Stability of semi-metals : (partial) classification of semi-metals

Eun-Gook Moon

Department of Physics, UCSB

EQPCM 2013 at ISSP, Jun 20, 2013

Collaborators

Cenke Xu, UCSB

B.J. Yang Riken

Yong Baek, Kim Univ. of Toronto

L. Savary UCSB

Leon Balents, KITP

N. Nagaosa, Riken

Refs :

- 1. Non-Fermi liquids and topological phases : EGM, Xu, Kim, and Balents (arXiv : 2012.1168)
- 2. All-in All-out magnetic phase transition in pyrochlore structures : Savary, EGM, and Balents (to appear)
- 3. Topological quantum phase transitions in noncentrosymmetic systems : *Yang, et. al. (EGM) (PRL 110.086402)*
- 4. Stability of semi-metals : *EGM et. al. (to appear)*

Imura, Yoshida (06/07), Furusaki (06/10), Maciejko (06/11), Oshikawa (06/18), and many other talks in the symposium

Amounts of charge excitations

Imura, Yoshida (06/07), Furusaki (06/10), Maciejko (06/11), Oshikawa (06/18), and many other talks in the symposium

Amounts of charge excitations

Characteristics of semi-metals

Finite number of band touching points in Brillouin zone (ex : graphene)

- Existence of gapless excitations
 - K and K' points Symmetry is more important. (protecting symmetries) sub-lattice symmetry Interaction effect is more important than insulators. quantum critical phase zero Landau Level
- Physical properties show different behaviors.

- Strategy
 - Consider "symmetric" semi-metals.
 - Investigate Coulomb interaction effects.
 - Break symmetries and obtain different class of semi-metals.

Symmetric semi-metals :

energy dispersion is isotropic near gapless points. (only one dynamic critical exponent is necessary.)

 $E_{\pm}(\vec{k}) = \pm k^z$

Coulomb interaction effects : two types of interactions

- Short range Coulomb interaction (ex : Hubbard U)
- Long range Coulomb interaction (V(r) ~ 1/r)

High momentum (energy) degrees of freedom induces the two types of interactions

• Effective action of the symmetric semi-metals $E_{\pm}(\vec{k}) = \pm k^z$

$$\mathcal{S}_{tot} = \int d\tau d^{d}x \,\psi^{\dagger} \left[\partial_{\tau} + \mathcal{H}_{0}(-i\nabla)\right] \psi + g_{i}(\psi^{\dagger}M_{i}\psi)^{2} \\ + e^{2} \int d\tau d^{d}x d^{d}y \,\frac{\psi^{\dagger}(x)\psi(x)\,\psi^{\dagger}(y)\psi(y)}{|x-y|} \tag{1}$$

Scaling dimensions

Non-interacting fixed point :

$$\begin{array}{ccc} x \ \rightarrow \ x \ e^{-l} \\ \tau \ \rightarrow \ \tau \ e^{-zl} \end{array}$$

Stability critical dimension :

$$d_c = z$$

$$[g_i] = z - d$$
 , $[e^2] = z - 1$

d > z : irrelevant contact interactions d < z : relevant contact interactions

Classification of the symmetric semi-metals

Notation : (*dnzm*) phase (n spatial dimension and m dynamical critical exponent)

Non-interacting fixed points under contact interactions

- stable for (d2z1, d3z1, d3z2)
- marginal for (d1z1, d2z2, d3z3)
- unstable for (d1z2, d1z3, d2z3)

 $[g_i] = z - d$, $[e^2] = z - 1$

Density of states : $\mathcal{D}(E) \sim E^{\frac{d}{z}-1}$

Long-range Coulomb interaction effects ??

Classification of the symmetric semi-metals

Density of states : **constant** at the stability critical dimensions. $\mathcal{D}(E) \sim E^{\frac{d}{z}-1}$ **screening** of the long range Coulomb interaction. *cf*) *Thomas-Fermi screening in metallic systems*.

Polarization function

$$= \Pi(q, i\Omega) = e^2 \int_k \frac{n_F(\alpha E_{k+q}) - n_F(\beta E_k)}{-i\Omega + \alpha E_{k+q} - \beta E_k} \operatorname{tr}(P_\alpha(k+q)P_\beta(k))$$
$$V_{coulomb}(q) \sim \frac{1}{q^2 - \Pi(0, 0)} \sim \frac{1}{q^2 + e^2 \mathcal{D}(0)}$$

Long-range Coulomb interaction : irrelevant at the stability critical dimensions.

