Quantum Criticality and Black Holes

Particle theorists

Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington

Condensed matter

Markus Mueller, Harvard Lars Frítz, Harvard Subír Sachdev, Harvard

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

Ultracold ⁸⁷Rb atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

The insulator:

Density of particles = density of holes \Rightarrow "relativistic" field theory for ψ :

٠

$$\begin{split} \mathcal{S} &= \int d^2 r d\tau \left[|\partial_\tau \psi|^2 + c^2 |\vec{\nabla} \psi|^2 + s |\psi|^2 + \frac{u}{2} |\psi|^4 \right] \\ &\text{Insulator} \quad \Leftrightarrow \quad \langle \psi \rangle = 0 \\ &\text{Superfluid} \quad \Leftrightarrow \quad \langle \psi \rangle \neq 0 \end{split}$$

Coupled dimer antiferromagnet

S=1/2 Heisenberg antiferromagnets on the square lattice

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - Q \sum_{\langle ijkl \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} \right) \left(\mathbf{S}_k \cdot \mathbf{S}_l - \frac{1}{4} \right)$$

Phase diagram

<u>S=1/2 Heisenberg antiferromagnets on the square lattice</u>

Algebraic spin liquids

$$\mathcal{S} = \int d^2 r d\tau \left[\overline{\psi}_a \gamma_\mu (\partial_\mu - iA_\mu) \psi_a + \frac{1}{2e_0^2} (\epsilon_{\mu\nu\lambda} \partial_\nu A_\lambda)^2 \right]$$

RG flow to an attractive fixed point

<u>S=1/2 Heisenberg antiferromagnets on the square lattice</u>

Algebraic charge liquids

$$S = \int d^2 r d\tau \left[|(\partial_{\mu} - iA_{\mu})z_{\alpha}|^2 + s|z_{\alpha}|^2 + u(|z_{\alpha}|^2)^2 + \overline{\psi}_a \gamma_{\mu} (\partial_{\mu} - iA_{\mu})\psi_a + \frac{1}{2e_0^2} (\epsilon_{\mu\nu\lambda}\partial_{\nu}A_{\lambda})^2 \right]$$

Loss of Néel order in a *d*-wave superconductor

R. Kaul et al., Nature Physics 4, 28, (2008)

SU(N) gauge theory with $\mathcal{N} = 8$ supersymmetry

Theory of a Yang-Mills gauge field A_{μ} coupled to relativistic scalars and fermions. Characterized by a single gauge coupling constant e_0 .

RG flow to an attractive fixed point

Graphene

Graphene

Low energy theory has 4 two-component Dirac fermions, ψ_{α} , $\alpha = 1 \dots 4$, interacting with a 1/r Coulomb interaction

$$S = \int d^2 r d\tau \psi_{\alpha}^{\dagger} \left(\partial_{\tau} - i v_F \vec{\sigma} \cdot \vec{\nabla} \right) \psi_{\alpha} + \frac{e^2}{2} \int d^2 r d^2 r' d\tau \psi_{\alpha}^{\dagger} \psi_{\alpha}(r) \frac{1}{|r - r'|} \psi_{\beta}^{\dagger} \psi_{\beta}(r')$$

Dimensionless "fine-structure" constant $\alpha = e^2/(4\hbar v_F)$. RG flow of α :

$$\frac{d\alpha}{d\ell} = -\alpha^2 + \dots$$

Behavior is similar to a CFT3 with $\alpha \sim 1/\ln(\text{scale})$.

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

- **2. Quantum-critical transport** *Collisionless-to-hydrodynamic crossover of CFT3s*
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

Resistivity of Bi films

Conductivity σ

$$\sigma_{
m Superconductor}(T o 0) = \infty$$
 $\sigma_{
m Insulator}(T o 0) = 0$
 $\sigma_{
m Quantum \ critical \ point}(T o 0) \approx rac{4e^2}{h}$

D. B. Haviland, Y. Liu, and A. M. Goldman, *Phys. Rev. Lett.* **62**, 2180 (1989)

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

FIG. 1. Evolution of the temperature dependence of the sheet resistance R(T) with thickness for a Bi film deposited onto Ge. Fewer than half of the traces actually acquired are shown. Film thicknesses shown range from 4.36 to 74.27 Å.

