Spin-Spin Interaction In Artificial Molecules With In-Plane Magnetic Field
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Coupled quantum dots, also called Artificial Molecules (AM), extend to the molecular realm the
similarity between Quantum Dots (QDs) and artificial atoms'; inter-dot tunneling introduces an
energy scale which may be comparable to other energy scales in the system, namely, single-particle
confinement energies, carrier-carrier interaction, and magnetic energy. In AMs carriers sitting on
either dot are not only electrostatically coupled, but also have their spin interlaced when tunneling is
allowed®. One convenient way to control inter-dot tunneling, and, hence, effective spin-spin
interaction, is by applying a magnetic field with a finite component perpendicular to the tunneling
direction, B||. This is particularly important in vertically coupled QDs, where otherwise tunneling in
a given sample is fixed by sample parameters. This possibility extends the use of a vertical field, B,
to drive the system from a low correlation (low field) regime to a high correlation (high field) one.
In addition to the vertical component of the field, therefore, the in-plane magnetic field can be used
to fully control the spin-spin interaction and, therefore, the spin character of the ground state of
few-electron systems.

In this work we study theoretically the few-electron phase diagram, with particular respect to the
spin ordering, in vertically coupled QDs in the (B,,B, ) plane. Our numerical approach is based on
a real-space description of single-particle states which fully includes the complexity of typical
samples, 1.e., layer width, finite band-offsets etc. We
include  carrier-carrier  Coulomb  interaction, 6525
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geometry is sketched in the inset. Single-particle
levels come in symmetric (S) / antisymmetric (AS)
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state (GS) is a spin singlet at low field, but spin-spin 0 2 4 6 8 10 12

interaction is suppressed with field due to the B,(T)

reduction of the tunneling probability, and singlet and
triplet states become degenerate. Correspondingly, the FIG 1. AM energy levels (B, = 0) with two
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Next we consider the effect of a finite B, in the high B, regime. Top figure 2 shows one
example of how the usual picture of Fock-Darwin states’, i.c., the states of a 2D parabolic
confinement with a strictly vertical field, can be modified when the field is tilted from the vertical
direction (6=0) of the AM, as shown by the arrow. The main effect here is that, while B, decreases,
tunneling is suppressed by the increasing B, and S and AS states come close to each other. The
effect is larger for the highest, more delocalized states. A finite B,, breaking the axial symmetry of
the AM with vertical field, may also
remove the degeneracies between S/AS
Fock-Darwin  states ~ with  angular
momentum differing by +1 [not shown in
top Fig. 2].

Bottom figure 2 shows the two-particle
levels when the field is rotated from the
vertical direction. In the moderate field e — L
regime shown here, not sufficient to 35; ' 1 ' 5 3 14
induce the singlet-triplet transition*, the 0/
lowest energy levels are nearly unaffected 104 ——
by the rotation except for the shift due to LB=8 T

the reduction of the tunneling energy, with  ~ 102 W’/J/J—
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as the in-plane field increases, the | D ]
two-electron wavefunction evolves into an ~ Z s \k'\
entangled state occupying both S and AS ~ vafF ] -
levels. 04 N 1@ "“. | e i

At sufficiently high vertical field one or 20035 303 Bj“ B0 s 60

more (depending on the sample parameter)
singlet-triplet transitions take place at

given threshold fields, with the triplet state g75 > Energy levels for a AM with two identical
eventually being the stable one. Since a gyuantum wells 10 nm wide, a 3 nm barrier, and
finite B, affects the tunneling and, parabolic lateral confinement (10 meV) at B =8 T as
therefore, the exchange energy, the a function of the tilting angle. (Top) Calculated
threshold fields will also be affected’. The Single-particle levels (dots) and corresponding
full single-triplet phase diagram will Fock-Darwin states for B,= 0 (solid and broken

d&i d in the paper. Implications of lines). (Bottom) Two-electron levels. Insets: main
discusse ¢ papet. AMPHCAUONS O . honents of the wavefunctions in terms of S (left
in-plane fields in the localization regime boxes) and AS (right boxes) states.

(Wigner crystallization) will also be
discussed.
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