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Sequential tunneling is the key hypothesis for the standard rate equations [1] used to explain the transmission
spectrum of quantum dots in the Coulomb blockade regime [2, 3]. This probabilistic picture neglects non-resonant
quantum virtual processes, under the assumption that the resonant decay widths Γ are much smaller than both kBT
and the energy separation between the quantum dot resonances δε, namely, Γ � kBT and Γ � δε, a condition often
met by experiments in nearly isolated quantum dots. The early experimental data taken from ballistic chaotic quantum
dots were successfully confronted with the sequential theory by using the random matrix theory (RMT) to model
the dot statistical single-particle properties. More recently, the analysis of the measured conductance peak-heights
in the Coulomb blockade regime [2, 3] show significant deviations from this theory, indicating that some physics is
missing. The inclusion of inelastic scattering processes [4], spin-orbit coupling [5], and exchange interaction [6, 7] into
the sequential approach expand in interesting ways the considered physical processes. These studies achieved only a
limited success in reconciling theory with experiment.
We show that quantum coherence, so far overlooked, leads to important corrections to the sequential tunneling

picture and explains some of the puzzles pointed out by the conductance experiments [2, 3]. The importance of
coherent processes is justified by noticing that while the sequential theory requires Γ � kBT, δε, the experiments
satisfy those conditions only in average, namely, 〈Γ〉 < ∆ ≡ 〈δε〉 and 〈Γ〉 <∼ kBT . Since both the decay width Γ and
the resonance spacings δε fluctuate, conductance peaks where Γ is larger than kBT and δε are not exceptional. More
importantly, the study of fully coherent transport, as opposed to the sequential tunneling limit, provides a better
framework to understand the interplay between coherence and interactions.
The conductance through the quantum dot is expressed in terms of the interacting system retarded Green’s function,

which is written as a sum over terms containing different (and fixed) number of electrons in the dot

GR =
∞∑

N=0

PN

{[
εI − H

(N)
dot − ΣR(ε)

]−1

(I − nN ) +
[
εI − H

(N−1)
dot − ΣR(ε)

]−1

nN

}
, (1)

where the quantum dot Hamiltonian matrix elements are
[
H

(N)
dot

]
i,j

= (Ej − eαVg + UN)δi,j , (2)

U is the quantum dot charging energy, Ej stands for (closed) dot eigenenergies, and PN is the thermal probability to
find N electrons in the dot. In Eq. (1) we set [nN ]i,j = 〈ni〉N δi,j given by the canonical occupation numbers of the
(closed) dot eigenstates. The retarded self-energy matrix elements, due to the coupling to the leads, become

[
ΣR(ε)

]
i,j

=
∑

k,a∈L,R

Vi,(k,a)V(k,a),j

ε + i0+ − εk,a
≈ − i

2
(ΓL + ΓR) . (3)

since the lead-dot coupling matrix elements V(k,a),j vary in the energy scale of εk and hence are practically constant
in energy windows comprising several single-particle states. The linear-response conductance is

G =
2e2

h
g with g =

∫
dε

(
−∂fµ

∂ε

)
TR,L(ε) and TR,L(ε) =

∣∣∣ ∑
i,j

V(k,L),i

[
GR

]
i,j

Vj,(k,R)

∣∣∣2 , (4)

where fµ is the Fermi distribution function in the leads with chemical potential µ.
The statistical study of the dimensionless conductance peak heights gmax allows for a comparison between the

results of our approach, experiments and the sequential tunneling theory. The statistical ansatz is to assume that
the underlying electronic dynamics in the quantum dot is very complex and hence the fluctuation properties of its
single-particle eigenenergies and eigenfunctions coincide with those of an ensemble of random matrices. Accordingly,
the single-particle levels display universal fluctuations and their spacings δε follow the Wigner-Dyson distribution.
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FIG. 1: Left: Peak height probability distribution P (gmax) for kBT = 0.1∆ and β = 2. The same for β = 1 in the inset. Our
theory for 〈Γ〉/∆ = 0.1 (solid line) and 0.2 (dashed line) is compared with the standard sequential tunneling result (dotted
line), and the experimental distribution (histogram) [2]. Right: Normalized peak heights distribution width σg for the unitary
case (the orthogonal case is shown in the inset) as a function of kBT/∆, for 〈Γ〉/∆ = 0.05, 0.1, 0.2 (dashed-dot, solid and dashed
lines respectively). Symbols correspond to the experimental results of Ref. [2] for different dots and the dotted lines to the
standard sequential theory.

Likewise, the decay widths Γ are Porter-Thomas distributed. The physical inputs of the statistical theory are only the
mean level spacing ∆ and the average decay width 〈Γ〉. We consider both the orthogonal time-reversal invariant case
(β = 1) and the unitary case (β = 2) of broken time-reversal symmetry. The later is the relevant one for comparison
with avaliable experimental data.
The numerical implementation is straightforward, but costly. The evaluation GR requires matrix inversions for each

realization. The canonical thermal quantities PN and 〈ni〉N are computed using a quadrature formula. For kBT <∼ ∆
good accuracy requires taking into account at least 30 levels around the resonant one. The charging energy U is taken
to be 50∆ (the results are quite insensitive to U , provided U � ∆).
The data of Ref. [2] show that at very low temperatures, kBT � ∆, the conductance peak-height distribution does

not follow the standard random matrix theory. By accounting for quantum coherent tunneling we obtain a very nice
agreement with the experimental distributions. This is illustrated in Fig. 1 for β = 2. In the inset we present our
results for the distribution of gmax for β = 1. In Fig. reffig-PG the dimensionless conductance peak heights gmax are
scaled to unit mean. We show the peak heights distribution for kBT = 0.1∆, 〈Γ〉 = 0.1∆ (solid line) and 〈Γ〉 = 0.2∆
(dashed line). The histogram corresponds to the experimental result of Ref. [2] avaliable only for β = 2. Different dots
have different 〈Γ〉/∆, a ratio that can be determined from the experimental gmax. 〈Γ〉/∆ ∼ 0.1 is representative of
the analyzed experiments. We find that as the ratio 〈Γ〉 /∆ is increased, the probability to obtain small conductances
is suppressed in comparison with the standard sequential theory (dotted line). This can be understood as follows:
If a given resonance has small tunneling rates, the contributions due to virtual processes through its neighbors will
reduce the chance to obtain a very small peak. Thus, we expect P (gmax = 0) = 0.
Our results show the importance of coherent contributions in the Coulomb blockade electronic transport. Other

approaches show similar level of agreement with the most recent experiments [4, 6, 7].
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