Two-point density correlator, $\chi(k,\omega)$

Kubo formula for conductivity $\sigma(\omega) = \lim_{k \to 0} \frac{-i\omega}{k^2} \chi(k, \omega)$

For all CFT2s, at all $\hbar\omega/k_BT$

$$\chi(k,\omega) = \frac{4e^2}{h} K \frac{vk^2}{v^2k^2 - \omega^2} \quad ; \quad \sigma(\omega) = \frac{4e^2}{h} \frac{Kv}{-i\omega}$$

where K is a universal number characterizing the CFT2 (the level number), and v is the velocity of "light".

Two-point density correlator, $\chi(k,\omega)$

Kubo formula for conductivity $\sigma(\omega) = \lim_{k \to 0} \frac{-i\omega}{k^2} \chi(k, \omega)$

For all CFT3s, at $\underline{\hbar\omega \gg k_B T}$

$$\chi(k,\omega) = \frac{4e^2}{h} K \frac{k^2}{\sqrt{v^2 k^2 - \omega^2}} ; \ \sigma(\omega) = \frac{4e^2}{h} K$$

where K is a universal number characterizing the CFT3, and v is the velocity of "light".

Two-point density correlator, $\chi(k,\omega)$

Kubo formula for conductivity $\sigma(\omega) = \lim_{k \to 0} \frac{-i\omega}{k^2} \chi(k, \omega)$

However, for all CFT3s, at $\underline{\hbar\omega \ll k_BT}$, we have the Einstein relation

$$\chi(k,\omega) = 4e^2 \chi_c \frac{Dk^2}{Dk^2 - i\omega} ; \quad \sigma(\omega) = 4e^2 D\chi_c = \frac{4e^2}{h} \Theta_1 \Theta_2$$

where the **compressibility**, χ_c , and the **diffusion constant** D obey

$$\chi = \frac{k_B T}{(hv)^2} \Theta_1 \quad ; \quad D = \frac{hv^2}{k_B T} \Theta_2$$

with Θ_1 and Θ_2 universal numbers characteristic of the CFT3 K. Damle and S. Sachdev, *Phys. Rev. B* **56**, 8714 (1997).

In CFT3s collisions are "phase" randomizing, and lead to relaxation to local thermodynamic equilibrium. So there is a crossover from <u>collisionless</u> behavior for $\hbar \omega \gg k_B T$, to hydrodynamic behavior for $\hbar \omega \ll k_B T$.

$$\sigma(\omega) = \begin{cases} \frac{4e^2}{h}K & , \quad \hbar\omega \gg k_BT \\ \frac{4e^2}{h}\Theta_1\Theta_2 & , \quad \hbar\omega \ll k_BT \end{cases}$$

and in general we expect $K \neq \Theta_1 \Theta_2$ (verified for Wilson-Fisher fixed point).

K. Damle and S. Sachdev, *Phys. Rev. B* 56, 8714 (1997).

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

Black Holes

Objects so massive that light is gravitationally bound to them.

Black Holes

Objects so massive that light is gravitationally bound to them.

The region inside the black hole horizon is causally disconnected from the rest of the universe.

Horizon radius $R = \frac{2GM}{c^2}$

Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics

Entropy of a black hole $S = \frac{k_B A}{4\ell_P^2}$ where A is the area of the horizon, and $\ell_P = \sqrt{\frac{G\hbar}{c^3}}$ is the Planck length.

