Edge Magnetoplasma-like Resonance in Two-Dimensional Electrons

on the Surface of 3He-4He Liquid Mixtures

Hanako Isshiki, Yoshiyuki Shibayama and Keiya Shirahama

Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Surface state electrons on liquid helium are a very unique two-dimensional system. The electrons have much lower densities and much higher mobility than those which have been obtained in semiconductor interfaces. The system is non-degenerate due to its low areal density, and undergoes the phase transition to the Wigner crystal. In the crystal state, the electrons are inevitably accompanied by periodic surface deformation. Such a state is referred to as the coupled plasmon-ripploun state, and this determines the unique in-plane dynamics of the Wigner crystal.

There are two stable isotopes in helium, namely 4He and 3He. The properties of liquid 4He are quite different from those of 3He due to quantum effects. At temperatures $10 \text{ mK} < T < 1 \text{ K}$, liquid 4He is a viscosity-free superfluid, whereas liquid 3He shows very large viscosity proportional to T^{-2}. The surface tension, which also reflects dynamic properties of liquid surface, is 2.4 times smaller for liquid 3He than for 4He. One may therefore expect strong effects of the difference in surface properties of the two liquid isotopes, on the electron dynamics.

The transport properties of the surface electrons have been studied both on liquid 4He and on 3He. The Wigner crystal both on 4He and 3He shows a strongly nonlinear transport under a perpendicular magnetic field [1] [2]. However, on liquid 3He, the nonlinearity is observed even in the absence of magnetic field [3]. Furthermore, the magnetoconductivity σ_{xx} is anomalous on liquid 4He, i.e. $\sigma_{xx} \propto B^{-1}$, while on 3He it obeys the classical Drude law, $\sigma_{xx} \propto B^{-2}$ [2] (B : magnetic field). These interesting differences suggest that the underlying liquid plays a crucial role on the transport properties of the surface electrons.

3He-4He liquid mixtures offer us an intriguing “third” cryogenic surface for electrons. At the 3He concentration $n_3 < 6.4 \text{ %}$, there exist 3He bound states on the surface, and the “surface 3He” forms a two-dimensional Fermi fluid below 200 mK [4]. With increasing the 3He concentration from 0 to 6.4 %, the surface tension decreases monotonically, as more 3He atoms accumulate at the surface. At $n_3 > 6.4 \text{ %}$, the mixture undergoes the two phase separation, and the nearly pure 3He phase forms the free surface due to gravity. In this sense, the mixture surfaces may “link” together the properties of both pure liquid 4He and 3He surfaces. Studying the electrons on the mixture surface will shed light on the role of underlying liquid on the dynamical properties of the surface electrons.

In the present work, we have tried to measure the conductivity of the surface electrons on mixtures for various 3He concentrations. However, as is shown below, we have observed quite unexpected resonance phenomena in the electrons on the mixture surfaces.

We have employed the standard capacitive method for the conductivity measurement, with a Corbino ring electrode (outer diameter 30 mm). The helium level is set 1.0 mm above the electrode. A small ac-voltage is applied to the inner electrode and the induced current in the outer electrode is monitored as a voltage on a capacitor connected in series. In the measurement reported here, we have swept the frequency from 1 kHz to 300 kHz under a constant magnetic field perpendicular to the electron sheet. The concentration of 3He is ranged from 0 % (natural 4He) to 21.0 %, and the electron system is cooled down to 30 mK.

We have not been able to measure the conductivity of the surface electrons, because of unexpected resonance phenomena. We have observed the resonances only in a perpendicular magnetic field. Figure 1 shows the behavior of the resonances. The resonances are observed only when the 3He concentration is from 0.055 % to 6.49 %.

The most intriguing property is the magnetic-field dependence of the resonance. In Fig. 2, we
plot the resonance frequency f_c as a function of the field B. We have found that the resonance frequency is \textit{inversely proportional} to B.

Under a constant magnetic field, f_c increases in proportion to the surface electron density. On the other hand, f_c is quite independent of the 3He concentration when the electron density is constant. Furthermore, f_c is constant from 30 mK to 500 mK, whereas the peak amplitude (linewidth) starts to decrease (increase) at about 300 mK with increasing temperature. Above 500 mK, the resonances are so broadened that becoming undetectable.

The inverse proportionality of the resonance frequency to the magnetic field is quite similar to the characteristics of “edge magnetoplasmons (EMPs)” or “inter-edge magnetoplasmons (IEMPs)” observed in many two-dimensional electron systems [5]. However, the typical frequencies of the EMPs or IEMPs which have been observed in the electrons on liquid 3He are much (2–3 orders of magnitude) higher than that we have observed. Since the EMPs are charge-density fluctuations that propagate along the edge due to the Hall effect, they can never be detected when the bottom electrode has circular geometry, as in the present setup.

The IEMPs propagate the boundary between two regions with different electron densities, and the IEMP frequency is proportional to the electron density difference between two regions, ∂n. If such two regions exist on our mixture surfaces, and the boundary of the two regions lie across the gap of the Corbino electrodes, the IEMPs can be detected. Assuming so, ∂n is estimated to be of the order of 10^3 cm$^{-2}$ from the f_c data, although there is no other evidences that such an inhomogeneity exists constantly on the surface of the mixtures only when the 3He concentration is below 6.49 %. Theoretical studies for the possible origin of the electron inhomogeneity are obviously needed.

![Fig.1](image1.png) Fig.1. Amplitude of the output voltage as a function of frequency for the several magnetic fields B: (a) 730, (b) 438, (c) 292, (d) 219, (c) 109 G. The 3He concentration $n_3=0.68 \, \%$, areal electron density $n_s=1.05 \times 10^8 \, \text{cm}^{-2}$, $T=30 \, \text{mK}$.

![Fig.2](image2.png) Fig.2. Resonance frequency f_c as a function of magnetic field B for 3He concentrations $n_3 = 0.68 \, \%$ (), and 6.48 % (+), and $n_s=1.05 \times 10^8$ (1), 0.53 $\times 10^8$ (2) and 0.26 $\times 10^8$ cm$^{-2}$ (3), at $T = 30$ mK. The solid and dotted straight lines show the least-square fits to the data of $n_3 = 0.68 \, \%$, and 6.48 %, respectively.