Integer Filling Factor Phases in Vertical Diatomic Artificial Molecules

D G Austing1,2, S Tarucha2,3, K Muraki2,
F Ancilotto4, M Barranco5, A Emperador6, R Mayol5 and M Pi5

1Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada
2NTT Basic Research Laboratories, Atsugi, Kanagawa, Japan
3Department of Physics and ERATO Mesoscopic Correlation Project, University of Tokyo, Tokyo, Japan
4Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Padova, Padova, Italy
5Departament ECM, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
6Dipartimento di Fisica, Università di Trento, Povo, Italy

We investigate integer filling factor phases of many-N-electron (up to ~40) vertically coupled semiconductor quantum dot artificial molecules (AM’s) for different values of the inter-dot coupling \cite{1}. The experimental results are analyzed within local-spin density functional theory (LSDFT) \cite{2}, and we determine a simple lateral confining potential law that can be scaled for the different coupling regimes. Maximum density droplets composed of electrons in both bonding (B) and anti-bonding (AB), or just B states are revealed, and interesting isospin physics (e.g. “isospin-flip” transitions) occurs that may also be relevant to double quantum well bilayer systems.

(a) The AM devices are fabricated from a triple barrier structure with a central barrier thickness, b, between 2.5 nm (strong coupling) and 6.0 nm (weak coupling) \cite{1}. The current (I_0) flowing through two dots located inside circular mesas (diameter, D<1 \textmu m) is measured at a temperature \sim100 mK as a function of voltage between the substrate and top contact (V_d\sim0.2 mV), and voltage on the gate (V_g). The magnetic field (B//) is applied parallel to the current.

(b-d) Experimental B//-N phase diagrams for AM’s with b=2.5, 4.7, and 6.0 nm showing evolution of Coulomb oscillations (ground state electrochemical potentials). (b) is strikingly similar to a single dot phase diagram. We identify two threshold lines marking the end of the Fock-Darwin level crossings (filling factor, \nu_B=2), and the start of the spin-polarized compact maximum density droplet (MDD\textsubscript{B}, \nu_B=1). Only B states are relevant. The \nu_B=1 line originates from the N=2 singlet-triplet (S-T) transition. (c) and (d) are clearly very different to (b) since now AB electrons play a role as the inter-dot coupling is reduced. We can identify the onset of two cohabiting MDD’s- one is made of B states (MDD\textsubscript{B}), and the other is made of AB states (MDD\textsubscript{AB}), so we call this phase MDD\textsubscript{B+AB} (\nu_T=2 i.e., \nu_B=1 + \nu_{AB}=1). In the MDD\textsubscript{B+AB} phase, there are features (some connected by dashed lines) that we argue are due to the depopulation of AB-states. Cartoons of the arrangement of electrons in B and AB single particle states, for certain integer filling factors are shown as insets.

(e-g) Calculated B// -N phase diagrams for QM structures with b=2.5, 4.7, and 6 nm. The low and high field boundary of each integer filling factor phase of finite width is drawn. Only values corresponding to N=4M (M=3-9) are meaningful here, and we assume the two dots are identical. The effective lateral harmonic oscillator potential has strength kN_{B}^{-1/4}, where k=6.91 meV is deduced from a fit to the onset of MDD\textsubscript{B} in (b), and N_{B}(N_{AB}) is the number of electrons in B (AB) states at 0 T. This we found crucial to achieve a good quantitative description of the phases. Consistent with the experimental data, as the inter-dot coupling is reduced, we find the stability of the MDD\textsubscript{B} decreases, and the MDD\textsubscript{B+AB} phase appears in which isospin transitions occur. Within certain phases (\nu_T=4 and 2), regions of different isospin, I_Z=(N_B-N_{AB})/2, are identified by LSDFT, and I_Z is generally found to increase with N and B//. Additionally, we discuss the range of stability of the phases, the \nu_B=2 phase for the b=2.5 nm AM, and the \nu_T=4 phase (\nu_B=2+\nu_{AB}=2) for the b=4.7 and 6.0 nm AM’s for which LSDFT predicts isospin transitions that are 'spin-flip-driven'.
