Colossal spin fluctuation in a molecular quantum dot magnet

Ken-Ichiro Imura in collaboration with
Thibaut Jonckheere and Thierry Martin

The system

A molecular quantum dot magnet

- Molecules play the role of a quantum dot
- Molecules have their own spin, coupled to conduction electrons' spin via an exchange interaction
- Our molecular quantum dot magnet is coupled to ferromagnetic leads

Model for a Molecular quantum dot magnet

Highlights of this work

- A simple model allowing for explicit calculations
some analytic results as a function of molecular spin

S and/or lead polarization P

- Results are not trivial (there is some interesting physics in it)
spin blockade features, colossal spin fluctuations
- A perfect arena for testing different methods (comparison of usefulness and their consistency)

What do we attempt to "see" in this system?

I- Spin-dependent transport - effects of ferromagnetic electrodes

2- Manipulating a molecular spin - can we control the molecular spin by sending a (charge, spin) current?

3- Fluctuation of spin - what we report here :

4- How to suppress such a huge enhancement of spin fluctuation?

In this work, we considered the cases of ...

I- Strong Coulomb blockade limit : (double occupancy forbidden)
2- Incoherent tunneling regime - successive tunneling events are independent (cf. Master equation approach) justified at relatively high temperatures :
3- Collinear spin alignments of the electrodes :

Even more specificallyo.

- a finite bias voltage

$$
e V=\mu_{L}-\mu_{R} \gg k_{B} T
$$

- electrons tunnel only from L to R
- ferromagnetic exchange interaction
- only J=S+ I/2 spin sector in the bias window

$$
\begin{gathered}
J=S+1 / 2 \\
\sigma_{z}=-1 / 2 \quad J_{z} \underline{\underline{S}}_{z} S-S_{1} / 2 \quad \sigma_{z}=+1 / 2
\end{gathered}
$$

$\mathrm{S}=1 / 2$ case

 only J=I (triplet) spin sector in the bias window$$
\begin{array}{cc}
S_{z}=1 / 2 \\
S_{z}=-1 / 2 & \frac{J_{z}=-1}{J_{z}=1} \\
q=0 & q=1 \\
S_{z}=-1 / 2 \\
& q=0
\end{array}
$$

$$
\begin{array}{rl}
J & =S+1 / 2 \\
\sigma_{z}=-1 / 2 & S S \\
z=S S-3 \downarrow 2 \\
\end{array}
$$

$$
\begin{aligned}
& \Gamma_{q=0}^{+}\left(s_{z}\right)=\Gamma_{L}^{i} \frac{s+1+s_{z}}{2 s+1} \\
& \xrightarrow[s_{z}-1,2]{s_{z}+1 / 2} \\
& j_{z}+1 / 2 \\
& j_{z}= \\
& j_{\underline{z}}-1 / 2 \\
& q=0 \\
& q=1 \\
& q=0
\end{aligned}
$$

What do we attempt to "see" in this system?

What are statistical averages of

(i) current I (ii) charge Q (ii) spin J_{z}

and their fluctuations as a function of P?

Actually, as far as current and charge are concerned, and also for $P=0$, we know "all" the correlation functions!

The idea of full counting statistics (FCS)

KI, Utsumi, Martin, PRB ’07
The FCS generating function (exact solution) :

$$
\Omega(\xi, \eta)=-\frac{z \Gamma_{L}+\Gamma_{R}-\xi}{2}+\frac{1}{2} \sqrt{\left(z \Gamma_{L}-\Gamma_{R}+\xi\right)^{2}+4 z \Gamma_{L} \Gamma_{R} e^{\eta}}
$$

The charge correlation functions :

$$
z=\frac{2 j+1}{2 s+1}
$$

$$
\begin{aligned}
\langle Q\rangle & =\left.\frac{\partial \Omega(\xi, \eta)}{\partial \xi}\right|_{\xi, \eta \rightarrow 0}=\frac{z \Gamma_{L}}{z \Gamma_{L}+\Gamma_{R}} \\
\langle Q Q\rangle & =\left.\frac{\partial^{2} \Omega(\xi, \eta)}{\partial^{2} \xi}\right|_{\xi, \eta \rightarrow 0}=\frac{2 z \Gamma_{L} \Gamma_{R}}{\left(z \Gamma_{L}+\Gamma_{R}\right)^{3}}
\end{aligned}
$$

