Spin-transistor action in waveguides with periodically modulated strength of the spin-orbit interaction

X. F. Wang and P. Vasilopoulos

Concordia University, Department of Physics, Montréal, PQ, H3G 1M8, Canada

Spin-polarized electron transport through waveguides, in which the strength of the spin-orbit interaction (SOI) α is varied periodically, is studied using the transfer-matrix technique. It is shown that the transmission T exhibits a *spin-transistor* action, as a function of the strength or of the length of one of the two subunits of the unit cell, provided only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior is shown by T as a function of the incident electron energy E. In a waveguide with only in one segment, of strength α_2 and length l_2 , comprised between two segments of strength α_1 , the total transmission, obtained as $T = 1/[\cos^2(\Delta_2 l_2) + r \sin^2(\Delta_2 l_2)]$, with r a function of Δ_1, Δ_2 and $\Delta_j = [m^{*2}\alpha_j^2 + 2m^*(E - E_1)]^{1/2}$, shows an explicit sinusoidal dependence. The corresponding spin-up (T^+) and spin-down (T^-) transmissions are given by $T^+ = T \cos^2 \phi$ and $T^{-} = T \sin^2 \phi$, where ϕ is a measure of the spin precession. The total phase acquired by electrons in different branches during propagation is $\phi = 2[\delta_1(L - l_2) + \delta_2 l_2]$ with¹ $\delta_i = 2m^* \alpha_i / \hbar^2$ and L the waveguide length. The transmission through a superlattice, with alternating segments of lengths l_1, l_2 , and corresponding SOI strengths α_1, α_2 , is also a *periodic* function of α_j and l_j , j = 1, 2. As the strength α can be well controlled by applying gates or adjusted with the help of band engineering², the structure considered is a good candidate for the establishment of a realistic spin transistor. The recently developed spin-detection technique³ could be used to observe this transistor action also reported for periodically stubbed waveguides of constant⁴ strength α .

- [1] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990)
- [2] T. Koga *et al.*, Phys. Rev. Lett. **89**, 046801 (2002).
- [3] R. M. Potok *et al.*, Phys. Rev. Lett. **89**, 266602 (2002).
- [4] X. F. Wang, P. Vasilopoulos, and F. M. Peeters, Appl. Phys. Lett. 80, 1400 (2002).

SUPPORTING MATERIAL

DESCRIPTION

(a) Schematics of a waveguide, of width c, with periodically modulated strength of the SOI. Within one unit, l_1 , l_2 and α_1 , α_2 are the lengths and SOI strengths of the subunits AB and BC, respectively. (b) Dispersion relation for a waveguide. Neglecting subband mixing the energy levels are given by

$$E^{\pm}(k_{y}) = E_{n} + \hbar^{2}k_{y}^{2}/2m^{*} \pm \alpha k_{y}, \qquad (1)$$

and E_n is the energy of the nth subband due to the confinement along the x axis. The dashed and dotted curves show the + and - branches for finite strength α , the solid curve is for $\alpha=0$. (c) Transmission versus length l_2 . N is the number of units, $l_1=1050$ Å, $\alpha_2=5x10^{-11}$ eV m, and E=3.2 meV. The dash-dotted curve shows the *spin-down* transmission T⁻ for N=1, the other curves show the *total* transmission. The incident carriers are assumed to be spin-up polarized. For only **one** waveguide segment, of strength α_2 and length l_2 , comprised between two segments of strength $\alpha_1=0$, the *total* transmission at zero temperature is given by $(\Delta_i = [m^{*2}\alpha_i^2 + 2m^*(E - E_1)]^{1/2}$, j=1,2)

$$T = \frac{1}{\cos^2(\Delta_2 l_2) + r\sin^2(\Delta_2 l_2)},$$
(2)

where $r = (\Delta_1^2 + \Delta_2^2)^2 / 4\Delta_1^2 \Delta_2^2$. The periodicity of T with l_2 or Δ_2 is evident. As shown, T is also periodic for N>1. Its approximate *square-wave* form, pertinent to a *spin transistor*, is rounded off with increasing temperature. The spin-up (+) (spin-down) (-) transmission is T⁺=Tcos² ϕ , T⁻=Tsin² ϕ . The phase difference is $\phi = 2[\delta_1(L-l_2)+\delta_2 l_2]$ with L the waveguide length and $\delta_i = 2m^* \alpha / \hbar^2 = k_y^- - k_y^+$.

(d) As in (c) for $l_1=100$ Å, N=8, $\alpha_2=6x10^{-11}$ eV m, and $E_F=3.2$ meV. The solid curve is for temperature T=0.2 K, the dotted one for T=0.5 K.

(e) Transmission as a function of the strength α_2 for $l_1=l_2=900$ Å, $\alpha_1=0$, N=8, and E_F=3.3 meV, at temperature T=0.2 K. The solid (dotted) curve is the *total* (spin-up) transmission.