The Second Law: $dA \ge 0$

Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics

Horizon temperature: $4\pi k_B T = \frac{\hbar^2}{2M\ell_P^2}$

<u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

A 2+1 dimensional system at its quantum critical point

Maldacena, Gubser, Klebanov, Polyakov, Witten
<u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Black hole temperature

temperature of quantum criticality

Quantum criticality in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Black hole entropy = entropy of quantum criticality

Quantum criticality in 2+1 dimensions <u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Quantum critical dynamics = waves in curved space

Quantum criticality in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

<u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Friction of quantum criticality = waves falling into black hole

Quantum criticality in 2+1 dimensions

SU(N) SYM3 with $\mathcal{N} = 8$ supersymmetry

- Has a single dimensionful coupling constant, e_0 , which flows to a strong-coupling fixed point $e_0 = e_0^*$ in the infrared.
- The CFT3 describing this fixed point resembles "critical spin liquid" theories.
- This CFT3 is the low energy limit of string theory on an M2 brane. The AdS/CFT correspondence provides a dual description using 11-dimensional supergravity on $AdS_4 \times S_7$.
- The CFT3 has a global SO(8) R symmetry, and correlators of the SO(8) charge density can be computed exactly in the large N limit, even at T > 0.

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

Collisionless to hydrodynamic crossover of SYM3

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

Universal constants of SYM3

,
$$\hbar\omega \gg k_B T$$

 $\Lambda = \frac{\sqrt{2}N^{3/2}}{3}$ $\Theta_1 = \frac{8\pi^2\sqrt{2}N^3}{9}$ $\Theta_2 = \frac{3}{8\pi^2}$

C. Herzog, JHEP 0212, 026 (2002)

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)

Electromagnetic self-duality

- Unexpected result, $K = \Theta_1 \Theta_2$.
- This is traced to a *four*-dimensional electromagnetic self-duality of the theory on AdS_4 . In the large N limit, the SO(8) currents decouple into 28 U(1) currents with a Maxwell action for the U(1) gauge fields on AdS_4 .
- This special property is not expected for generic CFT3s.
- Open question: Does $K = \Theta_1 \Theta_2$ hold beyond the $N \to \infty$ limit ? In other words, does this "self-duality" survive in the full M theory.

I. CFT3s in condensed matter physics and string theory Superfluid-insulator transition, magnetic ordering transitions, graphene

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

I. CFT3s in condensed matter physics and string theory Superfluid-insulator transition, magnetic ordering transitions, graphene

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- **4. Generalized magnetohydrodynamics** *Quantum criticality and dyonic black holes*
- 5. Experiments Graphene and the cuprate superconductors

For experimental applications, we must move away from the ideal CFT

- \bullet A chemical potential μ
- A magnetic field *B*

e.g.

$$\mathcal{S} = \int d^2 r d\tau \left[\left| (\partial_\tau - \mu) \psi \right|^2 + v^2 \left| (\vec{\nabla} - i\vec{A}) \psi \right|^2 - g |\psi|^2 + \frac{u}{2} |\psi|^4 \right]$$

$$\nabla \times \vec{A} = B$$

In the regime $\hbar \omega \ll k_B T$, we can use the principles of hydrodynamics:

- Describe system in terms of local state variables which obey the equation of state
- Express conserved currents in terms of gradients of state variables using transport co-efficients. These are restricted by demanding that the system relaxes to *local equilibrium i.e.* entropy production is positive.
- The conservation laws are the equations of motion.

The variables entering the hydrodynamic theory are

• the external magnetic field $F^{\mu\nu}$,

$$F^{\mu
u} = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & B \ 0 & -B & 0 \end{array}
ight),$$

• $T^{\mu\nu}$, the stress energy tensor,

• J^{μ} , the current,

 ρ, the difference in density from the Mott insulator.

- ε , the local energy
- P, the local pressure, u^{μ} , the local velocity, and
- σ_Q , a universal conductivity, which is the single transport **co-efficient**.

