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The electronic structure and dynamics of quantum dots have recently been a subject

of intense study. A knowledge of electronic excited state of quantum dots is important

for many applications, including optical spectroscopy, quantum dot lasers and coherent

control of electron and spin dynamics of quantum dots. Therefore, theoretical methods

to provide accurate and efficient excitation energies of quantum dots are needed. Time-

dependent density functional theory (TDDFT) is a rigorous extension of the ground sta-

tionary state SDFT in the time domain, thus allowing a number of dynamic and excited-

state properties to be obtained [1]. Here we apply TDDFT for the low excitation energies

of two-dimensional elliptical quantum dots with closed-shell structures and compare the

excited energies with those obtained by exact diagonalization.

We use two different methods to obtain the excitation energies from the time-dependent

Kohn-Sham equations. The first is to use the theorem that the frequency-dependent re-

sponse function of a finite interacting system has discrete poles at the excited-state ener-

gies. Based on linear-response theory for the time-dependent Kohn-Sham equation, the

following eigenvalue problem is derived for the excitation energies Ω [2,3];
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where ψiσ(r), ψkτ(r) are occupied and ψjσ(r), ψlτ(r) are unoccupied Kohn-Sham orbitals

for the ground-state energies [4] and Kijσ,klτ give the shift of excitation energies due to

interactions. This formula represents one photon excitation process based on the linear

response formalism. We use the adiabatic local-density-approximation (ALDA) for the

exchange-correlation functional Exc.

The second method we employ is to directly time integrate the time-dependent Kohn-

Sham equations [5]. The time integration for the i-th Kohn-Sham orbital is implemented



by the split-operator method [6],

Ψi(r, t + ∆t) = e−i
∫ t+∆t

t
(H0(r)+δV (r,t))dt/h̄Ψi(r, t)

≈ e−iH0(r)∆t/2h̄e−iδV (r,t+∆t/2)∆t/h̄e−iH0(r)∆t/2h̄Ψi(r, t) (2)

where H0(r) is the Kohn-Sham Hamiltonian for the ground-state energy [4] and the

δV (r, t) is the Coulomb-interaction contribution. The excitation energies are obtained

from the frequency spectrum of the projection of Ψi(r, t) onto the various ground-state

Kohn-Sham orbitals. Both procedures produce the same results for the low excitation

energies.

The table below shows the excitation energies of two-dimensional elliptical quan-

tum dot with closed-shell structure (N=2 spin-unpolarized case) obtained by the exact-

diagonalization method and by TDDFT. The 1st and 2nd levels correspond to S = 1

states and the 3rd, 4th, and 5th levels correpond to S = 0 states. We see that the

TDDFT produces fairly accurate results and describes the spin singlet-triplet transition

due to the exchange energy. The deviations from the exact-diagonalization results are

always less than 0.13 meV.

level Exact [meV] TDDFT [meV] Error [meV]
1st 1.125 (S=1) 0.993 0.132
2nd 1.449 (S=1) 1.352 0.097
3rd 2.873 (S=0) 2.872 0.001
4th 3.124 (S=0) 3.122 0.001
5th 3.559 (S=0) 3.652 0.093

We have also obtained photoabsorption spectra for the excited states and the dependence

of excitation energies on the strength of the Coulomb interaction.
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