Gelatin gels are widely used in many applications including food, photographic, pharmaceutical, biomedical and technical applications. Using the same macromolecule in solution (collagen denatured during extraction and dissolved in water) two types of gels can be obtained: the “physical gel” which is thermo-reversible and which is obtained when the solutions are cooled, due to the conformational transition of the gelatin chains from coil to triple helices and a “chemical gel” which results from the cross-linking of the chains induced by certain reagents, which were added to the aqueous solution. In general, the chemical reaction proceeds in the temperature range where the physical gel is not observed, in the high temperature range, thus the two gelation mechanisms can be observed independently. For food and pharmaceutical applications, only the thermo-reversible gel is used, the gel is supposed to “melt” in the mouth or in the stomach. For photographic applications, both types of gels must be present: the physical gel is formed in first place during film coating and it entraps the silver halide crystals in suspension, while the chemical cross-linking is necessary to preserve the gel from entire dissolution during the various steps of the photographic developments. In an intermediate range of temperatures, both gels can form simultaneously and the two mechanisms of gelation are in competition.

In this presentation we show the results obtained when the two mechanisms are independent. The experiments deal with both rheological (rheometer AR 1000 from TA instruments) and structural properties. For physical gels, from optical rotation measurements (Perkin Elmer 341 Polarimeter) one can calculate the concentration of helices for different types of gelatins, different gelatin concentrations, temperature treatments, time... It was found, for all these experiments, that the storage moduli of the gels, G', measured in the same conditions as the optical rotation are uniquely related to the concentration of helices 1,2. Figure 1 shows an example of the master curve obtained with both fish and mammalian gelatins.

Fig. 1 The master curve for the elasticity versus helical concentration for any type of gelatin.
The chemical reaction inducing gelation was followed by microcalorimetry (MicroDSC III from Setaram, Caluire, France). The cells used for these experiments are the mixing cells made of two chambers, one containing the gelatin solution and the other the dissolved reagent. The valve separating the two chambers is suddenly opened and the liquids are mixed. The exothermic reaction starts and the released heat is measured versus time. The reagent used in our case is the bis(vinylsulfonyl)methane (BVSM) kindly provided by Kodak Industries (France). The reagent combines with the amino-acid groups such as Lysine, Hydroxylysine and Histidine. Each BVSM molecule provides two covalent bonds. When the reaction is limited by the amount of reagent, one can establish a calibration curve which measures the enthalpy of formation per C-N bond. We found an average of ~ 40.6 kJ/mole per C-N bond, as shown in figure 2.

![Graph showing calibration curve](image)

Fig. 2 The calibration curve giving the heat of reaction per C-N bond between BVSM and gelatin.

For different amounts of reagent and different gelatin concentrations, we were able to follow the rheological and thermodynamic aspects of the gelation process. The correlation between the two types of measurements puts into evidence the critical domain of the sol-gel transition for the chemical cross-linking of gelatin.

Chemically and Physically Cross-linked Gelatin Gels

Dominique Hellio and Madeleine Djabourov

Laboratoire de Physique et Mecanique des Milieux Heterogenes,
Ecole de Physique et Chimie (ESPCI)
10, Rue Vauquelin, Paris 75231 Paris Cedex 5
France

GelSympo2003, Kashiwa, 17-21 November 2003
OUTLINE OF THE PRESENTATION

INTRODUCTION : Bio-diversity of gelatins of various sources: mammalian and fish gelatins

1. The physical aspects of gel formation; structure and rheology

2. The master curve for elasticity of the physical gelatin gels. Interpretation

3. Chemical gelation in presence of a cross-linker. Hints for interpretation

OUTLOOK and CONCLUSIONS
INTRODUCTION

Biodiversity of gelatins

- Mammalian and fish collagens

- The amino acid compositions of collagen and the physical properties of gels
tuna
cod

80 cm
Imino-acid composition of gelatins and melting temperatures of corresponding collagens

<table>
<thead>
<tr>
<th>Imino-acid (g/100g protein)</th>
<th>Bovine Gelatin</th>
<th>Pig skin gelatin</th>
<th>Tuna</th>
<th>Sole or megrim</th>
<th>Cod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>13.03</td>
<td>13.99</td>
<td>11.61</td>
<td>12.86</td>
<td>10.29</td>
</tr>
<tr>
<td>Hypro</td>
<td>12.23</td>
<td>11.15</td>
<td>10.49</td>
<td>9.06</td>
<td>6.72</td>
</tr>
<tr>
<td>Total</td>
<td>25.26</td>
<td>25.14</td>
<td>22.1</td>
<td>21.92</td>
<td>17.01</td>
</tr>
<tr>
<td>T_m (collagen) °C</td>
<td>36*</td>
<td>36*</td>
<td>29</td>
<td>28</td>
<td>15</td>
</tr>
</tbody>
</table>

Collagen melting curves

- Cod
- Sole
- Tuna
- Mammal
1. The physical aspects of gel formation: structure and rheology
Mechanism of gelation

Gelatin gelation is related to the coil-triple helix transition.

