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Two-dimensional electron gas (2DEG) in a strong magnetic field is known as a system which
shows various phenomena resulting from the electronic interaction. In particular, the fractional
quantum Hell (FQH) effect has attracted much theoretical and experimental attention from
this point of view. To investigate such strongly-correlated systems theoretically, numerical
studies play a significant role. For example, the exact diagonalization and density matrix
renormalization group (DMRG) methods have been used for the study of FQH systems as
the ones directly accessible to the ground state. However, the exact diagonalization can study
static and dynamic properties only for small systems, while it is not so easy to obtain dynamical
information by the DMRG. Thus we apply the quantum Monte Carlo (QMC) method to this
system in the present work.

The QMC method has been used for several quantum many-body systems. It can investigate
both static and dynamical properties of systems larger than those applicable in the exact
diagonalization. However, this method is inherently involved with the so-called negative-sign
problem. Thus we need to overcome (at least, or moderate) the negative-sign nuisance in order
to make the best use of the method. In this study , we formulate the QMC method to the FQH
system that is free of the sign problem and report some numerical results.

We consider interacting electrons confined on a spherical surface with a magnetic monopole
located at the center of the sphere. For simplicity, we neglect the spin degrees of freedom and
assume that all the electrons occupy the lowest Landau level. Then single-particle states are
specified by the z-component, m, of angular momentum whose amplitude is s, where 2s is the
number of flux quanta piercing the sphere. m ranges from −s to s. The Hamiltonian can be
written in the quadratic form of the density operator and its time reversal:
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where am is an annihilation operator of electron, 〈KN |m1m2〉 the Clebsch-Gordan coefficient,
and C0 is a constant. The coupling constant χK is related with the Haldane pseudopotential
VJ as
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}
, (1)

where the braces denote Wigner’s 6j symbol. The transformation matrix T satisfies T−1 = T ,
that is, VJ =

∑2s
K=0 TJKχK .

In the zero-temperature formalism, the expectation value of an observable O is given by
〈O〉 = limβ→∞〈ψ|e−βH/2Oe−βH/2|ψ〉/〈ψ|e−βH|ψ〉, where |ψ〉 is an arbitrary state not orthogonal
to the ground state. The imaginary-time evolution operator e−βH is decomposed to imaginary-
time slices e−∆βH · · · e−∆βH, and the Hubbard-Stratonovich (HS) transformation is performed
for each slice. After all, the expectation value is expressed in the form of an auxiliary-field path
integral. We evaluate it by means of the Monte Carlo method. The negative-sign problem is



nothing but the fact that the integrand function of the normalization denominator, 〈ψ|e−βH|ψ〉,
is not always positive for any auxiliary-field configuration.

It can be shown that the sign problem can be avoided completely under the following
conditions: (i) 2s is odd and the number of electrons, Ne, is even, (ii) the coupling constants
in the Hamiltonian satisfy χK ≥ 0 for K = 1, 2, · · · , 2s. The condition (i) can be satisfied, for
example, in case of 2s = 3Ne − 3 for the ν = 1/3 Laughlin state, or 2s = 2Ne − 3 for the
Pfaffian state. However, the condition (ii) is not satisfied when the values for the Coulomb
interaction are used for VJ in Eqn.(1). Thus we control the value of χK (that is, that of VJ) by
solving a linear programming problem for the satisfaction of the condition (ii). Namely, taking
into account that only VJ for odd 2s− J are physical for fermionic systems, we inquire for χK

which minimizes

F (χ0, χ1, · · · , χ2s) ≡
∑

2s−J :odd

λJ(
2s∑

K=0

TJKχK − VJ)

under the conditions that χ0 ≤ 0, χK ≥ 0 for K = 1, 2, · · · , 2s, and λJ(
∑2s

K=0 TJKχK − VJ) ≥ 0
for odd 2s− J . We note here that λJ controls the variance of pseudopotential VJ from that for
the Coulomb interaction for each J . Then obtained χK minimizes the variance satisfying the
condition (ii).

Figure 1(a) shows an example of pseudopotentials free of the negative-sign problem. Al-
though the optimized potential does not coincide completely with that for the Coulomb in-
teraction, its monotonical dependence on J is realized naturally. We note that optimized
pseudopotentials can be obtained with less variance for the higher Landau levels or in the
presence of finite-thickness effects.

In Figure 1(b), the energy expectation values are shown against the width of imaginary-
time slice ∆β. Although finite value of ∆β gives rise to numerical errors by the Suzuki-Trotter

decomposition, the expectation value almost saturates for ∆β ≤ 1/8 [1/(e2/lB)] (lB ≡
√

c/eB:

the magnetic length) and converges to the groundstate energy (pointed by the arrow) for β > 20
[1/(e2/lB)]. The convergence is consistent with the fact the energy gap is about 0.1e2/lB.
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Figure 1: (a) Pseudopotentials for the Coulomb interaction and optimized negative-sign-free
potential for 2s = 15. Only the physical (2s − J : odd) components are shown. (b) Energy
expectation value per particle vs. inverse temperature by the QMC calculation for 2s = 15
and Ne = 6. Optimized potential in (a) was used, and the values used as imaginary-time slice
width are ∆β = 1/8, 1/16, and 1/32 [1/(e2/lB)]. The groundstate energy obtained by the exact
diagonalization is shown by an arrow at the right side.


