl.
$r_{\rm e}$ / Å	1.656	1.656 ^a
r_0 / Å	1.667	1.741 ^b
$\dot{B}_{\rm e}$ / cm ⁻¹	6.149	
$B_0 / \text{ cm}^{-1}$	6.067	5.56 ^b
$\alpha_{\rm e}^{\prime}/{\rm cm}^{-1}$	0.165	
$D_{\rm e} /{\rm cm}^{-1}$	0.000200	
$\omega_{\rm e}$ / cm ⁻¹	2144	(2137) ^a
$x\omega_{\rm e}$ / cm ⁻¹	39	
$v_0 / \text{ cm}^{-1}$	1062	
v_1 / cm^{-1}	3128	
v_2 / cm^{-1}	5119	
$\tilde{D_0^0}$ / eV	2.76	

Spectroscopic constants of the ²Π state of ¹³⁰TeH

Fermi Resonance of CO₂

Yagi et al, J.Chem.Phys. 126, 124303 (2007)

A characterization of the spectroscopic properties of CO_2 is crucial for the understanding of chemistry of the seafloor, planetary atmospheres, and the greenhouse effect.

CO₂ has four normal modes of vibrations:
(a) a symmetric stretching mode (v₁),
(b) degenerate bending modes (v₂)
(c) an antisymmetric stretching mode (v₃).

The accidental near degeneracy, $v_1 \approx 2v_2$, results in a significant anharmonic coupling between the two modes, which are pushed apart by the coupling. This is the well known v_1 -2 v_2 Fermi resonance of CO₂.

Low-lying vibrational energy levels (in cm⁻¹) of CO₂ obtained with CCSD(T) and vibrational CI

	Theory	Exptl.	
v_2 (01 ¹ 0)	668.5	667.4	
v_1 (10 ⁰ 0)	1288.3	1285.4	Fermi doublet
$v_2^2 (02^20)$	1338.2	1335.1	
v_2^2 (02 ⁰ 0)	1388.7	1388.2	Fermi doublet
$v_1 v_2 (11^{10})$	1937.0	1932.5	Fermi doublet
v_2^3 (03 ³ 0)	2009.6	2003.2	
v_2^{3} (03 ¹ 0)	2078.6	2076.9	Fermi doublet
$v_3(00^01)$	2349.2	2349.2	

The accidental near degeneracy, $v_1 \approx 2v_2$, results in a significant anharmonic coupling between the two modes, v_1-2v_2 Fermi resonance.

Computational Chemistry

There is always a trade-off in a calculation between the size of the molecule and the required accuracy. Owing to the theoretical developments and high-speed computers, quantum chemistry can now describe the properties of small molecules with chemical accuracy (2 kcal/mol or 0.1eV) comparable to those of experiment using correlated *ab initio* method but for biological/nano-scaled molecules we have to be content with cruder treatments.

Nano-Bio Simulation

With the emergence of peta-scale computing platforms we are entering a new period of modeling. The computer simulations can be carried out for larger, more complex, and more realistic systems than ever before.

Next Generation Supercomputer Project in Japan

The bane of ab initio calculations

Steep *N* dependence of the computational efforts on the system size, *N*

SystemSize (N)

Method/algorithm to reduce *N*-dependence is required

Density Functional Theory (DFT)

DFT may be the only tool that enables us to carry out accurate simulations for larger systems with reasonable computational cost. If practical DFT is developed, which can handle biomolecules and nanomaterials, we can enlarge greatly the scope of computational chemistry.

Topics

➢ Fast Evaluation of Coulomb Integrals with Gaussian and Finite Element Coulomb Method

Kohn-Sham Method without SCF Procedure

Accurate Description of van der Waals Interactions

Gaussian and Finite Element Coulomb (GFC) Approach

Y.Kurashige, T.Nakajima, and K.Hirao, *J.Chem.Phys.*, **126**, 144106 (2007)

Three time-consuming steps for DFT with GGA

Numerical integration of exchange-correlation (*xc*) part

can be implemented in linear-scaling fashion using Becke's weighting scheme

Coulomb part

is very often the most time consuming one, in particular with GGA functionals

Diagonalization of Fock matrix

scales cubically but insignificant compared to that of the computation of either *xc* or Coulomb for systems with up to several thousands basis functions

Fast Numerical Methods

Much effort has been made to develop efficient methods in evaluation of Coulomb integrals. Integral prescreening technique reduces the scaling from $O(N^4)$ to $O(N^2)$. Furthermore several efficient computational methods have been proposed.

