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We consider electron transport along a quantum wire with a single-mode channel which

is in contact, via tunnel junctions in its walls, with two quantum dots. Electron tunneling

to and from the dots contributes to the electron backscattering, and thus modifies the

channel conductance. If the dots carry spin, the channel conductance becomes temperature-

dependent due to the Kondo effect. The two-dot device geometry (see Fig. 1) allows for a

formation of S = 1 localized spin via RKKY interactions, and offers a possibility to study

the crossover between fully screened and under-screened Kondo impurity. We show that the

crossover may be achieved by tuning the magnetic field applied to the system, and detected

in a measurement of the temperature dependence of the channel conductance (see Fig. 2).

We consider the Anderson Hamiltonian of two isolated dots of s = 1/2 states coupled to

a 1D channel illustrated in Fig. 1. By doing the Schrieffer-Wolff transformation, we obtain

the exchange Hamiltonian with the exchange constants Ji(k, k
0) where i = 1, 2 is the dot

index:
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where the first term represents the exchange interaction between dots (Kondo term) and

the 1D channel and the second one represents the indirect exchange interaction between

dots (RKKY term) of a distance R = x1 − x2. In the limit of strong ferromagnetic RKKY

interaction, S = 1, and the effective exchange Hamiltonian is reduced to the two-channel

Kondo Hamiltonian for spin 1 with two exchange constants Ja and Jb:
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where JRR = J1(kF , kF ) = J2(−kF ,−kF ), JLL = J1(−kF ,−kF ) = J2(kF , kF ), J
RL =

J1(kF ,−kF ) = J2(−kF , kF ) and kF is the Fermi wavenumber.
Symmetry of the exchange constants (in the absence of a magnetic field) requires the

alignment of the positions of the dots but there is no need in a control over the electron

wave functions in the dots. This is an advantage over the single-dot geometry considered in
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the previous works. The asymmetry can be introduced by means of a magnetic field (orbital

effect), JLLJRR− JLRJRL ∝ B2. Backscattering correction to the ideal conductance is given

by G = G0 −Gback (G0 = 2e
2/h).

In the symmetric state (or in the absence of magnetic fields), the localized spin S = 1 is

under-screened below a characteristic temperature Ta,
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The conductance G monotonically decreases with the T lowered. If a small asymmetry is

introduced in the presence of magnetic fields, then another (small) energy scale Tb appears,

Tb ∝ T 1/αB2

a , where the parameter α depends on the channel width. If Tb ¿ Ta, then at the

lowest temperatures the spin is fully screened, and
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In the intermediate temperature interval
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the conductance G reaches a minimum. At higher temperatures, T À Ta, the difference

between the symmetric and non-symmetric models vanishes. Figure 2 schematically sum-

marizes the temperature dependence of the conductance in Eqs. (5)-(8).

Fig. 1: Two quantum dots (QD-1 and

-2) coupled to a quantum wire.Viα is the

coupling constants between dot i = 1, 2

and the left- or right-moving wave α =

L,R.

Fig. 2: Schematic dependence of the

conductance as a function of tempera-

tures T and magnetic fields B.


