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Transport properties of the two-dimensional electron gas (2DEG) are investigated in

the presence of a perpendicular magnetic field B and of a weak, two-dimensional (2D)

periodic potential modulation in the 2DEG plane U(x, y) = Vx cos(2πx/a) + Vy cos(2πy/b),

with a, b the periodicities along the x and y directions, respectively. The solution of the

corresponding tight-binding equation has shown1 that each Landau level splits into several

subbands, whose number depends on the magnetic field, and that the gaps between them

are exponentially small. Assuming the latter are closed due to disorder and following

Ref. 2 gives analytical wave functions and simplifies considerably the evaluation of the

magnetoresistivity tensor ρµν . The relative phase of the oscillations in ρxx and ρyy depends

on the modulation periods involved. For a 2D modulation with short period ≤ 100 nm,

the tensor ρµν shows prominent peaks when one flux quantum ~/e passes through an integral

number of unit cells in very good agreement with recent experiments3. For 1D modulations

these peaks are absent while for 2D modulations, with period 300 − 400 nm and the usual

densities, they occur at magnetic fields 10 − 25 times smaller than those of the Weiss

oscillations (B ≤ 0.4 T) and appear unresolved in early experiments4.
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SUPPORTING MATERIAL  
 

        For a 2DEG in a normal magnetic field B we use the one-electron Hamiltonian   
H0= (p + e A)/2m* + Vxcos(Kxx) + Vy cos(Kyy),    (1) 

with Kx=2π/a, Ky= 2π/b, a, b the periodicities along the x and y directions and Vx ,Vy the 
modulation strengths. For A = (0, Bx, 0) and |n, ky> the eigenstate for Vx =Vy=0, the so-
lutions of Eq. (1) are sought in the form1 |φn,ky> = ΣpAp | n,ky+pKyy >, p integer. Then the 
tight-binding equation  <n,ky+ pKyy |H0 – E| φn,ky> = 0, which neglects mixing of Landau 
levels, takes the form (Φ0= h/e, Φ=Bab, x0= (h/eB) ky) 

VxFn(ux+uy) cos(2πpα+Kxx0)Ap+Vy Fn (uy)[Ap+1+Ap-1]/2 = (E - En)Ap , (2)   
here α = Φ0 /Φ, Φ is the flux through the unit cell, En=(n +1/2)

�
ωc the eigenvalue for Vx 

=Vy=0,  and ωc the cyclotron frequency. Further, Fn(uµ) = exp(-uµ/2) Ln(uµ), Ln(uµ) is the 
Laguerre polynomial, and uµ= (h/eB)K2

µ/2. For α = integer or half-integer, Eq. (2) admits 
the solutions Ap = A0 e

i ξ p with ξ =(h/eB)Kykx. The resulting eigenvalues are 
E nkyξ  = En±VxFn (ux)cos(Kxx0) +VyFn(uy)cosξ     (3) 

Thus, the unperturbed Landau levels broaden into bands, with width equal to 2(Vx|Fn(ux)| 
+ Vy|Fn(uy)|),  that oscillates with magnetic field B.  
        Eq. (3) misses the fine structure of the exact solution of Eq. (2) for α ≠  integer. As-
suming the latter is absent due to disorder, we can use Eq. (3) for all fields B and evalu-
ate the resistivity tensor along the lines of Ref. 2. The result for the collisional contribu-
tion to the conductivity, σxx~ρyy/B

2, is shown in the figure for the parameters of Ref. 3. 
The prominent peaks marked by the arrows show the integral number of unit cells 
through which one flux quantum Φ0 passes. The experimental field values at which these 
peaks occur, respectively, for α=1-6, are B (T) =0.64, 0.32, 0.21, 0.16, 0.13, 0.11. The 
smaller-amplitude oscillations between, e.g., α=1 and�  α=2, are the Weiss oscillations. For 
2D modulations with period 300-400 nm these peaks occur at B fields 10-25 times 
smaller than those of the Weiss oscillations (B≤0.4T) and appear unresolved in early 
experiments4.  
 
 
 
    
 
 
 
 
 
  
 
 
 
1. J. Labbe, Phys. Rev. B 35, 1373 (1987). 
2. P. Vasilopoulos and F. M. Peeters, Phys. Rev. Lett.  63, 2120 (1989) 
3. S. Chowdhury et al., EP2DS-14, Prague (2001); A. R. Long, private communication 
4. R. R. Gerhardts et al., Phys. Rev. B   43, 5192 (1991). 


