(Topological Aspects of) Quantum Spin Nanotubes -S=1/2 Three-Leg Spin Tube-

Toru SAKAI

JAEA/SPring-8 and University of Hyogo

Colaborators: Yuichi Otsuka (RIKEN) Masahiro Sato (Aoyama Gakuin University) Kouichi Okunishi (Niigata University) Kiyomi Okamoto (Tokyo Institute of Technology) Chigak Itoi (Nihon University)

Review: T.Sakai et al., J. Phys. Condensed Matter 22 (2010) 403201

R&D Centers of JAEA

Tsuruga

SPring-8 (Super Photon Ring 8Gev)

SACLA(SPring-8 Angstrom Compact Free Electron Laser)

Contents

Introduction

Quantum Phase Transition between 3-leg tube and ladder

Real Spin Tubes

1/3 Magnetization Plateau

Carrier doped spin tubes

Introduction

Spin Ladder Two (even) legs : Spin gap Three (odd) legs : Gapless

Spin Tube Two (even) legs : Spin gap Three (odd) legs : Spin gap

 $H = J_r \sum_{i=1}^{N} \sum_{j=1}^{L} S_{i,j} \cdot S_{i+1,j} + J_l \sum_{j=1}^{N} \sum_{j=1}^{L} S_{i,j} \cdot S_{i,j+1}$

S = 1/2

Real spin tubes

3-leg $[(CuCl_2tachH)_3Cl]Cl_2$

J. Schnack, et al, PRB70, 174420 (2004).

 $Ca_5Ir_3O_{12}$ 1/6-filled tube

H. Sato, et al, (Chuo University)

9-leg

$Na_2V_3O_7$

P. Millet, et al, J. Solid State Chem. 147, 676 (1999)

7-leg Organic compounds Unpublished (Tsukuba University)

Theories on 3-leg spin tubes

■ Schulz 1996: S=1/2 Bosonization

- Kawano-Takahashi 1997:S=1/2, Spin gap~0.28J⊥
- Cabra-Honecker-Pujol 1998: S=1/2, 1/3 magnetization plateau
- Sato-TS 2007 : field-induced new phases
- **TS-Sato-Okunishi-Okamoto-Itoi 2008, 2010: Isosceles triangle**
- Nishimoto-Arikawa 2008: Isosceles triangle
- Charrier-Capponi-Oshikawa-Pujol 2010: Integer spin
- □ Nishimoto-Fuji-Ohta 2011: S=3/2, Spin gap
- □ Lajko-Sindzingre-Penc 2012: S=1/2, Multispin exchange
- □ Okunishi-Sato-TS-Okamoto-Itoi 2012: new phase at m=1/3

S=1/2 Three-leg spin tube

Model

S=1/2 Three-leg spin tube

Kawano-Takahashi: JPSJ 66 (1997) 4001 Effective model based on Chirality operators Density Matrix Renormalization Group(DMRG) $J_r > 0$: Spin gap $J_r/J_1 \rightarrow \infty$: $\Delta = 0.28J_1$ I. Affleck, Phys. Rev. B 37, 5186 (1988) Lieb-Shultz-Mattis theorem odd-leg ladders: gapless or Gournd state is degenerated.

Gap due to double periodicity

Singlet with double periodicity (Kawano-Takahashi)

 $\Rightarrow \text{ Quantum phase transition}$ with respect to J_r/J_1

Analysis of Quantum Phase Transition

Numerical diagonalization: Low-lying excitation $3 \times L$ spin systems: $L \leq 8$ **Phenomenological renormalization** Scaled gap: $L\Delta$ $L\Delta is independent of size \implies Gapless$ $L\Delta$ increasing with size : Gapped $L\Delta$ decreasing with size : Degenerated with GS (**DMRG**: Direct calculation of gap)

Spin Gap

J₁=1 fixed, varying J_r Ground state : singlet 1st excited state : triplet k=π J_r=0 three chains : gapless J_r→-∞(S=3/2 chain) : gapless

Result: $J_r > 0$: Spin gap is opening with increasing J_r $J_r < 0$: Always gapless

Doubly degenerated Ground State

Singlet excitations $k=\pi$ degenrated with GS \downarrow Double periodicity \downarrow Spin gap

Critical point Jre

 $J_{rc} = 0$ or finite ?

Quantum Phase Transition between 3-leg spin tube and ladder -Isosceles Triangle Tube-Distortion from a regular triangle $(J_r > J_{rc})$ $\alpha = J_r'/J_r$ $\alpha=0$: Three-leg ladder gapless $\alpha = 1$: Spin gap $\alpha \rightarrow \infty$: Dimer and monomer gapless

Quantum phase transition with respect to α

Spin Gap by DMRG

$J_1=0.7$ fixed

Spin gap is open only in a very small region $\alpha \sim 1$

Large Size Corrections

Logarithmic system size corrections
 ~ 1/log L
 3-leg ladder looks gapped !

