Microwave Resonance of Wigner Crystal Phase around Integer Quantum Hall States

Yong Chen,^{1,2} R. M. Lewis,^{1,2} L. W. Engel,¹ D. C. Tsui,² P. D. Ye,^{1,2,*} L. N. Pfeiffer,³ and K. W. West³

¹National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32306

²Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

³Bell Laboratories, Lucent Technology, Murray Hill, NJ 07974

We have observed, by microwave absorption spectroscopy, a well defined resonance in the real part of frequencydependent diagonal conductivity ($\operatorname{Re}[\sigma_{xx}(f)]$) of high quality 2DES near integer filling factors.

Figure 1 and Figure 2 show the resonances observed around $\nu = 1$ and $\nu = 2$ respectively. The measurements were performed in a dilution refrigerator at its base temperature of 50mK, using a GaAs/AlGaAs quantum well sample with density $n = 3.0 \times 10^{11}$ cm⁻² and mobility about 2.4×10^7 cm² V⁻¹s⁻¹. Similar resonances around $\nu = 3$ and $\nu = 4$ have also been observed on this sample, although they are significantly weaker compared to those around $\nu = 1$ and $\nu = 2$.

Fig. 1(A) displays a series of $\operatorname{Re}[\sigma_{xx}(f)]$ spectra measured at filling factors(ν) between 0.78 and 1.22. The resonance is observable for 0.84 $< \nu < 0.96$ and 1.04 $< \nu < 1.16$. Within either of these ν ranges, the resonance shifts to higher frequency as $\nu \to 1$ and is sharpest when ν is ~ 0.9 or 1.1. In Fig. 1(B) and (C) we plot the peak frequency (f_{pk}) and full width at half maximum (Δf) of the resonance as functions of ν , where f_{pk} and Δf are extracted from Lorentzian fit of the resonance. We see f_{pk} monotonically increases as $\nu \to 1$ and Δf has minima at $\nu \sim 0.9$ and $\nu \sim 1.1$, where the resonance has quality factor Q (defined as $f_{pk}/\Delta f$) about 3. In similar fashion to Fig. 1, we show in Fig. 2(A) a series of $\operatorname{Re}[\sigma_{xx}(f)]$ spectra at filling factors around 2 (from 1.75 to 2.25), where the resonance is observable for $1.77 < \nu < 1.92$ and $2.05 < \nu < 2.15$, and in Fig. 2(B)(C) we plot the extracted f_{pk} and Δf as functions of ν . In this case f_{pk} monotonically increases as $\nu \to 2$ and Δf is found to have minima at $\nu \sim 1.85$ and $\nu \sim 2.12$.

We have also studied the temperature(T) dependence of the resonance. With increasing T, Δf monotonically increases whereas $f_{\rm pk}$ is relative insensitive. The resonance disappears for T above ~200 mK.

We interpret the resonance as the signature of 2D Wigner crystal phase formed around integer Landau fillings, by the electrons/holes in the partially filled top Landau level with effective filling factor ν^* (where $\nu^* = \nu - K$ for filling factor ν around positive integer K) and density $n^* = (n/\nu)\nu^*$. The "pinning mode"[1], caused by such Wigner crystalline domains oscillating in impurity potential, gives rise to the observed resonance. The collective many-particle nature of this resonance is reflected by the high Q achieved and the existence of resonance at temperature several times higher than that corresponding to its resonating frequency $(hf_{\rm pk}/k_B)$.

Wigner crystal has been conjectured to be the ground state of a sufficiently clean 2DES at $\nu = K + \nu^*$ for small enough ν^* and positive integer K[2], as in the case of K = 0 (that is, in the lowest Landau level(LLL))[3]. The LLL (K = 0) Wigner crystal has been supported by, for example, previous observations of similar resonance at small ν in LLL for both 2DES and 2D hole systems[4]. The feature of f_{pk} increasing with decreasing density also observed in these experiments, is consistent with the weak-pinning picture[5].

Our observation also indicates that the pinning of a many-particle ground state such as Wigner crystal, can be relevant for IQHE, which has traditionally been explained by a disorder induced single-particle localization mechanism.

[1] H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978)

*Current address: Agere Systems, 555 Union Blvd., Allentown PA 18109

^[2] See, for example, A. H. MacDonald and S. M. Girvin, Phys. Rev. B 33, 4009 (1986); N. Shibata and D. Yoshioka, to appear in J. Phys. Soc. Japan. 72 N. 3 (2003)

^[3] Y. E. Lozovik and V. I. Yudson, JETP Lett., 22, 11 (1975); for a review on LLL Wigner crystal, see M. Shayegan, in Perspectives in Quantum Hall Effects, ed. S. Das Sarma and A. Pinczuk, 1998

^[4] C. C. Li et al, Phys. Rev. Lett. 79, 1353 (1997); P. D. Ye et al., Phys. Rev. Lett. 89, 176802 (2002).

^[5] C. C. Li et al., Phys. Rev. B 61, 10905 (2000); R. Chitra, T. Giamarchi and P. Le Doussal, Phys. Rev. B 65, 035312 (2001)

FIG. 1: (A) $\operatorname{Re}[\sigma_{xx}(f)]$ spectra around $\nu = 1$: from $\nu = 0.78$ (bottom trace) to $\nu = 1.22$ (top trace). Adjacent traces differ 0.01 in ν and are offset 6 μ S from each other for clarity. Filling factors for selected traces are labeled at right. Measurements performed at ~ 50 mK. (B) $f_{\rm pk}$ versus ν . (C) Δf versus ν .

FIG. 2: (A) $\operatorname{Re}[\sigma_{xx}(f)]$ spectra around $\nu = 2$: from $\nu = 1.75$ (bottom trace) to $\nu = 2.25$ (top trace). Adjacent traces differ 0.01 in ν and are offset 4 μ S from each other for clarity. Filling factors for selected traces are labeled at right. Measurements performed at ~50 mK. (The small spike near 600 MHz in some traces is likely due to an experimental artifact). (B) $f_{\rm pk}$ versus ν . (C) Δf versus ν .