The dependence of ε , P, σ_Q on T and v follows from simple scaling arguments

$$\partial_{\mu}J^{\mu} = 0$$

 $\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$
Conservation laws/equations of motion

$$\partial_{\mu}J^{\mu} = 0$$

$$\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$$

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$

$$J^{\mu} = \rho u^{\mu}$$

Constitutive relations which follow from Lorentz
transformation to moving frame

$$\partial_{\mu}J^{\mu} = 0$$

$$\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$$

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$

$$J^{\mu} = \rho u^{\mu} + \sigma_Q(g^{\mu\nu} + u^{\mu}u^{\nu}) \left[\left(-\partial_{\nu}\mu + F_{\nu\lambda}u^{\lambda} \right) + \mu \frac{\partial_{\mu}T}{T} \right]$$

Single dissipative term allowed by requirement of positive entropy production. There is only one independent transport co-efficient

For experimental applications, we must move away from the ideal CFT

- A chemical potential μ
- A magnetic field *B*

• An impurity scattering rate $1/\tau_{imp}$ (its *T* dependence follows from scaling arguments)

e.g.

$$S = \int d^2 r d\tau \left[\left| (\partial_\tau - \mu) \psi \right|^2 + v^2 \left| (\vec{\nabla} - i\vec{A}) \psi \right|^2 - g|\psi|^2 + V(r)|\psi|^2 + \frac{u}{2} |\psi|^4 \right]$$

$$\nabla \times \vec{A} = B \quad , \quad \overline{V(r)} = 0 \quad , \quad \overline{V(r)V(r')} = V_{\rm imp}^2 \delta^2(r - r')$$

$$\begin{aligned} \partial_{\mu}J^{\mu} &= 0\\ \partial_{\mu}T^{\mu\nu} &= F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\rm imp}} \left(\delta^{\mu}_{\nu} + u^{\mu}u_{\nu}\right)T^{\nu\gamma}u_{\gamma}\\ T^{\mu\nu} &= (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}\\ J^{\mu} &= \rho u^{\mu} + \sigma_Q (g^{\mu\nu} + u^{\mu}u^{\nu}) \left[\left(-\partial_{\nu}\mu + F_{\nu\lambda}u^{\lambda}\right) + \mu \frac{\partial_{\mu}T}{T} \right] \end{aligned}$$

$$\begin{aligned} \partial_{\mu}J^{\mu} &= 0\\ \partial_{\mu}T^{\mu\nu} &= F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\rm imp}} \left(\delta^{\mu}_{\nu} + u^{\mu}u_{\nu}\right)T^{\nu\gamma}u_{\gamma}\\ T^{\mu\nu} &= (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}\\ J^{\mu} &= \rho u^{\mu} + \sigma_Q (g^{\mu\nu} + u^{\mu}u^{\nu}) \left[\left(-\partial_{\nu}\mu + F_{\nu\lambda}u^{\lambda}\right) + \mu \frac{\partial_{\mu}T}{T} \right] \end{aligned}$$

Solve initial value problem and relate results to response functions (Kadanoff+Martin)

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Longitudinal conductivity

$$\sigma_{xx} = \sigma_Q \left[\frac{(\omega + i/\tau_{\rm imp})(\omega + i\gamma + i\omega_c^2/\gamma + i/\tau_{\rm imp})}{(\omega + i\gamma + i/\tau_{\rm imp})^2 - \omega_c^2} \right]$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Longitudinal conductivity

$$\sigma_{xx} = \sigma_Q \left[\frac{(\omega + i/\tau_{\rm imp})(\omega + i\gamma + i\omega_c^2/\gamma + i/\tau_{\rm imp})}{(\omega + i\gamma + i/\tau_{\rm imp})^2 - \omega_c^2} \right]$$
$$= \sigma_Q + \frac{4e^2\rho^2 v^2}{(\varepsilon + P)} \frac{1}{(-i\omega + 1/\tau_{\rm imp})} \quad \text{as } B \to 0$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Hall conductivity