Previous Effective Hamiltonian

Chiral symmetry: S=1/2 Regular triangle cluster Two doublets are degenerated.

Chirality operators

 $\begin{aligned} \tau^{+} |\cdot L\rangle &= 0, \qquad \tau^{-} |\cdot L\rangle = |\cdot R\rangle, \\ \tau^{+} |\cdot R\rangle &= |\cdot L\rangle, \quad \tau^{-} |\cdot R\rangle = 0. \end{aligned}$

$$\begin{split} |\uparrow L\rangle &= \frac{1}{\sqrt{3}} \left(|\uparrow\uparrow\downarrow\rangle + \omega |\uparrow\downarrow\uparrow\rangle + \omega^{-1} |\downarrow\uparrow\uparrow\rangle \right), \\ |\downarrow L\rangle &= \frac{1}{\sqrt{3}} \left(|\downarrow\downarrow\uparrow\uparrow\rangle + \omega |\downarrow\uparrow\downarrow\rangle + \omega^{-1} |\uparrow\downarrow\downarrow\rangle \right), \\ |\uparrow R\rangle &= \frac{1}{\sqrt{3}} \left(|\uparrow\uparrow\downarrow\rangle + \omega^{-1} |\uparrow\downarrow\uparrow\rangle + \omega |\downarrow\uparrow\uparrow\rangle \right), \\ |\downarrow R\rangle &= \frac{1}{\sqrt{3}} \left(|\downarrow\downarrow\uparrow\rangle + \omega^{-1} |\downarrow\uparrow\downarrow\rangle + \omega |\uparrow\downarrow\downarrow\rangle \right), \quad \omega = \exp(\frac{2\pi i}{3}). \end{split}$$

 $J_r/J_1 \rightarrow \infty$

U(2) symmetry

$$H = J_1 / 3\sum_j \vec{S}_j \cdot \vec{S}_{j+1} [1 + \gamma(\tau_j^+ \tau_{j+1}^- + \tau_j^- \tau_{j+1}^+)]$$

New effective theory

Hubbard model on 3-leg tube

 $H = H_{\rm hop} + H_{\rm int},$

$$H_{\rm hop} = \sum_{n=1}^{L} \sum_{i=1}^{3} \sum_{\sigma=\uparrow,\downarrow} (tc_{n+1,i,\sigma}^{\dagger} c_{n,i,\sigma} + s_{i+1,i} c_{n,i+1,\sigma}^{\dagger} c_{n,i,\sigma} + h.c.),$$

$$H_{\text{int}} = U \sum_{n=1}^{L} \sum_{i=1}^{3} n_{n,i,\uparrow} n_{n,i,\downarrow},$$

Large U ⇒ Heisenberg model

J₁=t²/U, Jr=s²/U, α =Jr'/Jr= β ²

$$s$$
 s
 β s

Criterion of Spin Gap

Hopping term: 3 bands

$$E_1(k) = -\beta s + 2t \cos k,$$

$$E_2(k) = \frac{1}{2}(\beta s - \sqrt{\beta^2 + 8} + 4t \cos k),$$

$$E_3(k) = \frac{1}{2}(\beta s + \sqrt{\beta^2 + 8} + 4t \cos k),$$

Number of Fermi points

 0 to 3 pairs of Fermi points

 Criterions

 Even pairs: Gapped
 Odd pairs: Gapless⇒ phase boundary

Phase diagram by effective theory

Phase III: Gapped

Phase I?

Level spectroscopy

KT phase boundary between gapped and gapless Logarithmic size corrections (Okamoto-Nomura) J1-J2 frustrated spin chain (J2/J1)c=0.2411...

Triplet excitation gap $\Delta t \sim 1/L (1-C/logL ...)$ Singlet excitation gap $\Delta s \sim 1/L (1+3C/logL ...)$ At the critical point C=0 $\Delta t = \Delta s \implies$ precise phase boundary

Phase boundary α_c

By level spectroscopy with numerical diagonalization up to L=10

for $J_1=0.2$ ($J_r=1$ fixed)

J_{1c} for symmetric case $\alpha = 1$

Large size dependence
 Critical point
 1/J₁=0.51 ∓ 0.4

It is difficult to determine $J_{rc} = 0$ or not.

