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The low-field insulator-quantum Hall conductor (I-QH) transitions in the integer quantum 
Hall effect (IQHE) have attracted much attention. According to the global phase diagram (GPD) 
suggested by Kivelson, Lee and Zhang, [1] in the IQHE the I-QH transitions are between the 
insulating state and ν=1 quantum Hall state, where ν represents the Landau level filling factor. 
On the other hand, it is shown that at low magnetic fields a two-dimensional (2D) system can 
enter quantum Hall states with arbitrary ν from the insulating state and hence the low-field 
I-QH transitions do not always follow the GPD [2,3]. It is argued that the low-field I-QH 
transitions inconsistent with the GPD are not phase transitions, but are crossovers from weak 
localization to Landau quantization under finite temperatures and/or sizes [4]. Since weak 
localization and Landau quantization are important when µB<1 and µB>1, respectively, a 
crossover occurs near a magnetic field B~1/µ.   Here µ corresponds to the mobility. 
Huckestein’s argument can explain why the low-field I-QH transitions inconsistent with the 
GPD usually occur when the ratio ρxy/ρxx~µB is close to 1, where ρxy and ρxx are the Hall and 
longitudinal resistivities. However, D. N. Sheng et al. [5] and C. F. Huang et al. [6] showed 
that the low-field I-QH transitions can have properties of phase transitions even when they do 
not obey the selection rules of GPD. 

To further study the low-field I-QH transitions, we performed a magneto-transport study on 
a 2D GaAs electron system containing self-assembled InAs quantum dots. Figure 1 shows the 
curve ρxy(B) at the temperature T=0.52 K and the curves of ρxx(B) at T=0.52-1.60 K when the 
gate voltage Vg=-0.07V. We can see in Fig. 1 that the sample enters the quantum Hall state of 
ν=4 directly from the low-field insulator as B=Bc≡0.9 T, and hence we observed a low-field 
I-QH transition inconsistent with the GPD. When B<Bc, the sample behaves as an insulator 
since ρxx increases as T decreases. On the other hand, as shown in Fig. 1, Shubnikov-de Haas 
(SdH) oscillations can be identified when B>Bs~0.45 T. The inset of Fig. 1 shows the curves 
between the magnetic fields Bs and Bc. 

Since the insulating behavior and SdH oscillations are features of low-field localization and 
Landau quantization, respectively, the region between Bs and Bc corresponds to the crossover 



in the Huckestein’s argument. The crossover contains the point Ba at which ρxy/ρxx~1 when 
T=0.52K-1.60K, but Ba is not the critical point of the I-QH transition and the crossover covers 
0.45 T in B rather than only a small region near Ba. At the critical magnetic field Bc, actually 
ρxy/ρxx is about 1.5>1. From our study, therefore, a crossover from the low-field localization to 
Landau quantization can cover a wide range with respect to the magnetic field rather than only 
a small range around the critical point of an I-QH transition. With increasing the magnetic field, 
the crossover can be followed by the low-field I-QH transition inconsistent with the global 
phase diagram. In such a transition, in fact, at the critical point the relation that ρxy/ρxx~1 can 
fail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 The curves of ρxx(B) at T = 0.52 – 1.60 K. The curve ρxy(B) at T=0.52 K. The inset 
shows the curves between the magnetic fields Bs and Bc. 
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