Auxiliary functions

Gaussians Fast Multipole Moment Method (FMM), ~ O(NlogN). White, Johnson, Gill, Head-Gordon, JCP(1996)

Resolution of the Identity (RI) Approach, Vahtras, Almlof, Feyerisen, CPL(1993) $J_{pq} = \sum_{A}^{M} \left(pq|A \right) \sum_{B}^{M} \left[\left(A|B \right)^{-1} \left(\sum_{rs}^{N} D_{rs} \left(B|rs \right) \right) \right] 4c \text{ ERIs are decomposed into 3c and 2c ERIs.}$

Plane waves Mixed Basis Method, ERI with PW scales as ~ O(M).

Lippert, Hunter, Parrinello, MP(1997), Fusti-Molnar, Pulay, JCP(2002), Kurashige, Nakajima, Hirao, CPL(2006)

$$J_{pq} = J_{pq}^{Gauss} + J_{pq}^{GAU-PW} = J_{pq}^{Gauss} + \sum_{h}^{M} w_{h} R_{p}^{s}(h) R_{q}^{s}(h) J^{s}(h), \quad J^{s}(k) \frac{4\pi}{k^{2}} \rho^{s}(k) \qquad k-space$$

Grid basis Pseudospectral (PS) Method, ~ $O(N^2M)$. PS combines analytical basis sets with numerical grid basis functions, *Friesner CPL(1985), Nakajima, Hirao, JCP(2004)*

$$J_{pq} = \sum_{g}^{M} w_{g} R_{p}(g) R_{q}(g) \left(\sum_{rs}^{N} D_{rs} A_{rs}(g) \right), \quad A_{rs}(g) = \int \frac{\chi_{r}(g') \chi_{s}(g')}{|g - g'|} dg'$$

Gaussian and Finite Element Coulomb Approach

Coulomb integrals are given with Gaussians and Coulomb potentials

$$J_{pq} = \int dr \chi_p(r) \chi_q(r) v(r)$$
$$v(r) = \int dr' \frac{\rho(r')}{|r'-r|}, \qquad \rho(r') = \sum_{rs} D_{rs} \chi_r(r') \chi_s(r')$$

We expand Coulomb potentials in terms of auxiliary functions, Gaussians and Finite Element Basis as

$$v(r) = \sum_{i} c_{i}^{FE} f_{i}^{FE}(r) + \sum_{i} c_{i}^{Gauss} f_{i}^{Gauss}(r)$$

The atom-centered Gaussian functions represent the spherical core potential near a nucleus, while uniform finite-element functions, a tensor product of one-dimension Lagrange interpolate polynomials, represent the residual, which would be smooth across the board.

Coulomb Integrals

Coulomb integrals can be evaluated by overlap integrals among two Gaussian basis functions and one auxiliary function

$$J_{pq} = \int dr \chi_p(r) \chi_q(r) v(r)$$

= $\sum_i c_i^G \int dr \chi_p(r) \chi_q(r) f_i^G(r) + \sum_i c_i^{FE} \int dr \chi_p(r) \chi_q(r) f_i^{FE}(r)$

No four-center two-electron integrals Drastically reduces the computational cost

Poisson's Equation

The expansion coefficients $\{c_i\}$ can be obtained by solving Poisson's equation, which is solved algebraically by the Galerkin method

$$-\nabla^{2}V(r) = 4\pi\rho(r) \xrightarrow{\text{auxiliary}}_{\text{functions}} \begin{bmatrix} O & O \\ A & \\ O & O \end{bmatrix} \times \begin{bmatrix} M \\ \mathbf{c} \\ M \end{bmatrix} = \begin{bmatrix} M \\ \mathbf{b} \\ M \end{bmatrix}, \qquad \begin{cases} \mathbf{A}_{ij} = \int \nabla f_{i}(r) \cdot \nabla f_{j}(r) dr \\ \text{kinetic integral} \\ \mathbf{b}_{i} = \int \rho(r) \cdot f_{i}(r) dr \\ \text{overlap integral} \\ V(r); \sum_{i} \mathbf{c}_{i} \cdot f_{i}(r) \end{cases}$$

The linear equation is solved by using CG method.

