Magnetic-field-induced phase transitions in a Si/SiGe hole system

Tsai-Yu Huang 1, Y.-M. Cheng 1, C.-T. Liang 1, C.F. Huang 2, Y.H. Chang 1 and Y.F. Chen 1

1Department of Physics, National Taiwan University, Taipei 106, Taiwan
2National Measurement Laboratory, Centre for Measurement Standards, Industrial Technology Research Institute, Hsin-Chu 300, Taiwan

Seminal theoretical work on the integer quantum Hall effect describes a two-parameter scaling [1] in which both the dissipative conductance \(\sigma_{xx} \) and the Hall conductance \(\sigma_{xy} \) vary with the sample length \(L \). The renormalisation-group function can be illustrated by flow lines. After successive length-scale transformation the flow lines are directed towards fixed points \((\sigma_{xx}, \sigma_{xy}) = (0,0)\) (in units of \(e^2/h \)) in which \(n = 0,1,2,... \) is the Landau level index. In addition to these “localization fixed points” which describe the localisation of the electron wavefunctions near the Fermi energy, there are “intermediate-coupling fixed points” on \(\sigma_{xy} = n + 1/2 \) which are related to transitions between quantum Hall states. Note that this theory was developed for zero temperature \(T = 0 \) and the length scale transformations are accomplished by varying the sample length \(L \). It has been shown that, in practice, the effective sample size can be varied by changing the temperature [2]. The studies of the “temperature-driven flow lines” in GaAs systems and more recently in Ge/SiGe systems [3] support the two-parameter scaling theory of Pruisken [1].

Recently there has been a great deal of interest in Si/SiGe hole systems. For example, at a Landau level filling factor \(\nu = 1.5 \), an insulating phase observed in such a system is not fully understood at present. It is called a “Hall insulator” since although \(\rho_{xx} \) approaches infinity, the Hall resistivity remains finite at approximately \(h/(2e^2) \). This magneto-driven transition within the global phase scheme of Kivelson, Lee and Zhang. Moreover, or a Si/SiGe hole gas, the observed quantum Hall states are off odd filling factors at low magnetic fields, indicating that spin-splitting is comparable with the spacing between adjacent Landau levels. This provides an interesting system for the study of magnetic-field-induced transitions in the quantum Hall effect. In this paper, we present low-temperature transport measurements on a Si/SiGe hole system. In particular we report a study of the temperature-driven flow lines in the vicinity of the “Hall insulator” regime. We also observe magnetic-field-induced phase transitions which correspond to the temperature-independent points in \(\sigma_{xx} \) as shown in figure 1.

The temperature-driven flow lines are complicated thus we divided our results into four parts as shown in Fig. 2(a)-(d). It is evident that \((\sigma_{xx}, \sigma_{xy}) = (1,0)\) for \(\nu \to 1 \), as illustrated by the \(T \)-driven flow lines as shown in Fig.2(a). Figure2 (b) and 2 (c) show the \(T \)-driven flow diagrams near the two critical points \(B_{B1} = 8.1 \) T and \(B_{B2} = 9.8 \) T, respectively. It is evident that \((\sigma_{xx}, \sigma_{xy}) = (0,0)\) as \(T \to 0 \) for the “Hall insulator” since \(\rho_{xx} \) approaches infinity whereas \(\rho_{xy} \) remains finite. We can clearly see that the directions of the flow lines in the “Hall insulator” are different from those near a quantum Hall state. \(B_{B2} \), labelled as full squares, is, in fact, the boundary of the “Hall insulator” as well as the intermediate-coupling fixed point. It is worth mentioning that near \(B_{B1} \), \(\rho_{xy} \) slowly varies at different temperatures. Thus, although \(B_{B1} \) corresponds to the boundary of the “Hall insulator” regime, the intermediate-coupling fixed point is estimated to be at around \(B = 8.2 \) T, \(\sim 0.1 \) T higher than \(B_{B1} \). To the right of this fixed point, the flow lines all show a “kink”. In contrast, to the left of the fixed point, the lines flow directly \((0,0)\) as \(T \to 0 \). The main finding is that, in contrast to a single intermediate-coupling fixed point between neighboring quantum Hall states previously predicted and observed, there are two intermediate-coupling points in a SiGe hole system. The reason for this is the existence of the “anomalous Hall insulator” near \(\nu = 1.5 \). Figure 2(d) shows the \(T \)-driven flow lines for 2<\(\nu <3 \). At around \(A_{2} \), the directions of the \(T \)-driven flow lines seem ambiguous. At present, the physical origin of this effect is not fully understood and awaits further experimental and theoretical investigations. Our new experimental results on \(T \)-driven flow lines, together with the pioneeering work on the “Hall insulator” urge further investigations in order to understand the physical origin of this “anomalous insulating state”.

References:
Figure 1. Conductivity σ_{xx} and σ_{xy} at various temperatures.

Figure 2 (a)-(d) Temperature-driven flow lines between 1 < ν < 3. The arrows indicate the directions of the flow lines (From high-T to low-T) and the full squares correspond to intermediate-coupling fixed points. The dotted line represents $\sigma_{xx}(\sigma_{xy})$ at $T = 0.3$ K.