Band touching from real space topology
 Doron Bergman
 Congjun Wu
 LB

TASSP, Kyoto June 2008

Band Touching

- Spaghetti Diagram
- When do they touch?
- Level repulsion argument
- Must tune 3 parameters for a touching at a generic wavevector - get "accidental" touchings at points in 3d.

Graphene

- Sometimes 2d bands do touch!

Stability

- Common reason: irreducible representation of Little group has dim>l.
- these touchings are very sensitive to symmetry.
- But sometimes they are more stable...

Topological stability

- Dirac spinor: 2π rotation $\psi \rightarrow-\psi$
- More generally:
- Berry gauge field $\vec{A}=\operatorname{Im}\left\langle u \mid \vec{\nabla}_{k} u\right\rangle$
- Flux

$$
\oint d \vec{k} \cdot \vec{A}=\int d^{2} k B(k)=\pi
$$

- T+l: $\quad B(k)=0$
- Singularity must be preserved!

This talk

- A different kind of topological band touching
- Real space topology instead of momentum space

Frustrated Hopping Models

- Certain lattice hopping Hamiltonians display flat bands
- These are interesting because they offer prospects for strong interaction physics (c.f. FQHE)

$$
H_{e f f}=\hat{P} V \hat{P}
$$

if V is small compared to the gap to the next band

Optical lattices

Theoretical proposals from various atomic theory groups (Lewenstein, Demler/Lukin, Zoller)

High field antiferromagnets

H

Single magnon excitations governed by frustrated hopping Hamiltonian
c.f. Tsunetsugu and others

Kagome lattice

Kagome lattice

- Flat band
- Band touchings
- Dirac points and touching of flat band

Kagome lattice

- Flat band
- Band touchings
- Dirac points and touching of flat band

no Berry phase here!

Honeycomb p-bands

Honeycomb p-bands

Pyrochlore lattice

Pyrochlore bands

Why all this touching?

- Touching is troublesome for strong interaction physics
- projection into flat band problematic because there is no gap
- Can we keep the flat band but remove the touching?

Why flat bands?

- Wannier states are eigenstates
- localized states with finite support
- reason: interference

Why flat bands?

- Wannier states are eigenstates
- localized states with finite support
- reason: interference

Similar in other lattices

Flatness is not robust

- Interference condition violated by most additional hoppings

Flatness is not robust

- Interference condition violated by most additional hoppings

A sort of protection

- As long as the flat band remains flat, the touching always remains
- (somewhat) bad news for "LLL" projection
- Reason: real space topology

Counting

- Flat band = localized states but...
- How many (linearly independent) localized states are there?
- Flat band (with periodic B.C.s)
- I state per unit cell

Elementary Hexagons

One per unit cell?

Elementary Hexagons

One per unit cell?

Elementary Hexagons

One per unit cell?

Superposition

Superposition

Superposition

Superposition

Superposition

Sum of all elementary hexagons $=0$ with PBCs!

Problem

- On torus with N unit cells, find $\mathrm{N}-\mathrm{I}$ linearly independent states
- Where is the missing state?

Loops on torus

Loops on torus

Non-trivial Loops

- Two non-contractible loops can be formed on the torus
- The difference between any two loops with the same topology is a sum of elementary hexagons

Two more linearly independent states!

Counting

- Elementary hexagons: N-I states
- Non-contractible loops: 2 states
- Total states: $\mathrm{N}+\mathrm{I}$ states
- I more state than the flat band!
- This requires another band to touch the flat band.

Summary

- Band touchings in most frustrated hopping hamiltonians are "protected" in this way
- kagome, dice, pyrochlore, honeycomb porbital models

