Magnetoconductivity of a Spin Polarized Two-Dimensional Electron Gas near the (111) Silicon Surface

O. Estibals^{1,2}, Z.D. Kvon³, G.M.Gusev⁴, G. Arnaud¹, J.C. Portal^{1,2,5}

¹ GHMFL, MPI-FKF/CNRS, BP-166, Grenoble Cedex9, France
² INSA-Toulouse, 31007 Cedex4, France
³ Institute of Semiconductor Physics, Novosibirsk, Russia
⁴ Instituto de Fisica da Universidade de Sao Paulo, SP, Brazil
⁵ Institut Universitaire de France, Paris, France

During the last decade, the transport properties of strongly correlated and disordered twodimensional electron systems (2DES) have attracted much interest : indeed, in contrast to the theoretical expectations for non- or weakly ninteracting particles, the resistivity of a high mobility (100) MOSFET has been measured to decrease with temperature [1] and an apparent metal to insulator transition has been observed. Today, the nature of the ground state of the system still remains undetermined : the transport properties of a dilute 2DES when applying an in-plane magnetic field may therefore help to understand whether the anomalous temperature dependence of the conductivity manifests a new electronic state or if it can be understood in the frame of existing theories.

In this paper, we have focused on the parallel magnetoconductance of a 2DEG in a Si MOSFETs near the (111) surface : this highly interacting and disordered system is characterized by a very large value of the r_s factor, about 50 and a nonmonotonic behavior of $\rho(T)$ has been recently observed [2], from which a negative value of the Fermi liquid constant, $F_0^{\sigma} \approx -0.3$ has been derived.

The parallel magnetoconductance has been measured up to 15T, in a very large range of density : from 3 to 90×10^{11} cm⁻². For the lowest concentrations, a strong negative magnetoconductance attributed to the spin alignment of electrons [3] has been observed, which saturates above the field of complete spin polarization B_c (see Figure 1a). For higher densities, a linear magnetoconductance has been found (see Figure 1b), which is consistent with recent theories based on the screening behavior of spin polarized systems [4].

According to the Fermi Liquid theory, the electron-electron interactions should give rise to a renormalization of the system parameters, including the effective mass m^* and the effective Landé Factor g^* . A sharp increase of the $g^*.m^*$ factor for the lowest densities has indeed been observed in recent studies of the parallel magnetoresistance, in the metallic phase of high-mobility (100) Si-MOSFET [5]: Further studies have shown that this enhancement is due to an increase of the effective mass with decreasing electron density an the spin-independent origin of this increase seems to be contradictory with the occurrence of a ferromagnetic instability.

In our large r_s system, we have determined the value of the g*.m* product from the calculation of B_c , field of complete spin polarization. At the lowest densities, Bc has been extracted from the scaling properties [4] of the scaled magnetoconductivity versus B/B_c (see Figure 2). For the higher densities, B_c has been determined from the linear magnetoconductance [6].

Figure 3 summarizes the dependence of $g^*.m^*$ versus the electron density Ns. One can see some interesting features : In the range $< Ns < 8 \times 10^{12}$, $g^*.m^*$ is practically independent of the density. Then for Ns $< 2 \times 10^{12}$, an increase similar to what is observed in (100) Si-MOSFET, begins. However for Ns $< 8 \times 10^{11}$, the value of the product proves certainly to decrease. The possible reasons of a so unusual g*m* behavior are analyzed.

References :

- [1] S.V. Kravchenko et al, Phys. Rev. B 50, 8039 (1993).
- [2] Z.D. Kvon et al, Phys. Rev. B **65**, 161304 (2002).
- [3] T.Okamoto et al, Phys. Rev. Lett. 82, 3875 (1999).
- [4] V.T. Dolgopolov and A. Gold, JETP Lett. 71, 27 (2000).
- [5] A.A. Shashkin et al, Phys. Rev. Lett. 87, 086801 (2001).

[6] A. Gold, Proceedings of the ICSNN, Toulouse (2002).

Figure 1 : *In-plane magnetoconductance for various electronic densities, at* T=50mK : *a) For the low densities, b) for the higher densities.*

Figure 2 : (left) Scaled magnetoconductance versus *B/Bc, in the low densities region. Figure 3 : (right)* g.m product versus electronic density.