Spin Polarization of Electrons in Lateral Periodic Potential
Around Filling Factor $\nu=3$

S. Nomura1 and Y. Aoyagi2

1Institute of Physics, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8571 Japan
2Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama, Kanagawa 226-8502, Japan

Abstract
We have investigated the spin polarization of electrons in a Be-$\|$-doped single heterojunction modulated by a field-induced lateral potential by a circularly polarized magneto-photoluminescence spectroscopy. We observe minimum in the polarization of the lowest state at the filling factor $\nu=3$ at a bias voltage $V_B=0$ V. The minimum becomes less pronounced with increase in the lateral periodic potential, which is related with unstabilization of the Skyrmion excitation.

Introduction
A circular polarization dependent photoluminescence (PL) spectroscopy is a powerful tool for direct detection of the spin polarization of electrons in the two-dimensional electron systems (2DES). This method has been successfully applied for the investigations of the Skyrmionic excitations at $\nu=1$ [1]. In constrast to the case of $\nu=1$ [2], there have been arguments for the observation of the Skyrmion excitation at odd integer $\nu\geq3$ [3]. Kerridge et al. interpreted the depolarization of the lowest state of the 2DES to be due to the formation of Skyrmions [4]. In this paper, we report the dependence of this depolarization on the magnitude of a lateral periodic potential.

Results and discussions
The lateral periodic potential is tuned by applying a bias voltage (V_B) between a back gate and a surface gate of square mesh of a period of 250-400 nm prepared by the electron beam lithography on a Be-$\|$-doped single heterojunction [5]. A Be-$\|$-doped layer is located 25 nm from the heterointerface with a nominal doping density of 2×10^{10} cm$^{-2}$. The electron density was estimated to be 3.6×10^{11} cm$^{-2}$ from an optical Shubnikov-de Haas measurement without applying V_B. PL spectra were obtained by illuminating the samples at 800 nm at the excitation power density of about 10 mW/cm2 at 1.8 K. The results are shown for the $\|$ excitation. No significant difference is observed between the excitation polarizations.

The magnetic field dependencies of the degree of circular polarization of the PL from the four lowest Landau-levels (LLN, $N=0, 1, 2, 3$) at $V_B=0$ V in the low magnetic field regime are shown in Fig. 1. The polarization of the PL from the partly occupied Landau-levels shows maxima at odd filling factors ($\nu=5, 7$) due to the enhancement of the spin splitting in agreement with the literature [1].

Figure 2 shows the magnetic field dependencies of the degree of circular polarization of the PL from the lowest state at $V_B=0$ V, -0.3 V, -0.5 V. The minimum at around $\nu=3$ for LL0 was ascribed to be due to the Skyrmion formation [5]. No polarization maximum is observed in Fig. 2 at $\nu=3$ in the partly occupied second Landau-level at $V_B=0$ V, probably due to the saturation of the degree of the polarization. The position of the minimum at $\nu=3.17$ (4.7 T) in the lowest state is not shifted between $V_B=0$ V and -0.3 V indicating that the local electron density at the lateral position mainly contributing to the PL is not decreased by the negative bias voltage. This minimum disappears at $V_B=-0.5$ V, which can be interpreted that the Skyrmion stability depends on the magnitude of the lateral confinement potential. Measurements are also performed for samples with a surface gate structure of
square mesh of a period of 250 nm, and qualitatively similar but stronger V_B dependencies are observed. Lateral potential modulation energy is estimated to be about 0.5 meV at $V_B = -0.5$ V [5]. The application of the lateral potential is considered to change the exchange energy and hence the spin configuration of the electrons. The abrupt change of the magnetic field dependencies between $V_B = -0.3$ and -0.5 V may support the picture of the Skyrmion formation at $n = 3$.

In summary, the spin polarization of electrons in a field-induced lateral potential is investigated by a circularly polarized magneto-photoluminescence spectroscopy. The observed minimum in the polarization at $n = 3$ becomes less pronounced with increase in the magnitude of the lateral periodic potential, which is related to unstabilization of the Skyrmion excitation.

References

Acknowledgments
This work is partly supported by CREST, JST and by University of Tsukuba Nano-science Special Project.

Fig. 1 Magnetic field dependent polarization of the PL from LL0 (closed circles), LL1 (closed boxes), LL2 (open triangles), and LL3 (open boxes) at $V_B = 0$ V in the low magnetic field regime.

Fig. 2 Magnetic field dependent polarization of the PL from the lowest state at $V_B = (i) 0$ V (closed circles), (ii) -0.3 V (open triangles), (iii) -0.5 V (closed boxes), and from (iv) LL1 at $V_B = 0$ V (open circles) .