The matrix A is independent of $\rho(r)$ and contains only kineticlike integrals. It is extremely sparse in the localized auxiliary basis functions.

Poisson's equation scales as O(N).

Performance

CPU:IBM Power 4 1.0GHz BLYP/SVP

Analytical and FMM results are computed using GAMESS

	Analytical integrals				GF	C method		
	$R_e(\hat{A})$	$\omega_e(\text{cm}^{-1})$	D _e (kcal/mol) E _{KS} (hartree)	$R_e(\hat{A})$	$\omega_{e}(cm^{\cdot 1})$	D _e (kcal/mol)	E _{KS} (hartree)
BeH	1.354	2036	57.1	-15.2422	1.354	2035	57.1	-15.2423
СН	1.146	2725	84.7	-38.4604	1.145	2727	84.8	-38.4607
CN	1.187	2112	189.2	-92.6979	1.187	2111	189.3	-92.6981
со	1.150	2153	260.6	-113.2907	1.150	2153	260.7	-113.2911
F_2	1.437	994	55.4	-199.4907	1.436	991	55.6	-199.4912
FH	0.936	4016	133.7	-100.4097	0.938	4012	134.0	-100.4103
H_2	0.747	4485	111.1	-1.1679	0.747	4488	111.1	-1.1680
Li ₂	2.732	335	20.2	-14.9922	2.734	335	20.2	-14.9923
LiF	1.561	1051	137.8	-107.4008	1.561	1051	137.8	-107.4010
LiH	1.623	1377	57.1	-8.0664	1.622	1376	57.1	-8.0665
N_2	1.118	2388	234.4	-109.5063	1.116	2387	235.2	-109.5076
NH	1.060	3163	87.7	-55.2015	1.059	3164	88.0	-55.2021
NO	1.176	1909	165.3	-129.8753	1.175	1914	166.1	-129.8767
O ₂	1.239	1551	138.4	-150.311 6	1.239	1552	138.7	-150.3123
ОН	0.992	3617	106.2	-75.7102	0.991	3619	106.3	-75.7105
MAE	-	-	-	-	0.0006	2	0.2	0.0004

Table I Equilibrium bond lengths (R_e) , harmonic frequencies (ω_e) , atomization energies (D_e) and equilibrium total energies ($E_{\rm KS}$) for diatomic molecules using BLYP/6-31G**

Gaussian and FE Coulomb Approach

Gaussian and FE Coulomb Approach

Gaussian and FE Coulomb Approach

Gaussian and FE Coulomb approach offers the best performance for evaluating Coulomb integrals without loss of accuracy. The algorithm is found to scale linearly with system size.

Gaussian and FE Coulomb approach makes the molecular quantum calculations affordable for very large systems involving several thousands of basis functions.

Hybrid GGA Functionals

The success of Kohn-Sham DFT was the development of *xc* functionals depending on density gradients in addition to the density itself (GGA).

A further advance is the mixing of a small fraction of exactly computed HF exchange with GGA exchange such as B3LYP, LC-GGA, etc.

Although hybrid GGA improves the accuracy, it also makes the calculation more expensive.

Exchange Integrals

Fast algorithms for Coulomb interaction cannot be employed for HF exchange because its algebraic structure is not compatible with them.

Only the pseudospectral method can be applied to HF exchange but it scales as $O(N^2M)$.

$$J_{pq} = \sum_{g}^{M} w_{g} \chi_{p}^{*}(g) \chi_{q}(g) \left(\sum_{rs}^{N} D_{rs} A_{rs}(g) \right), \quad K_{pq} = \sum_{g}^{M} w_{g} \chi_{p}^{*}(g) \left[\sum_{r}^{N} \left(\sum_{s}^{N} D_{rs} \chi_{s}(g) \right) A_{rq}(g) \right]$$
$$A_{pq}(g) = \int \chi_{p}^{*}(1) \frac{1}{|r_{1} - r_{g}|} \chi_{q}(1) dr_{1}$$

Friesner CPL(1985), Nakajima and Hirao, JCP(2004)

The hybrid GGA is more accurate but less efficient for large systems.

Dual-Level Approach

Nakajima and Hirao, J.Chem.Phys., 124, 184108 (2006)

To perform hybrid GGA DFT calculations for large systems, we have developed the dual-level approach. The approach is based on the low sensitivity of the density to the choice of the functional and the basis set. The total electron density in the ground state can be well represented in terms of the density evaluated using the low-quality basis set and the low-cost *xc* functional.