$$\sigma_{xy} = -\frac{2e\rho c}{B} \left[\frac{\gamma^2 + \omega_c^2 - 2i\gamma\omega + 2\gamma/\tau_{\rm imp}}{(\omega + i\gamma + i/\tau_{\rm imp})^2 - \omega_c^2} \right]$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Hall conductivity

$$\sigma_{xy} = -\frac{2e\rho c}{B} \left[\frac{\gamma^2 + \omega_c^2 - 2i\gamma\omega + 2\gamma/\tau_{\rm imp}}{(\omega + i\gamma + i/\tau_{\rm imp})^2 - \omega_c^2} \right]$$
$$= \frac{2e\rho c}{B} \quad \text{as } \omega \to 0 \text{ and } \tau_{\rm imp} \to \infty$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Hall conductivity

$$\sigma_{xy} = -\frac{2e\rho c}{B} \left[\frac{\gamma^2 + \omega_c^2 - 2i\gamma\omega + 2\gamma/\tau_{\rm imp}}{(\omega + i\gamma + i/\tau_{\rm imp})^2 - \omega_c^2} \right]$$
$$= B \left[\sigma_Q \frac{4e\rho v^2}{(\varepsilon + P)(1/\tau_{\rm imp} - i\omega)} + \frac{8e^3\rho^3 v^4}{(\varepsilon + P)^2(1/\tau_{\rm imp} - i\omega)^2} \right]$$
as $B \to 0$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Thermal conductivity

$$\kappa_{xx} = \sigma_Q \left(\frac{k_B^2 T}{4e^2}\right) \left(\frac{\varepsilon + P}{k_B T \rho}\right)^2 \left[\frac{(\omega_c^2/\gamma)(\omega_c^2/\gamma + 1/\tau_{\rm imp})}{(\omega_c^2/\gamma + 1/\tau_{\rm imp})^2 + \omega_c^2}\right]$$
$$= \frac{1}{\sigma_Q} k_B^2 T \left(\frac{c(\varepsilon + P)}{k_B T B}\right)^2 \left[\frac{\gamma(\omega_c^2/\gamma + 1/\tau_{\rm imp})}{(\omega_c^2/\gamma + 1/\tau_{\rm imp})^2 + \omega_c^2}\right]$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Thermal conductivity

$$\kappa_{xx} = \sigma_Q \left(\frac{k_B^2 T}{4e^2} \right) \left(\frac{\varepsilon + P}{k_B T \rho} \right)^2 \longrightarrow 1 \text{ as } B \longrightarrow 0$$
$$= \frac{1}{\sigma_Q} k_B^2 T \left(\frac{c(\varepsilon + P)}{k_B T B} \right)^2 \left[\frac{\gamma(\omega_c^2 / \gamma + 1 / \tau_{imp})}{(\omega_c^2 / \gamma + 1 / \tau_{imp})^2 + \omega_c^2} \right]$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \sigma_Q \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Thermal conductivity

$$\kappa_{xx} = \sigma_Q \left(\frac{k_B^2 T}{4e^2} \right) \left(\frac{\varepsilon + P}{k_B T \rho} \right)^2 \left[\frac{(\omega_c^2 / \gamma) (\omega_c^2 / \gamma + 1 / \tau_{imp})}{(\omega_c^2 / \gamma + 1 / \tau_{imp})^2 + \omega_c^2} \right]$$
$$= \frac{1}{\sigma_Q} k_B^2 T \left(\frac{c(\varepsilon + P)}{k_B T B} \right)^2 \longrightarrow 1 \text{ as } \rho \to 0$$

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Nernst signal

$$e_{N} = \left(\frac{k_{B}}{2e}\right) \left(\frac{\varepsilon + P}{k_{B}T\rho}\right) \left[\frac{\omega_{c}/\tau_{\rm imp}}{(\omega_{c}^{2}/\gamma + 1/\tau_{\rm imp})^{2} + \omega_{c}^{2}}\right]$$
$$\frac{k_{B}}{2e} = 43.086 \mu V/K$$

