Mobility dependence on carrier density of a dilute two-dimensional GaAs electron system in an in-plane magnetic field

Ming-Gu Lin¹, Chao Ping Huang¹, C.-T. Liang¹, C.G. Smith², M.Y. Simmons³, D.A. Ritchie²

¹Department of Physics, National Taiwan University, Taipei 106, Taiwan ²Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom ³School of Physics, University of New South Wales, Sydney 2052, Australia

Recently there has been a great deal of interest in transport in dilute two-dimensional (2D) systems. In these studies, there are strong carrier-carrier interactions within the 2D systems. In an in-plane magnetic field. The 2D system shows strong magnetoresistance which appears to be a manifestation of the spin alignment of the free carriers. The suppression of the "metallic-like state" with increasing in-plane magnetic field has now become important in trying to understand the underlying physics of the "metallic-like" conductivity in two dimensions.

It is generally accepted that it is possible to determine the dominant scattering mechanism in a 2D electron system at zero perpendicular magnetic field from the mobility (μ) dependence on carrier density (n). For example, when $\mu \propto n^{\alpha}$ ($\alpha = 1.5$) then remote ionized impurity scattering dominates. To date, no such study has been conducted for a dilute 2D electron gas in an in-plane magnetic field. In this paper, we present the mobility dependence on carrier density of a dilute two-dimensional GaAs electron system in an in-plane magnetic field. The main finding of our measurements is that the exponent α increases with increasing in-plane magnetic field (see later). We ascribe this effect to the combination of increasing strong localisation at the GaAs/AlGaAs interface and spin polorisation with increasing in-plane magnetic field.

Figure 1 shows the four-terminal magnetoresistivity ρ_{rr} as a function of in-plane magnetic field

at various carrier densities *n*. We see that ρ_{xx} shows a B^2 dependence for $B \le 5$ T and a weaker

 B^2 dependence for $B \le 9 T$. The interception of two parabolic fits is defined as the "crossing field" for a certain 2D electron density. If we take a vertical slice of the data shown in Fig. 1, we can measure the resistivity (mobility) dependence on electron density for a **fixed** magnetic field. For the low $(B \le 6 T)$ and high $(B \ge 10 T)$ magnetic field regimes, from the relation $\mu \propto n^{\alpha}$, we can measure the exponent. For the intermediate magnetic field regime (6.7 $T \le B \le 8.3 T$), the situation is somewhat complicated and will be described as follows. There are **two** exponents in this intermediate regime. One obtained from the high *n* side and the other determined from the low *n* side. In our system, at zero magnetic field, the exponent is, consistent with strong localisation at the GaAs/AlGaAs interface. With increasing in-plane magnetic field, α exhibits a B^2 dependence as shown in figure 2. In the intermediate magnetic field regime, it is better to consider the averaged value of $\alpha \approx 3$. At high magnetic field, α exhibits a linear *B* dependence. The drastic difference between the exponents measured in two regimes suggests the importance of both strong localisation effects at the interface and possible spin polarisation in a dilute 2D system.

Figure 1 Resistivity as a function of in-plane magnetic field at various carrier density. From top to bottom: 1.379m 1,481m 1.591, 1.688, 1.780, 1.967, 2.036 and 2.076 and 2.226x10¹⁰ cm⁻², respectively.

Figure 2 The exponent α determined from the mobility dependence on carrier density. For details, please see the text.