Quantum magnetotransport of a 2DEG in a weak, two-dimensional periodic modulation

X. F. Wang ${ }^{a}$, P. Vasilopoulos ${ }^{a}$, and F. M. Peeters ${ }^{b}$
${ }^{a}$ Concordia University, Department of Physics, 1455 de Maisonneuve Ouest, Montréal, Québec, H3G 1M8, Canada
${ }^{b}$ Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610, Belgium

Transport properties of the two-dimensional electron gas (2DEG) are investigated in the presence of a perpendicular magnetic field B and of a weak, two-dimensional (2D) periodic potential modulation in the 2DEG plane $U(x, y)=V_{x} \cos (2 \pi x / a)+V_{y} \cos (2 \pi y / b)$, with a, b the periodicities along the x and y directions, respectively. The solution of the corresponding tight-binding equation has shown ${ }^{1}$ that each Landau level splits into several subbands, whose number depends on the magnetic field, and that the gaps between them are exponentially small. Assuming the latter are closed due to disorder and following Ref. 2 gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor $\rho_{\mu \nu}$. The relative phase of the oscillations in $\rho_{x x}$ and $\rho_{y y}$ depends on the modulation periods involved. For a 2D modulation with short period $\leq 100 \mathrm{~nm}$, the tensor $\rho_{\mu \nu}$ shows prominent peaks when one flux quantum \hbar / e passes through an integral number of unit cells in very good agreement with recent experiments ${ }^{3}$. For 1D modulations these peaks are absent while for 2D modulations, with period $300-400 \mathrm{~nm}$ and the usual densities, they occur at magnetic fields $10-25$ times smaller than those of the Weiss oscillations ($B \leq 0.4 \mathrm{~T}$) and appear unresolved in early experiments ${ }^{4}$.

1. D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976); F. H. Claro et al., 19, 6068 (1979).
2. J. Labbe, Phys. Rev. B 35, 1373 (1987).
3. S. Chowdhury et al., EP2DS-14, Prague (2001); A. R. Long, private communication
4. R. R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev. B 43, 5192 (1991).

SUPPORTING MATERIAL

For a 2 DEG in a normal magnetic field B we use the one-electron Hamiltonian

$$
\begin{equation*}
\mathrm{H}^{0}=(\mathbf{p}+\mathrm{e} \mathbf{A}) / 2 \mathrm{~m}^{*}+\mathrm{V}_{\mathrm{x}} \cos \left(\mathrm{~K}_{\mathrm{x}} \mathrm{x}\right)+\mathrm{V}_{\mathrm{y}} \cos \left(\mathrm{~K}_{\mathrm{y}} \mathrm{y}\right) \tag{1}
\end{equation*}
$$

