Band touching from real space topology

Doron Bergman Congjun Wu LB

TASSP, Kyoto June 2008

Band Touching

- Spaghetti Diagram
- When do they touch?
 - Level repulsion argument
 - Must tune 3 parameters for a touching at a generic wavevector - get "accidental" touchings at points in 3d.

Graphene

• Sometimes 2d bands do touch!

Stability

- Common reason: irreducible representation of Little group has dim>1.
 - these touchings are very sensitive to symmetry.
- But sometimes they are more stable...

Topological stability

- Dirac spinor: 2π rotation $\psi \rightarrow -\psi$
- More generally:
 - Berry gauge field $\vec{A} = \operatorname{Im} \langle u | \vec{\nabla}_k u \rangle$
 - Flux $\oint d\vec{k} \cdot \vec{A} = \int d^2k B(k) = \pi$
- **T+I:** B(k) = 0
 - Singularity must be preserved!

This talk

- A *different* kind of topological band touching
- Real space topology instead of momentum space

Frustrated Hopping Models

- Certain lattice hopping Hamiltonians display flat bands
- These are interesting because they offer prospects for strong interaction physics (c.f. FQHE)

$$H_{eff} = \hat{P}V\hat{P}$$

if V is small compared to the gap to the next band

Optical lattices

Theoretical proposals from various atomic theory groups (Lewenstein, Demler/Lukin, Zoller)

High field antiferromagnets

Н

Single magnon excitations governed by frustrated hopping Hamiltonian c.f.Tsunetsugu and others

Kagome lattice

Kagome lattice

- Flat band
- Band touchings
 - Dirac points *and* touching of flat band

Kagome lattice

- Flat band
- Band touchings
 - Dirac points *and* touching of flat band

no Berry phase here!

Pyrochlore lattice

Why all this touching?

- Touching is *troublesome* for strong interaction physics
 - projection into flat band problematic because there is no gap
- Can we keep the flat band but remove the touching?

Why flat bands?

- Wannier states are eigenstates
 - localized states with *finite* support
 - reason: interference

Why flat bands?

- Wannier states are eigenstates
 - localized states with *finite* support
 - reason: interference

Similar in other lattices

Flatness is not robust

 Interference condition violated by most additional hoppings

Flatness is not robust

 Interference condition violated by most additional hoppings

A sort of protection

- As long as the flat band remains flat, the touching *always* remains
 - (somewhat) bad news for "LLL" projection
- Reason: real space topology

Counting

- Flat band = localized states *but*...
- How many (linearly independent) localized states are there?
- Flat band (with periodic B.C.'s)
 - I state per unit cell

Elementary Hexagons

One per unit cell?

Elementary Hexagons

One per unit cell?

Elementary Hexagons

One per unit cell?

Sum of *all* elementary hexagons = 0 with PBCs!

Problem

- On torus with N unit cells, find N-1 linearly independent states
- Where is the missing state?

Loops on torus

Loops on torus

Non-trivial Loops

- Two non-contractible loops can be formed on the torus
- The difference between any two loops with the same topology is a sum of elementary hexagons

Two more linearly independent states!

Counting

- Elementary hexagons: N-I states
- Non-contractible loops: 2 states
- Total states: N+I states
 - I more state than the flat band!
 - This requires another band to touch the flat band.

Summary

- Band touchings in most frustrated hopping hamiltonians are "protected" in this way
 - kagome, dice, pyrochlore, honeycomb porbital models