Exact Results

To the solvable supersymmetric, Yang-Mills theory CFT, we add

- A chemical potential μ
- A magnetic field *B*

After the AdS/CFT mapping, we obtain the Einstein-Maxwell theory of a black hole with

- An electric charge
- A magnetic charge

The exact results are found to be in *precise* accord with *all* hydrodynamic results presented earlier

Solve quantum Boltzmann equation for graphene

The results are found to be in *precise* accord with <u>all</u> hydrodynamic results presented earlier, and many results are extended beyond hydrodynamic regime.

M. Müller, L. Fritz, and S. Sachdev, arXiv:0805.1413

Collisionless-hydrodynamic crossover in pure, undoped, graphene

$$\frac{e^2}{h} \left[\frac{\pi}{2} + \mathcal{O}\left(\frac{1}{\ln(\Lambda/\omega)} \right) \right] \qquad , \quad \hbar \omega \gg k_B T$$

I. Herbut, V. Juricic, and O. Vafek, Phys. Rev. Lett. 100, 046403 (2008).

$$\sigma_{Q}(\omega) = \begin{cases} \overline{h} \left[\frac{1}{2} + \mathcal{O}\left(\frac{1}{\ln(\Lambda/\omega)} \right) \right] &, \quad \hbar \omega \gg k_{B}T \\ \text{I. Herbut, V. Juricic, and O. Vafek, Phys. Rev. Lett. 100, 046403 (2008).} \\ \frac{e^{2}}{h\alpha^{2}(T)} \left[0.760 + \mathcal{O}\left(\frac{1}{|\ln(\alpha(T))|} \right) \right] &, \quad \hbar \omega \ll k_{B}T\alpha^{2}(T) \end{cases}$$

where $\alpha(T)$ is the T-dependent fine structure constant which obeys

$$\alpha(T) = \frac{\alpha}{1 + (\alpha/4)\ln(\Lambda/T)} \overset{T \to 0}{\sim} \frac{4}{\ln(\Lambda/T)}$$

L. Fritz, M. Mueller, J. Schmalian and S. Sachdev, arXiv:0802.4289

See also A. Kashuba, arXiv:0802.2216

I. CFT3s in condensed matter physics and string theory Superfluid-insulator transition, magnetic ordering transitions, graphene

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes
- 5. Experiments Graphene and the cuprate superconductors

I. CFT3s in condensed matter physics and string theory Superfluid-insulator transition, magnetic ordering transitions, graphene

- 2. Quantum-critical transport Collisionless-to-hydrodynamic crossover of CFT3s
- **3. Black Hole Thermodynamics** *Connections to quantum criticality*
- 4. Generalized magnetohydrodynamics Quantum criticality and dyonic black holes

5. Experiments Graphene and the cuprate superconductors
Dirac fermions in graphene

Honeycomb lattice of C atoms

Tight binding dispersion

Close to the two Fermi points K, K':

2 relativistic (Dirac) cones in the Brillouin zone

$$H \approx \mathbf{v}_F (\mathbf{p} - \mathbf{K}) \times \sigma_{\text{sublattice}}$$
$$\mathbb{R} \quad E_{\mathbf{k}} = \mathbf{v}_F |\mathbf{k} - \mathbf{K}|$$

"Speed of light"

$$V_F \approx 1.1 \times 10^6 \text{ m/s} \approx \frac{c}{300}$$

Coulomb interactions: Fine structure constant

Phase diagram & Quantum criticality

J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev, arXiv:0802.4289

General doping:

Clean system:

$$\sigma_{xx}(\omega;\mu,\Delta=0) = e^2 \frac{\rho^2 v_F^2}{\varepsilon + P} \frac{1}{(-i\omega)} + \sigma_Q$$

$$\sigma_Q(\mu,\omega) = \frac{e^2}{\hbar} \frac{1}{\alpha^2} \frac{2\hat{g}_1}{N} \left[I_+^{(1)} - \frac{\rho^2(\hbar v)^2}{(\varepsilon+P)T} \right]^2 \frac{1}{1 - i\omega\tau_{ee}}$$

Gradual disappearance of quantum criticality and relativistic physics

Will appear in all Boltzmann formulae below!