The error is remedied by the secondorder perturbation theory.

Dual-Level DFT

Solve KS equation with low-quality basis set & low-level functional and obtain a total density

Use a frozen density approximation and evaluate the total energy with high-quality basis set & high-level functional

Total Electronic Energy

The reference energy of the KS total electronic energy is given by

$$E_{KS}^{(0)} = 2\sum_{pq} D_{pq} h_{pq} + 2\sum_{pq} \sum_{PQ} D_{pq} D_{PQ}^{L} (pq|PQ) - t_{EX} \sum_{pq} \sum_{PQ} D_{pq} D_{PQ}^{L} (pQ|Pq) + t_{XC} E_{XC}$$

Since no rotations between occupied and virtual orbitals are allowed, Brillouin theorem is not satisfied. The correction to the KS energy is evaluated perturbatively by

$$E_{KS}^{(1)} = 2\sum_{i}^{occ} \sum_{a}^{vir} \frac{\left|F_{ia}\right|^{2}}{\varepsilon_{i} - \varepsilon_{a}}$$

The KS total electronic energy is given by

$$E_{KS} = E_{KS}^{(0)} + E_{KS}^{(1)}$$

Timing of Dual-Level DFT

Timing	of d	ual-lev	vel	DFT
--------	------	---------	-----	-----

	# of basis	Lower	Higher		
	functions	level	level	Total cpu	Total Energy
		(h:m:s)	(h:m:s)	(h:m:s)	(au)
B3LYP	1944		925:47:11	925:47:11	-3794.9350
B3LYP:LDA	882	2:52:08	12:24:07	15:16:15	-3794.9509

60.6 times faster (38 days \rightarrow 15 hours)

Valinomycin (C₅₄H₉₀N₆O₁₈)

Calculated interaction energies (kcal/mol)							
	B3LYP/	B3LYP/	LDA/	B3LYP:			
	6-31G ^{**}	6-31G	6-31G	LDA			
Cytosine-guanine pair							
Cytosine	-394.7170	-394.5888	-391.5696	-394.7204			
Guanine	-542.2618	-542.0766	-537.9595	-542.2675			
Cytosine-guanine	-937.0284	-936.7218	-929.6077	-937.0374			
Interaction Energy	31.1	35.4	49.3	31.1			
Adenine-thymine pair							
Adenine	-467.0603	-466.8967	-463.2617	-467.0635			
Thymine	-453.8940	-453.7501	-450.3102	-453.8996			
Adenine-thymine	-920.9806	-920.6786	-913.6204	-920.9894			
Interaction Energy	16.5	19.9	30.4	16.5			

Cytosine-Guanine

Thymine-Adenine

Conclusions

The dual-level DFT approach works quite well and the large reduction of the computer resources can be achieved at an affordable loss of accuracy since the SCF procedure is avoided. Hybrid functionals can T now be applied to bio- and/or nano-scaled molecules.

Hybrid GGA functional with correct long-range electron-electron interactions

J.Chem.Phys., submitted. J. Chem.Phys., **126**, 154105 (2007) J.Chem.Phys., **120**, 8425 (2004) J. Chem.Phys., **115**, 3540 (2001)

Conventional GGA has problems

- 1. Barrier heights in chemical reactions underestimated.
- 2. Van der Waals interactions repulsive
- 3. Excitations using time-dependent DFT for Rydberg and CT states underestimated
- 4. Band gaps of insulators too small
- 5. Optical response function too large
- 6. And, and, and,...

Since

- 1. *xc* potential decays as $exp(-\alpha r)$ rather than -1/r
- 2. self-exchange & self-Hartree potentials do not cancel

It's possible to improve the asymptotic behavior !

The failure arises from the wrong long range behavior due to the local character of the approximate *xc* functionals.

By splitting the Coulomb interaction into short-range and long-range components, we proposed a new hybrid functional with correct long-range electron-electron interactions.

