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In the breakdown of the quantum Hall effect, the diagonal resistivity p,, increases discon-
tinuously at a critical current. Such an increase of p,, has been ascribed to the increase of
the electron temperature T, [1]. One of interesting and important problems is to clarify spatial
distributions of T,(x,y). In this paper we study spatial variations of T,(y) in the direction
perpendicular to the current (the current is along x). We calculate T.(y) in the linear and
nonlinear regime by applying our hydrodynamic equation [2]. We show that the electron tem-
perature difference appears between sample edges, i.e. AT, = T,(W/2) — T.(—=W/2) # 0 with
W the sample width. This is produced by the presence of the magnetic field and the current,
and therefore it is the Ettingshausen effect in quantum Hall systems. We also show that AT,
exhibits quantum oscillations as a function of the filling factor and that AT, changes the sign.
These are features specific to quantum Hall systems.

In our previous work [2], we have introduced a hydrodynamic equation (nonlinear heat con-
duction equation) to describe macroscopic spatio-temporal variations in quantum Hall systems.
An important feature of this equation is the presence of a large heat flux due to the drift mo-
tion of electrons perpendicular to the macroscopic electric field E. Our equation has explained
successfully the qualitative features of spatial evolutions of p,,(z) along the current which have
been observed in recent experiments in the breakdown regime. In this paper, our equation is
applied to spatial variations in another direction, ¢.e. perpendicular to the current.

Our microscopic model is a two-dimensional electron system in strong magnetic fields in
random potential fluctuating in the scale of ¢y, ~0.1pum, in which each electron moves along
the equipotential line, producing both closed orbits and extended orbits. Drift motions along
extended orbits give the electric current as well as the thermal current perpendicular to the
macroscopic electric field E, while diffusion processes due to electron-electron scatterings give
the currents parallel to FE.

Our major assumption in the derivation of the hydrodynamic equation is the local equilib-
rium in the length scale of the potential fluctuations ¢y, ~0.1pum. By making spatial averages,
we obtain the equation of the energy conservation as well as that of the charge conservation.
The heat flux in the equation consists of the diffusion contribution j?}ﬂ parallel to E as well as
the drift contribution de’rift perpendicular to E.

First we consider the nonlinear breakdown regime at even-integer filling factors. At even-
integer filling factors, j?]iﬂ = 0. Since FE, is large, j?fift acquires a substantial y component,
which produces a difference in 7, between the two edges, AT, (the Ettingshausen effect). The
present asymmetric 7, distribution is consistent with the asymmetry observed in the cyclotron
emission intensity distribution [1].

Next we consider the linear regime and study the filling-factor dependence of AT,. Calcu-
lated AT, exhibits quantum oscillations as a function of the filling factor. Interestingly, AT,
changes the sign with increasing the filling factor when the lattice temperature is low enough

that j{}f > jg’g“. This is because j?}ﬁ changes the direction with increasing the filling factor .
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Fig. 1 Electron temperature distribution perpendicular to the current.
{1 =2um is defined by eE (. = hw,
with E_| the lower critical electric field.
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Fig. 2 Electron temperature difference between sample edges (in a dimensionless unit)
as a function of the chemical potential in the linear regime.
T, is the lattice temperature. I" is the width of the Landau level.





