Few-Particle Anyon Excitons in the Fractional Quantum Hall Regime

D.G.W. Parfitt and M.E. Portnoi

School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

We revisit the anyon exciton model (AEM) [1], which considers a neutral exciton made up of a valence hole and several fractionally-charged quasielectrons (anyons). The AEM is applicable at exact fractional filling factor ν , and for large separation between the photoexcited hole and a two-dimensional electron gas (2DEG), when the Coulomb field from the hole cannot destroy the incompressible quantum liquid (IQL). It has been applied to excitons against the background of $\nu = 1/3$ and 2/3 IQLs [2], providing a major insight into the role of electron-hole separation in determining the optical spectra, and giving a full classification of states for a four-particle anyon exciton. Recent developments in experimental techniques (see, e.g., [3]) have allowed the effective electron-hole separation (in units of magnetic length l_H) to be changed while keeping the filling factor constant, and thus direct verification of the AEM is now possible.

We generalise the model to an exciton consisting of a valence hole and N anyons with charge -e/N and statistical factor α . The hole and anyons reside in different layers, separated by a distance of h magnetic lengths, and are subject to a magnetic field $\mathbf{H} = H\hat{\mathbf{z}}$ perpendicular to their planes of confinement. An exciton consisting of a hole and N anyons, all in the lowest Landau level, will have a total of N + 1 degrees of freedom. As the exciton is neutral, we can assign it an in-plane momentum \mathbf{k} , which absorbs two of these degrees of freedom. For $N \geq 2$, the exciton will have N-1 internal degrees of freedom, which results in internal quantum numbers and a multiple-branch energy spectrum. For $\mathbf{k} = 0$ the problem has rotational symmetry and the angular momentum L_z of the exciton can be introduced. This momentum is related to the degree L of the polynomial, symmetric in anyon coordinates, which enters the exciton wavefunction $[L_z = -L - N(N - 1)\alpha/2]$. We use a result from the theory of partitions to enumerate all possible symmetric polynomials, which provides a complete set of exciton basis functions.

We find some exact solutions of this (N + 1)-particle problem in a boson approximation $(\alpha = 0)$. For example, the binding energy for $\mathbf{k} = 0$ and L = 0 is given by

$$E_b = \sqrt{\frac{\pi}{2N}} e^{h^2/2N} \operatorname{erfc}\left(h/\sqrt{2N}\right) - \frac{(N-1)\sqrt{\pi}}{4N\sqrt{N}},\tag{1}$$

where $\operatorname{erfc}(x)$ is the complementary error function and the energy is measured in units of $e^2/(\epsilon l_H)$, where ϵ is the dielectric constant. The first term in Eq. 1 represents the anyon-hole attraction and the second term represents the anyon-anyon repulsion. Using the asymptotic expansion of $\operatorname{erfc}(x)$ it can be easily seen from Eq. 1 that the anyon-hole attraction potential tends to 1/h as $h \to \infty$, as expected. For N = 1, Eq. 1 reproduces the well-known result for the binding energy of a two-dimensional diamagnetic exciton [4]. The critical inter-plane separation h_c at which the $\mathbf{k} = 0$, L = 0 state becomes unbound can also be found from Eq. 1. For N = 3, the critical separation $h_c \approx 5.39 l_H$, for N = 5 we find that $h_c \approx 5.59 l_H$, and for $N \gg 1$ we have $h_c \approx 1.32\sqrt{2N} l_H$. Notably, these critical separations are well inside the region for which the AEM is applicable. It should be emphasised that the state with L = 0 is not the ground state for the anyon exciton at large separation h. For example, for a four-particle exciton [2], the ground states for large separation satisfy a superselection rule L = 3m, where m is an integer, and when $h \to \infty$ the ground state energy tends to its classical value, $E_c = -(2/3)^{3/2}/h$. Thus, at large 2DEG-hole separations the ground state at $\mathbf{k} = 0$ becomes optically inactive. However, at non-zero \mathbf{k} the ground state is a mixture of states with different

values of L_z , and hence magnetoroton-assisted transitions become possible. The evolution with increasing k of the ground state for a four-particle anyon exciton at h = 3 is shown in Fig. 1.

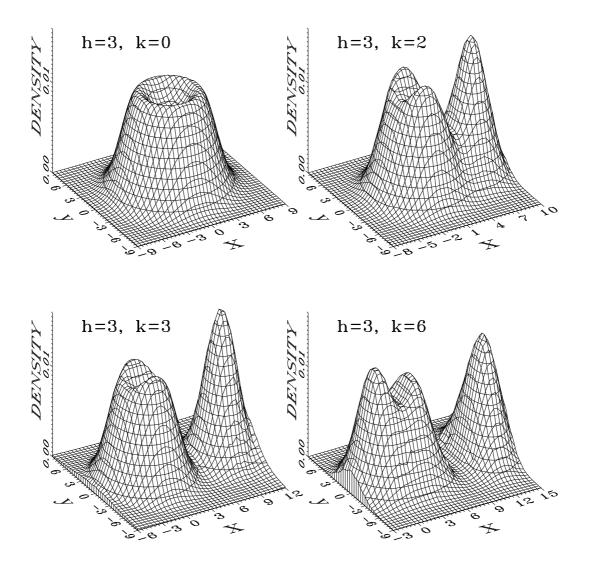


Figure 1: Electron density distribution in an anyon exciton for different values of the exciton in-plane momentum k. The distance h between the hole and the incompressible electron liquid is equal to three magnetic lengths. The hole is at the origin; the x-axis is chosen along the in-plane component of the exciton dipole moment.

We show that a neutral (N + 1)-particle exciton remains bound for 2DEG-hole separations exceeding several magnetic lengths, which contradicts the recent statement of Wójs and Quinn [5]. It is evident that the introduction of realistic form factors, which reduce the anyonanyon repulsion at small distances, would not change this fundamental result. We believe that the appearance of fractionally-charged anyon ions at the bottom of numerically calculated excitation spectra [5] is an artefact caused by finite-size effects in the spherical geometry.

- [1] E.I. Rashba and M.E. Portnoi, Phys. Rev. Lett. **70**, 3315 (1993).
- [2] M.E. Portnoi and E.I. Rashba, Phys. Rev. B 54, 13791 (1996).
- [3] G. Yusa, H. Shtrikman and I. Bar-Joseph, Phys. Rev. Lett. 87, 216402 (2001).
- [4] I.V. Lerner and Y.E. Lozovik, Sov. Phys.-JETP 51, 588 (1980).
- [5] A. Wójs and J.J. Quinn, Phys. Rev. B 63, 0453031 (2001); *ibid.* 63, 0453041 (2001).