Gelation and gel strengthening are kinetic processes.
Molecular characteristics of various gelatins

<table>
<thead>
<tr>
<th>gelatin</th>
<th>process</th>
<th>M_w (g/mole)</th>
<th>M_w/M_n</th>
<th>Ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef, High M (A1)</td>
<td>alkaline</td>
<td>145 700</td>
<td>1.68</td>
<td>5.0</td>
</tr>
<tr>
<td>Beef, Low M (A2)</td>
<td>alkaline</td>
<td>102 200</td>
<td>1.95</td>
<td>5.0</td>
</tr>
<tr>
<td>Pig skin, High M (B1)</td>
<td>acid</td>
<td>168 500</td>
<td>1.91</td>
<td>8.7</td>
</tr>
<tr>
<td>Pig skin, Low M (B2)</td>
<td>acid</td>
<td>74 500</td>
<td>1.89</td>
<td>7.6</td>
</tr>
<tr>
<td>tuna</td>
<td>acid</td>
<td>122 600</td>
<td>1.66</td>
<td>8.9</td>
</tr>
<tr>
<td>megrim</td>
<td>acid</td>
<td>226 300</td>
<td>1.66</td>
<td>8.9</td>
</tr>
<tr>
<td>cod</td>
<td>acid</td>
<td>120 500</td>
<td>1.93</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Experimental methods

- **Optical rotation**: continuous recording of the optical rotation angle versus time or temperature

 Calculation of the helix amount χ

 Or

 of the helical concentration c_{helix}

- **Microcalorimetry** to follow the chemical crosslinking (Micro DSC III Setaram, France)

- **Rheology**: G' and G'' at a fixed frequency (1 Hz) with very small deformations (0.5%) during gelation, maturation, melting…
Comparison of helix formation versus temperature
beef bone, tuna, megrim and cod (C= 5%)

helix amount

Cooling

40 35 30 25 20 15 10 5 0 -5
T(°C)

beef bone, A1
tuna
megrim
cod
Kinetics of helix formation

- Sample A:
 - A_1
 - A_2

- Sample B:
 - B_1
 - B_2

Temperature (°C) vs. time (s): hydrolysed sample
Helix formation in mixed solvents

A1 $c = 4.5\% \text{ g/cm}^3$ in:
- water
- 70% water + 30% glycerol
- 50% water + 50% glycerol

Temperature (°C) vs helix amount
Melting curves: effect of the molecular weight (beef, high M_w, A1 and low M_w, A2)
Melting curves of fish gelatins: megrim and cod
influence of gelation temperatures

Temperature (°C)

$\frac{d\chi}{dT}$

gelation temperatures

Cod

C=4.5%

Megrim
MELTING of HELICES in GELS: effect of the molecular weight

soluble collagen

- $N = 1450$
- $N = 1000$
- $N = 120$
Helix amounts versus temperature for various gelatins

C = 4.5 % g/cm³

- beef, High Mw
- beef, Low Mw
- pork skin, High Mw
- pork skin, Low Mw
- tuna
- megrim
- cod
2. The master curve for elasticity of the physical gelatin gels.

Interpretation
Kinetics of gelation: effect of concentration, A1

2% G' ▲ G'' △
4.5% G' ▼ G'' △
8% G' ★ G'' △

Temperature (°C)

moduli (Pa)

time (s)
The shear moduli versus temperature for various gelatins

\(c = 4.5 \% \text{ g/cm}^3 \)
Elasticity versus helix amount:
effect of temperature and molecular weight

\((c = 4.5 \, \% \, g/cm^3) \)
Shear moduli versus helix concentration

<table>
<thead>
<tr>
<th>Concentration (g/cm³)</th>
<th>Moduli (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c = 2% g/cm³</td>
<td>G'</td>
</tr>
<tr>
<td>c = 4.5% g/cm³</td>
<td>G'</td>
</tr>
<tr>
<td>c = 8% g/cm³</td>
<td>G'</td>
</tr>
</tbody>
</table>

A1
The master curve for elasticity:
blending of gelatins: (beef, High Mw) + tuna

- Majority of A1 helices in the blend
- Large helix amounts from both species

- Beef 3% g/cm³ + tuna 5% g/cm³
- Beef 8% g/cm³
The master curve for elasticity:
gelatins from various sources

- Cod 4.5% T = 1.2°C
- Cod 8% T = 0.8 °C
- Tuna 4.5% T = 10°C
- Tuna 8% T = 10°C
- Beef, high Mw 8% T = 10°C