The current correlation functions :

$$
\begin{aligned}
\langle I\rangle & =\left.\frac{\partial \Omega(\xi, \eta)}{\partial \eta}\right|_{\xi, \eta \rightarrow 0}=\frac{z \Gamma_{L} \Gamma_{R}}{z \Gamma_{L}+\Gamma_{R}} \\
\langle I I\rangle & =\left.\frac{\partial^{2} \Omega(\xi, \eta)}{\partial^{2} \eta}\right|_{\xi, \eta \rightarrow 0}=\frac{z \Gamma_{L} \Gamma_{R}\left(z^{2} \Gamma_{L}^{2}+\Gamma_{R}^{2}\right)}{\left(z \Gamma_{L}+\Gamma_{R}\right)^{3}}
\end{aligned}
$$

The segment picture

cf. Korotkov PRB '94

Time evolution of the dot state $=\mathbf{a}$ series of random jumps from one state to another

$$
\cdots \rightarrow \alpha_{0} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \cdots \rightarrow \alpha_{M-1} \rightarrow \alpha_{0} \rightarrow \cdots
$$

$$
\text { a segment } \quad|\alpha\rangle=\left|Q, J, J^{z}\right\rangle
$$

We are interested in such quantities as

$$
\int_{0}^{T} d t J_{z}(t) \rightarrow \sum_{n=1}^{N} \mathcal{J}_{z}\left[\xi_{n}\right], \quad \mathcal{J}_{z}[\xi]=\sum_{m=0}^{M-1} J_{m}^{z} \tau_{m}
$$

Statistical average is done in two steps :
I- Poissonian average for a given segment
2- average over different realization of the segments

Application to molecular quantum dot magnet

($s=1 / 2$ case : for comparison, $j=1, z=3 / 2$)

- For P-alignment

$$
\begin{gathered}
S_{Q Q}=\frac{1}{\langle\tau\rangle}\left[\left\langle\mathcal{Q}^{2}\right\rangle+\left\langle\tau^{2}\right\rangle\left(\frac{\langle Q\rangle}{\langle\tau\rangle}\right)^{2}-2\langle Q \tau\rangle \frac{\langle Q\rangle}{\langle\tau\rangle}\right]=\frac{24 \Gamma_{L} \Gamma_{R}}{\left(1-p^{2}\right)\left(3 \Gamma_{L}+2 \Gamma_{R}\right)^{3}} \\
S_{J_{z} J_{z}}=\frac{2\left(6 \Gamma_{L}^{2}+4 \Gamma_{L} \Gamma_{R}+\Gamma_{R}^{2}\right)}{\left(1-p^{2}\right) \Gamma_{L} \Gamma_{R}\left(3 \Gamma_{L}+2 \Gamma_{R}\right)}
\end{gathered}
$$

- For AP-alignment

$$
\begin{gathered}
S_{Q Q}=\frac{8\left(1-p^{2}\right)\left(3+32 p^{2}+38 p^{4}+40 p^{6}+15 p^{8}\right) \Gamma_{L} \Gamma_{R}}{\left\{\left(3+10 p^{2}+3 p^{4}\right) \Gamma_{L}+2\left(1-p^{4}\right) \Gamma_{R}\right\}^{3}} \\
S_{J_{z} J_{z}}=\frac{2\left(1-p^{2}\right)\left(275-200 p^{2}+30 p^{4}+48 p^{6}-25 p^{8}\right)}{\left(5+10 p^{2}+p^{4}\right)^{3}}
\end{gathered}
$$

Spin blockade feature

Average current

- for a molecular spin s=1/2
- for ferromagnetic electrodes with various spin alignments

Spin blockade mechanism

- two slightly different patterns

"AP"-alignment

"RP"- only ight electrode olarized

Current fluctuation

- for a molecular spin s=1/2
- for ferromagnetic electrodes with various spin alignments

"Colossal" spin fluctuation

Spin fluctuation

- for a molecular spin s=1/2
- for ferromagnetic electrodes with various spin alignments

Spin fluctuation

- for a molecular spin $s=1 / 2,1,3 / 2$
- for ferromagnetic electrodes with AP alignments
- normalized by (2s+I) ${ }^{\mathbf{2}}$

Conclusions

I- Spin-dependent transport : ferromagnetic electrodes with collinear spin alignments

2- Analytic formulae for the average current, charge and spin and their fluctuations (2nd and higher order noise correlations)

3- Some specific features of spin transport, e.g., spin blockade, etc. due to ferromagnetic leads

4- Consistency with the FCS method (for current and charge fluctuations and for $P=0$)
5.

For further details, Jonckheere, KI, Martin, in preparation.