L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev, arXiv:0802.4289

General doping:

Lightly disordered system:

$$\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)$$
$$\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2)$$

L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev, arXiv:0802.4289

2

General doping:

Lightly disordered system:

$$\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)$$
$$\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2)$$

Fermi liquid regime:

$$\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{imp}}{\varepsilon + P}$$
$$= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{imp}}$$

L. Fritz, J. Schmalian, M. Mueller, and S. Sachdev, arXiv:0802.4289

0

General doping:

Lightly disordered system:

$$\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)$$
$$\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2)$$

Fermi liquid regime:

$$\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\rm imp}}{\varepsilon + P}$$
$$= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\rm imp}}$$

J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

Cyclotron resonance in graphene

M. Mueller, and S. Sachdev, arXiv:0801.2970.

$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$

$$v = 1.1 \times 10^6 \, m \, / \, s$$
$$\approx c \, / \, 300$$

Conditions to observe resonance

- Negligible Landau quantization
- Hydrodynamic, collison-dominated regime
- Negligible broadening
- Relativistic, quantum critical regime

$$E_{LL} = \hbar v \sqrt{\frac{2eB}{\hbar c}} << k_B T$$

$$T \approx 300 \text{ K}$$

$$\hbar \omega_c^{rel} << k_B T$$

$$B \approx 0.1 \text{ T}$$

$$\gamma, \tau^{-1} < \omega_c^{rel}$$

$$\rho \le \rho_{th} = \frac{\left(k_B T\right)^2}{\left(\hbar v\right)^2}$$

 $T \approx 300 \text{ K}$ $B \approx 0.1 \text{ T}$ $\rho \approx 10^{11} \text{ cm}^{-2}$ $\omega_c \approx 10^{13} \text{ s}^{-1}$

Nernst experiment

/

From these relations, we obtained results for the transport co-efficients, expressed in terms of a "cyclotron" frequency and damping:

$$\omega_c = \frac{2eB\rho v^2}{c(\varepsilon + P)} \quad , \quad \gamma = \frac{B^2 v^2}{c^2(\varepsilon + P)}$$

Transverse thermoelectric co-efficient

$$\left(\frac{h}{2ek_B}\right)\alpha_{xy} = \Phi_s\overline{B} (k_BT)^2 \left(\frac{2\pi\tau_{\rm imp}}{\hbar}\right)^2 \frac{\overline{\rho}^2 + \Phi_\sigma\Phi_{\varepsilon+P}(k_BT)^3 \hbar/2\pi\tau_{\rm imp}}{\Phi_{\varepsilon+P}^2(k_BT)^6 + \overline{B}^2\overline{\rho}^2(2\pi\tau_{\rm imp}/\hbar)^2}$$

where

$$B = \overline{B}\phi_0/(\hbar v)^2 \quad ; \quad \rho = \overline{\rho}/(\hbar v)^2.$$

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Y. Wang et al., Phys. Rev. B 73, 024510 (2006).

Y. Wang et al., Phys. Rev. B 73, 024510 (2006).

LSCO Experiments B,T-dependence

Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a 'theory of everything', might help to explain some properties of exotic matter phases — such as some peculiarities of high-temperature superconductors.

NATURE|Vol 448|30 August 2007

Conclusions

- Theory for transport near quantum phase transitions in superfluids and antiferromagnets
- Exact solutions via black hole mapping have yielded first exact results for transport co-efficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics.
- Theory of Nernst effect near the superfluidinsulator transition, and connection to cuprates.
- Quantum-critical magnetotransport in graphene.