P.Gill (1996), A.Savin (1996)

The key is the partitioning of $1/r_{12}$ for the exchange contribution

An Ewald partitioning

Andreas Savin (1996)

Exchange functional with correct longrange electron-electron interactions

$$E_x = E_x^{short} + E_x^{long}$$

Long-range: Hartree-Fock exchange

$$E_{x}^{long} = -\sum_{i} \sum_{j} \iint \varphi_{i}(r_{1}) \varphi_{j}(r_{1}) \frac{erf(\mu r_{12})}{r_{12}} \varphi_{j}(r_{2}) \varphi_{i}(r_{2}) dr_{1} dr_{2}$$

Short-range: GGA exchange functional

$$E_x^{short} = -\frac{1}{2} \sum_{\sigma} \int \rho_{\sigma}^{4/3} K_{\sigma} \left[1 - \frac{8}{3} a_{\sigma} \left\{ \sqrt{\pi} erf\left(\frac{1}{2a_{\sigma}}\right) + 2a_{\sigma}(b_{\sigma} - c_{\sigma}) \right\} \right] dr$$
$$a_{\sigma} = \frac{\mu K_{\sigma}^{1/2}}{6\sqrt{\pi} \rho_{\sigma}^{1/3}}, \quad b_{\sigma} = \exp\left(-\frac{1}{4a_{\sigma}^2}\right) - 1, \quad c_{\sigma} = 1a_{\sigma}^2 b_{\sigma} + 1$$

Hybrid exchange functionals

B3LYP

LC - GGA

Response Properties

Excitation Energies, MAE (eV)

27 valence excitations (N₂, CO, H₂CO, C₂H₄, C₆H₆)

	BLYP	0.36	
NH ₂	B3LYP	0.37	
1	LC-BLYP	0.32	
	SAC-CI	0.37	

41 Rydberg excitations (N₂, CO, H₂CO, C₂H₄, C₆H₆)

BLYP	1.54	
B3LYP	0.89	
LC-BLYP	0.41	
SAC-CI	0.19	

Rydberg Excitations of Benzene in eV

State	BLYP	B3LYP I	LC-BLYP	SAC-CI	Exp.
Valence excitations					
$^{1}B_{2u}$ $\pi \rightarrow \pi^{*}$	5.15	5.34	5.38	5.16	4.90
$^{1}B_{1u} \pi \rightarrow \pi^{*}$	5.85	6.00	6.20	6.37	6.20
$^{1}\text{E}_{1u}$ $\pi \rightarrow \pi^{*}$	6.77	6.96	6.97	7.65	6.94
Rydberg excitations					
$^{1}\mathrm{E}_{1\mathrm{g}}$ $\pi \rightarrow 3s$	5.53	5.94	6.60	6.55	6.33
$^{1}A_{2u}^{\circ} \pi \rightarrow 3p\sigma$	6.01	6.42	7.10	7.12	6.93
$^{1}\text{E}_{2u}$ $\pi \rightarrow 3p\sigma$	6.00	6.44	7.25	7.19	6.95
$^{1}\mathrm{E}_{1\mathrm{u}}$ $\pi \rightarrow 3p\pi$	6.28	6.67	7.43	7.11	7.41
$^{1}\mathrm{B}_{2\mathrm{g}}$ $\pi \rightarrow 3d\sigma$	6.48	6.96	7.89	7.75	7.46
$^{1}\mathrm{E}_{1\mathrm{g}}$ $\pi \rightarrow 3d\delta$	6.49	6.97	7.90	7.61	7.54
$^{1}E_{2g} \pi \rightarrow 3p\pi$	6.73	7.19	8.07	7.94	7.81
Mean absolute deviat	tions				
Valence excitations	0.29	0.26	0.24	0.23	-
Rydberg excitations	1.00	0.55	0.28	0.20	-

Free-Base Porphyrin

Excitation energy in eV (Oscillator strength)

State	BLYP	B3LYP	LC-BLYP	MRMP	SAC-CI	Exptl
1 B _{1u}	2.16 (0.0010)	2.28 (0.0001)	1.96 (0.005)	1.63 (0.0026)	1.75 (0.0001)	1.98-2.02 (0.02)
1 B _{2u}	2.30 (0.0005)	2.44 (0.0000)	2.28 (0.002)	2.55 (0.0143)	2.23 (0.0006)	2.38-2.42 (0.07)
$2\mathrm{B}_{1\mathrm{u}}$	2.99 (0.11)	3.34 (0.62)	3.59 (2.85)	3.10 (1.61)	3.56 (1.03)	3.13-3.33
2 B _{2u}	3.03 (0.03)	3.51 (0.92)	3.71 (3.63)	3.25 (1.53)	3.75 (1.73)	(1.15)

Charge Transfer (CT) Excitations

 $\Delta E_{CT}(\infty) = IP_{tfe} - EA_e$

at $R = \infty$

Long-range CT excited states of C₂H₄-C₂F₄

Comparison of the long-range behavior of the lowest CT state of the ethylenetetrafluoroethylene dimer along the internuclear distance coordinate.

