Integer Filling Factor Phases in Vertical Diatomic Artificial Molecules

<u>D G Austing</u>^{1,2}, S Tarucha^{2,3}, K Muraki², F Ancilotto⁴, M Barranco⁵, A Emperador⁶, R Mayol⁵ and M Pi⁵

¹Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada ²NTT Basic Research Laboratories, Atsugi, Kanagawa, Japan

³Department of Physics and ERATO Mesoscopic Correlation Project, University of Tokyo, Tokyo, Japan

⁴Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Padova, Padova, Italy

⁵Departament ECM, Facultat de Física, Universitat de Barcelona, Barcelona, Spain ⁶Dipartimento di Fisica, Università di Trento, Povo, Italy

We investigate integer filling factor phases of many-N-electron (up to ~40) vertically coupled semiconductor quantum dot artificial molecules (AM's) for different values of the inter-dot coupling [1]. The experimental results are analyzed within local-spin density functional theory (LSDFT) [2], and we determine a simple lateral confining potential law that can be scaled for the different coupling regimes. Maximum density droplets composed of electrons in both bonding (B) and anti-bonding (AB), or just B states are revealed, and interesting isospin physics (e.g. "isospin-flip" transitions) occurs that may also be relevant to double quantum well bilayer systems.

(a) The AM devices are fabricated from a triple barrier structure with a central barrier thickness, b, between 2.5 nm (strong coupling) and 6.0 nm (weak coupling) [1]. The current (I_d) flowing through two dots located inside circular mesas (diameter, D<1 μ m) is measured at a temperature ~100 mK as a function of voltage between the substrate and top contact (V_d~0.2 mV), and voltage on the gate (V_g). The magnetic field (B_{//}) is applied parallel to the current.

(b-d) Experimental B_{//}-N phase diagrams for AM's with b=2.5, 4.7, and 6.0 nm showing evolution of Coulomb oscillations (ground state electrochemical potentials). (b) is strikingly similar to a single dot phase diagram. We identify two threshold lines marking the end of the Fock-Darwin level crossings (filling factor, v_B =2), and the start of the spin-polarized compact maximum density droplet (MDD_B, v_B =1). Only B states are relevant. The v_B =1 line originates from the N=2 singlet-triplet (S-T) transition. (c) and (d) are clearly very different to (b) since now AB electrons play a role as the inter-dot coupling is reduced. We can identify the onset of two cohabiting MDD's- one is made of B states (MDD_B), and the other is made of AB states (MDD_{AB}), so we call this phase MDD_{B+AB} (v_T =2 i.e., v_B =1 + v_{AB} =1). In the MDD_{B+AB} phase, there are features (some connected by dashed lines) that we argue are due to the depopulation of AB-states. Cartoons of the arrangement of electrons in B and AB single particle states, for certain integer filling factors are shown as insets.

(e-g) Calculated $B_{//}$ -N phase diagrams for QM structures with b=2.5, 4.7, and 6 nm. The low and high field boundary of each integer filling factor phase of finite width is drawn. *Only values corresponding to* N=4M (M=3-9) are meaningful here, and we assume the two dots are identical. The effective lateral harmonic oscillator potential has strength $kN_B^{-1/4}$, where k=6.91 meV is deduced from a fit to the onset of MDD_B in (b), and $N_B(N_{AB})$ is the number of electrons in B (AB) states at 0 T. This we found crucial to achieve a good quantitative description of the phases. Consistent with the experimental data, as the inter-dot coupling is reduced, we find the stability of the MDD_B decreases, and the MDD_{B+AB} phase appears in which isospin transitions occur. Within certain phases ($v_T=4$ and 2), regions of different isospin, $I_Z=(N_B-N_{AB})/2$, are identified by LSDFT, and I_Z is generally found to increase with N and $B_{I/}$. Additionally, we discuss the range of stability of the phases, the $v_B=2$ phase for the b=2.5 nm AM, and the $v_T=4$ phase ($v_B=2+v_{AB}=2$) for the b=4.7 and 6.0 nm AM's for which LSDFT predicts isospin transistions that are 'spin-flip-driven'. [1] D G Austing et al., Physica B **249-251**, 206 (1998).

[2] M Pi et al., Phys. Rev. Lett. 87, 066801 (2001).