with $\mathrm{K}_{\mathrm{x}}=2 \pi / \mathrm{a}, \mathrm{K}_{\mathrm{y}}=2 \pi / \mathrm{b}$, a, b the periodicities along the x and y directions and $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}$ the modulation strengths. For $\mathbf{A}=(0, B x, 0)$ and $\mid n, k_{y}>$ the eigenstate for $V_{x}=V_{y}=0$, the solutions of Eq. (1) are sought in the form ${ }^{1}\left|\phi_{n, k y}\right\rangle=\Sigma_{p} A_{p} \mid n, k_{y}+p K_{y} y>, p$ integer. Then the tight-binding equation $<\mathrm{n}, \mathrm{k}_{\mathrm{y}}+\mathrm{p} \mathrm{K}_{\mathrm{y}} \mathrm{y}\left|\mathrm{H}^{0}-\mathrm{E}\right| \phi_{\mathrm{n}, \mathrm{ky}}>=0$, which neglects mixing of Landau levels, takes the form ($\Phi_{0}=\mathrm{h} / \mathrm{e}, \Phi=\mathrm{Bab}, \mathrm{x}_{0}=(\mathrm{h} / \mathrm{eB}) \mathrm{k}_{\mathrm{y}}$)
$\mathrm{V}_{\mathrm{x}} \mathrm{F}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{x}}+\mathrm{u}_{\mathrm{y}}\right) \cos \left(2 \pi \mathrm{p} \alpha+\mathrm{K}_{\mathrm{x}} \mathrm{x}_{0}\right) \mathrm{A}_{\mathrm{p}}+\mathrm{V}_{\mathrm{y}} \mathrm{F}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{y}}\right)\left[\mathrm{A}_{\mathrm{p}+1}+\mathrm{A}_{\mathrm{p}-1}\right] / 2=\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}\right) \mathrm{A}_{\mathrm{p}}$,
here $\alpha=\Phi_{0} / \Phi, \Phi$ is the flux through the unit cell, $\mathrm{E}_{\mathrm{n}}=(\mathrm{n}+1 / 2) \hbar \omega_{\mathrm{c}}$ the eigenvalue for V_{x} $=V_{y}=0$, and ω_{c} the cyclotron frequency. Further, $\mathrm{F}_{\mathrm{n}}\left(\mathrm{u}_{\mu}\right)=\exp \left(-\mathrm{u}_{\mu} / 2\right) \mathrm{L}_{\mathrm{n}}\left(\mathrm{u}_{\mu}\right), \mathrm{L}_{\mathrm{n}}\left(\mathrm{u}_{\mu}\right)$ is the Laguerre polynomial, and $\mathrm{u}_{\mu}=(\mathrm{h} / \mathrm{eB}) \mathrm{K}_{\mu}^{2} / 2$. For $\alpha=$ integer or half-integer, Eq. (2) admits the solutions $\mathrm{A}_{\mathrm{p}}=\mathrm{A}_{0} \mathrm{e}^{\mathrm{i} \xi \mathrm{p}}$ with $\xi=(\mathrm{h} / \mathrm{eB}) \mathrm{K}_{\mathrm{y}} \mathrm{k}_{\mathrm{x}}$. The resulting eigenvalues are

$$
\begin{equation*}
\mathrm{E}_{n k, \xi}=\mathrm{E}_{\mathrm{n}} \pm \mathrm{V}_{\mathrm{x}} \mathrm{~F}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{x}}\right) \cos \left(\mathrm{K}_{\mathrm{x}} \mathrm{x}_{0}\right)+\mathrm{V}_{\mathrm{y}} \mathrm{~F}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{y}}\right) \cos \xi \tag{3}
\end{equation*}
$$

Thus, the unperturbed Landau levels broaden into bands, with width equal to $2\left(\mathrm{~V}_{\mathrm{x}}\left|\mathrm{F}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{x}}\right)\right|\right.$ $\left.+V_{y}\left|F_{n}\left(u_{y}\right)\right|\right)$, that oscillates with magnetic field B.

Eq. (3) misses the fine structure of the exact solution of Eq. (2) for $\alpha \neq$ integer. Assuming the latter is absent due to disorder, we can use Eq. (3) for all fields B and evaluate the resistivity tensor along the lines of Ref. 2. The result for the collisional contribution to the conductivity, $\sigma_{x x} \sim \rho_{y y} / B^{2}$, is shown in the figure for the parameters of Ref. 3. The prominent peaks marked by the arrows show the integral number of unit cells through which one flux quantum Φ_{0} passes. The experimental field values at which these peaks occur, respectively, for $\alpha=1-6$, are $\mathrm{B}(\mathrm{T})=0.64,0.32,0.21,0.16,0.13,0.11$. The smaller-amplitude oscillations between, e.g., $\alpha=1$ and $\alpha=2$, are the Weiss oscillations. For 2D modulations with period $300-400 \mathrm{~nm}$ these peaks occur at B fields $10-25$ times smaller than those of the Weiss oscillations ($\mathrm{B} \leq 0.4 \mathrm{~T}$) and appear unresolved in early experiments ${ }^{4}$.

1. J. Labbe, Phys. Rev. B 35, 1373 (1987).
2. P. Vasilopoulos and F. M. Peeters, Phys. Rev. Lett. 63, 2120 (1989)
3. S. Chowdhury et al., EP2DS-14, Prague (2001); A. R. Long, private communication
4. R. R. Gerhardts et al., Phys. Rev. B 43, 5192 (1991).