Opt	imiz.e	ed CT		l State Geometry
4-cya	no-(4	+ -Me l Chem.P	nyunio hvs. 124 . [<i>44106 (2006)</i>
			•	$\overset{\delta^{+}}{}$
H	OMC			LUMO C7 C6 C15 C14
 Parameters	BOP	B3LYP	LC-BOP	
 C1-S1	1.83	1.81	1.80	C1 C3 C4 C11 C12
S1-C2	1.77	1.74	1.75	
C1-S1-C2	106	105	104	
C5-C8	1.44	1.42	1.41	
C8-C9	1.27	1.28	1.32	
C9-C10	1.39	1.38	1.38	Adiabatic excitation energy (eV
C5-C8-C9	137	136	130	BOP 2.37
C8-C9-C10	168	168	154	B3IVP 3.07
C13-C16	1.41	1.41	1.43	$\frac{1}{1} \frac{1}{1} \frac{1}$
				$LU-DUI \qquad 4.02$

	BOP	B3LYP	LC-BOP	Exp.
$C_2H_6+H\rightarrow C_2H_5+H_2$	2.8	4.9	6.8	7.3
$NH_3+H\rightarrow NH_2+H_2$	4.7	7.5	12.3	11.4
$H_2O+H\rightarrow OH+H_2$	10.9	12.8	18.0	18.5
$H_2O+OH\rightarrow OH+H_2O$	-3.8	3.8	5.9	8.6
$CH_3F+H\rightarrow CH_2F+H_2$	3.4	5.9	9.5	9.0
CH ₃ F+H→CH ₃ +HF	16.8	21.0	24.9	30.1
CH ₃ Br+H→CH ₃ +HBr	0.5	1.9	3.8	5.8
CH ₃ Cl+Cl ⁻ →Cl ⁻ +CH ₃ Cl	-3.8	-2.1	3.8	2.9
CH ₃ Br+Br→Br+CH ₃ Br	-5.5	-3.9	2.6	1.7
$1,2,3,4-C_2N_4H_2 \rightarrow N_2+2HCN$	27.3	39.7	50.5	51.8
CH ₃ Cl+H→CH ₃ +HCl	3.4	5.2	8.0	10.4
$CH_3Cl+H\rightarrow CH_2Cl+H_2$	3.5	5.9	7.5	11.1
MAE (more than 100 reactions)	8.7	5.6	2.6	

Barrier heights (kcal/mol) of chemical reactions

J.Chem.Phys, **126**, 15 4105 (2007)

Hyperpolarizability α, ω-nitro aminopolyene (NH₃(CH=CH)_nNO₂) *J.Chem.Phys*, **122**, 234111 (2005)

Conclusions

Hybrid functionals can be improved through the introduction of an Ewald partitioning of $1/r_{12}$.

Hybrid GGA functional with correct long-range electron-electron interactions has good energetics, good Rydberg behavior and good CT predictions.

Accurate Description of van der Waals Interactions

Takeshi Sato

J.Chem.Phys., in press. J. Chem.Phys., **123**, 104307 (2005) *Mol.Phys.*, **103**, 1151 (2005) *J. Chem.Phys.*, **117**, 6010 (2002)

Van der Waals interactions

Van der Waals (dispersion) interactions play an important role in many chemical systems. They control the structure of DNA and proteins, the packing of crystals, the formation of aggregates, host-guest systems, the orientation of molecules on surfaces or in molecular films, etc.

Unfortunately almost all GGA DFTs are unable to describe dispersive interactions.

Potential Energy Curves of Ne-Ne

Van der Waals interactions

 $\Delta E^{vdW} = E$ (Pauli repulsion) - E (Dispersion attraction)

LDA predicts the binding character of vdW interactions. However, LDA severely overestimates the binding energy and yields a too short vdW bond. The GGA predicts repulsive vdW interactions. Thus, none of the functionals account successfully for vdW interactions.

MP2 significantly overestimates the binding energies and MP2 results have strong basis set dependence. Only CCSD(T) with a large basis set gives the accurate estimation.