The percolation regime
Gelation threshold

G' (Pa)

C_{hel} (g.cm$^{-3}$)
Elasticity versus distance to the gel point:
the percolation regime

\[G'(\text{Pa}) \]

\[[C_{\text{helix}} - C_{\text{helix}}^{\text{crit}}] \ (\text{g.cm}^{-3}) \]

slope 1.9
Elasticity versus helix concentration far from the gel point: Power laws

\[G' \text{ (Pa)} \]

\[C_{\text{hel}} \text{ (g.cm}^{-3}\text{)} \]
A fibrous network containing helical sequences and coils:

Three domains:

a. Below the gelation or percolation threshold, \(c_{hel}^{\text{crit}} \) no elastic modulus

b. Between \(c_{hel}^{\text{crit}} < c < 2 c_{hel}^{\text{crit}} \) the percolation regime

With a power law dependence of \(G' \) versus \(c - c^{\text{crit}} \)

\[
G' \sim (c - c^{\text{crit}})^{1.9}
\]

in agreement with the scalar percolation.
c. $c > 2 \, C_{hel}^{crit}$ a more homogeneous network is formed. There is no simple power law dependence of G' versus helical concentration. A progressive transition is observed.

Models dealing with networks of semi-flexible strands

Two parameters are required to define the elasticity:

- the length of the rods l
- the distance of entanglement of the rods d

If: absolutely rigid rods connected with very loose links (Jones and Marques 1990):
\[G' \approx k_B T l^{-1} d^{-2} \]

d is related to the total length of helices per unit volume, \(L_v \), measured experimentally:

\[d = \left(\frac{1}{L_v} \right)^{\frac{1}{2}} \]

Then:

\[d \sim c_{hel}^{-1/2} \]

If one assumes that \(l \) and \(d \) are alike then one obtains:

\[G' \sim c_{hel}^{1.5} \]
Transition from percolation to well developed network

$G'(\text{Pa})$

c_{hel} (g.cm$^{-3}$)

- **experiment**
- G' percolation, critical exponent 2
- G' with the power law $c_{\text{hel}}^{1.5}$
- $\frac{1}{G'} = \frac{1}{G'_{\text{percol}}} + \frac{1}{G'_{1.5}}$
Gelatin physical gels

- The elasticity of gelatins networks is a unique function of the helix concentration.

- There is no rubber like network involving large flexible coils connected by local junctions, at least in the linear regime.

- The fish gelatins are identical to the mammalian ones in this concept.
3. Chemical gelation in presence of a cross-linker.

Hints for interpretation
Chemical gel: crosslinking

A permanent gel is obtained by using a crosslinker. Kodak uses the bis(vinylsulfonyl)methane BVSM. The crosslinker creates covalent links C-N with the amine groups of the gelatin coils (Lysine, Hydroxylysine and Histidine). A permanent network is created in the high temperature state (coils in solution) (beef gelatin, alkaline, in buffer)

$$2 \text{gelatin}-\text{NH}_2 + \includegraphics{vinyldisulfonylmethane.png} \rightarrow \text{gelatin}$$

$+$ BVSM at 40°C
Formation of covalent links between gelatin and BVSM from microcalorimetry

\[C_{0}^{gelatin} = 8\%, \ C_{0}^{BVSM} = 0.225\%, \ pH = 6.79, \ T = 45^\circ C \]

Formation of C-N links is \textbf{exothermal}
Kinetics of the crosslinking from rheological measurements

$C_0^{\text{gelatin}} = 12\%$; $C_0^{\text{BVSM}} = 0.3\%$

$C_0^{\text{gelatin}} = 6\%$; $C_0^{\text{BVSM}} = 0.3\%$
Critical behaviour versus the concentration of links for the chemical gel

gelatin 12% + BVSM 0.3% ; pH 6.30 ; T = 40°C

\[\left(\frac{c_{\text{links}} - c_{\text{links critical}}}{c_{\text{links critical}}} \right) \]
Conclusions and outlook

- Physical gelation and chemical gelation of gelatin can be interpreted in the framework of critical phenomena.

- The two types of gels exhibit two different critical exponents of percolation.

- The physical gel reaches a state of a well developed network, while the chemical gel remains in the critical domain.

- Computer simulations are now under way.

- The gels crosslinked with both physical and chemical bonds are under study.
for more details see:

C. Joly-Duhamel, D. Hellio and M. Djabourov

and

C. Joly-Duhamel, D. Hellio, A. Ajdari and M. Djabourov,
Langmuir, 2002, 18, 7158

Acknowledgements

European contract FAIR CT 97- 3055
Kodak, Rochester, fellowship