Classification of the symmetric semi-metals

	d = 1	d = 2	d = 3
z = 1	$(0, 0, E^0)$.	(-1, 0, E)	$(-2, 0, E^2)$
z = 2	$(1, 1, E^{-\frac{1}{2}})$ unstable	$(0, 1, E^0)$	$(-1, 1, E^{\frac{1}{2}})$
z = 3	$(2, 2, E^{-\frac{2}{3}})$ unstable	$(1,2,E^{-\frac{1}{3}})$ unstable	$(0, 2, E^0)$

Coulomb interaction : marginally irrelevant (QED types)

Coulomb interaction : relevant (interaction is cruical.)

Simple estimation

$$E_{kin} \sim \frac{1}{mr^2} , \quad E_C \sim \frac{e^2}{r}$$
$$E_{kin} \ll E_C \quad r \to \infty$$

At long distance (low energy), Coulomb interaction is dominant.

Classification of the symmetric semi-metals

(d3z2) semi-metals

- short-range Coulomb interaction : irrelevant
- long-range Coulomb interaction : relevant

But,

virtual screening process eventually becomes dominant at long range physics.

Thus, the ground state becomes non-Fermi liquid.

$$\beta(e^2) = \frac{d}{dl}e^2 = e^2 - c e^4$$

Classification of the symmetric semi-metals

	d = 1	d = 2	d = 3
z = 1	$(0, 0, E^0)$ Luttinger	(-1, 0, E) mono-graphene	$(-2, 0, E^2)$ Weyl
z = 2	$(1, 1, E^{-\frac{1}{2}})$ unstable	$(0, 1, E^0)$ bi-graphene	$\begin{array}{c} (-1,1,E^{\frac{1}{2}}) \\ \text{LAB} \end{array}$
z = 3	$(2, 2, E^{-\frac{2}{3}})$ unstable	$(1,2,E^{-\frac{1}{3}})$ unstable	$(0, 2, E^0)$ 3d-marginal

Classification of the symmetric semi-metals

Renormalization group picture :

Derivative phases from the symmetric semi-metals

By breaking protecting symmetries, anisotropic semi-metals are achieved. Spatial scaling is anisotropic.

	$\mathcal{H}_{(1,2)}$	$\mathcal{H}_{(1,1,2)}$	$\mathcal{H}_{(1,2,2)}$
z = 2	$(-1,0,E^{\frac{1}{2}})$ TQPT ₂	(-2, 0, E)double Weyl	$(-3, 0, E^{\frac{3}{2}})$ TQPT ₃

$$\mathcal{H}_{(1,1,2)} = \psi^{\dagger}((k_x^2 - k_y^2)\sigma^x + 2k_x k y_y \sigma^y + k_z \sigma^z)\psi$$

$$\mathcal{H}_{(1,2,2)} = \psi^{\dagger}(k_x \sigma^x + k_y \sigma^y + k_z^2 \sigma^z)\psi$$

$$\mathcal{H}_{(1,2)} = \psi^{\dagger}(k_x^2 \sigma^x + k_z \sigma^z)\psi$$

Quantum phase transitions around the semi-metals

Especially, the (d3z2) semi-metal has exotic phase transitions due to its special characteristics.

Example : AIAO phase transition around the (d3z2)

Emergent anisotropy and emergent symmetries.

Savary et. al. (to appear)

Summary

Stability of semi-metals under Coulomb interactions are studied.

In symmetric semi-metals, four stable weakly(non) interacting semi-metals are possible.

In symmetric semi-metals, one interacting semi-metal phase is found.

Unstable phases might be gapped or might become interacting semi-metals. (Fractionalization of electrons is possible.)

Anisotropic semi-metals are achieved by breaking protecting symmetries.

Exotic quantum phase transitions around the semi-metals are realized.

• Future work

Strongly interacting semi-metals

Quantum critical behavior in semi-metals

Impurity problems in semi-metals

Physical quantities (optical conductivity, susceptibility, etc.)

Crossover to small Fermi pocket systems.

Thank you for your attention.