Applying the LC scheme to the exchange functionals leads to similar repulsive potentials

Dispersion Attraction

Van der Waals functional (Andersson et al, PRL 1996)

$$E^{dispersion} = -\frac{6}{4(4\pi)^{3/2}} \int_{V_1} d^3 \mathbf{r}_1 \int_{V_2} d^3 \mathbf{r}_2 \frac{\sqrt{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}}{\sqrt{\rho(\mathbf{r}_1)} + \sqrt{\rho(\mathbf{r}_2)}} \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|^6}$$

The functional provides an accurate dispersion energy between well-separated electron distributions.

multiplied by a damping factor

$$f_{damp} = \exp\left[-\left(\frac{\alpha_{AB}}{r_{12}}\right)^{6}\right] \qquad \left(\alpha_{AB} = C_{1}R_{AB} + C_{2}\right)$$

 R_{AB} : Clementi's atomic radii (1963)

Potential Energy Curves of Rare-gas Dimers

Basis set: aug-cc-pVTZ, BSSE-corrected

Homo-nuclear

Hetero-nuclear

Contour plot of the PES of FCI--He

Mol. Phys. (Handy special issue), 103, 1151 (2005)

LC plays a major role in the determination of vdW complex structure.

Benzene Dimer

J.Chem.Phys., 123, 104307 (2005)

All previous GGA-DFT predicted repulsive vdW interactions

The 75-point Euler-Maclaurin quadrature and the 302-point Gauss-Legendre quadrature are used for radial and angular grids, respectively.

Potential energy surface of benzene dimer

	D _e (kcal/mol)	R ₁ (Å)	R ₂ (Å)	
Present/aug-cc-pVDZ	3.17	3.6	1.7	
MP2/aug-cc-pVQZ	4.79	3.4	1.6	
CCSD(T)/aug-cc-pVQZ	2.63	3.6	1.6	

Naphthalene Dimer

Functional Dependence

BLYP functional gives substantially deeper potentials due to a different nature of the LYP correlation functional.

Basis set dependence

used.

Structures of calculated complexes, with the point group symmetries and the definition of intermolecular distances.

Mean	absolute	percentage	error	(%)
------	----------	------------	-------	-----

Present	Becke	MP2	
9.9	14.9	46.6	
5.6	11.8	8.6	
9.2	8.5	9.5	
7.1	8.6	2.4	
7.5	11.7	19.2	
0.11	0.08		
0.08	0.02		
0.05	0.05		
0.06	0.08		
0.08	0.06		
	Present 9.9 5.6 9.2 7.1 7.5 0.11 0.08 0.05 0.06 0.08	Present Becke 9.9 14.9 5.6 11.8 9.2 8.5 7.1 8.6 7.5 11.7 0.11 0.08 0.05 0.05 0.06 0.08 0.08 0.06	Present Becke MP2 9.9 14.9 46.6 5.6 11.8 8.6 9.2 8.5 9.5 7.1 8.6 2.4 7.5 11.7 19.2 0.11 0.08 0.02 0.05 0.05 0.05 0.06 0.08 0.06

Becke & Johnson, JCP (2005) : the model requires the polarizability of each monomer.

Application to π -stacking energies

- •Large planar aromatic systems (graphene sheets, porphyrins, DNA bases) are attracted by a considerable dispersion force.
- •The dimerization energy is difficult to measure because of decomposition
- In the limit of large parallel sheets, the dispersion force diminishes as $1/r^4$, not as $1/r^6$

π -stacking energies

Coronene dimer (C₄₈H₂₄) & trimer (C₇₂H₃₆)

Circumcoronene dimer (C₁₀₈H₃₆) & trimer (C₁₆₂H₅₄)

Exfoliation energies per C-atom in polycyclic aromatic hydrocarbon dimers and trimers

Exfoliation energies (meV)

Experimental data35, 43, 52 meVPrevious computations8 ~ 170 meVPresent estimation36 ~ 38 meV

Van der Waals Interactions

The proposed method is expected to be a promising alternative for calculating accurate van der Waals interactions in larger molecules, since this method

requires much less computational cost compared to high-level *ab initio* wave function methods, such as CCSD(T).

Hirao Group (UT)

Thanks to Ministry of Education, Japan Science and Technology Agency (JST), past and present group, and many others.