Phenomenological renomalization

■ DMRG up to L=128 Diagonalization up to L=10 No fixed points by $L_1 \Delta L_1 = L_2 \Delta L_2$ Gapless points determined by the minimum of $L_1 \Delta L_1 - L_2 \Delta L_2$

DMRG for J₁=0.3

Numerical Phase Diagram

 J_1

 $1/J_{1}$

α

Numerical Phase Diagram

Effective theory

BKT transition

Conformal field theory analysis

 $\langle S_0^z S_r^z \rangle \sim (-1)^r r^{-\eta}$ $\Delta \sim \pi v_s \eta / L \rightarrow \eta$ Central charge : c Numerical diagonalization: $\eta=1$ c=1 for gapless phases \Rightarrow BKT transition Berezinskii-Kosterlitz-Thouless

 $J_1 = 0.3$

Phenomenological Renormalization -Singlet gap-

 Spin gap (singlet-triplet) : large size correction
 Singlet-singlet gap
 J₁=0
 Degenerated in gapped phase
 "
 "

Size-dependent fixed point (L+2) Δ (L+2, α_c)=L Δ (L, α_c)

Extrapolate $\alpha_{c}(L) \Rightarrow \alpha_{c}(\infty)$

Quantized Berry phase

Y.Hatsugai, JPSJ (2006)

"Local characterization of quantum liquids"

For spin systems (without magnetic field),

• make a local SU(2) twist θ only at one link as,

$$J_{ij}\mathbf{S}_i \cdot \mathbf{S}_j \to J_{ij}/2\left(e^{-i\theta}S_i^+S_j^- + e^{i\theta}S_i^-S_j^+ + 2S_i^zS_j^z\right)$$

sum up the (lattice) Berry connection,

$$\gamma = \operatorname{Arg} \prod_{\mathsf{C}} \langle \psi_{\theta_j}^{U} | \psi_{\theta_{j+1}}^{U} \rangle, \quad |\psi_{\theta_j}^{U} \rangle = |\psi_{\theta_j} \rangle \langle \psi_{\theta_j} | \phi \rangle$$

 $|\phi
angle$: (arbitrary) reference state to fix the gauge

Calculation of quantized Berry phase for L=4 (Otsuka-TS 2012)

It supports the mechanism of spin gap.

Another work

DNRG by Nishimoto and Arikawa : PRB 2008 Spin gap is open just for the symmetric tube(α =1), otherwise gapless, assuming the size correction has a power law.

Summary1

S=1/2 Three-leg spin tube Regular triangle tube Chiral symmetry $J_r>0 \Rightarrow$ Spin gap Isosceles triangle tube No chiral symmetry Spin gap in a small region $\alpha = J_r^2 / J_r \sim 1$ **Quantum phase transition** (BKT transition) $\alpha = 1$ $\alpha = 0$ Spin ladder Spin tube \leftrightarrow Spin gap Gapless Distortion from regular triangle \Rightarrow Gap vanishes rapidly J_{rc}=finite or 0? still an open question

2. A real spin tube [(CuCl₂tachH)₃Cl]Cl₂

J. Schnack, H. Nojiri, P. Kögerler, G.J. T. Cooper and L. Cronin Phys. Rev. B **70**, 174420 (2004)

The model parameter is about J'/J=2

What is the triangular lattice quantum spin tube? ¹

Hamiltonian:

$$H = J \sum_{i} \sum_{j=1}^{3} S_{i,j} \cdot S_{i,j+1} + J' \sum_{i} \sum_{j=1}^{3} [S_{i,j} \cdot S_{i+1,j} + S_{i,j} \cdot S_{i+1,j+1}]$$

intra triangle
coupling
inter triangle
coupling

Expand the tube

Triangular lattice structure

basics

We can expect two phases

quantum phase transition

(B) J<<J' rhombic lattice(modulated square lattice) If J=0, no frustration!

Numerical calculation

DMRG, finite size method

MH-curve : 36×3 spins, m=80

Spin gap : up to 144 x 3 spins, up to m=220 with m extrapolation (empirical)

Spin gap (Okunishi et al. 2005, Fouet et al. 2006)

1/3 magnetization plateau

Three-leg spin tube

$$\mathcal{H} = \sum_{l,j} \left[J \vec{S}_{l,j} \cdot \vec{S}_{l,j+1} + J_{\perp} \vec{S}_{l,j} \cdot \vec{S}_{l+1,j} - H S_{l,j}^z \right]$$

One of the simplest 1D magnets with geometrical frustration

Phase diagram of the S=1/2 tube (Exact Diagonalization)

critical

M=1/6 plateau

Cabra, Honecker and Pujol, PRL79, 5126 (1997); PRB58, 6241 (1998).

S = 1/2 Three-Leg Spin Nanotube

Isosceles case all the spin-couplings are of $\overrightarrow{S} \cdot \overrightarrow{S}$ type (isotropic) $J'_r/J_r \equiv \alpha$ $J_r = 1$, unit energy $\alpha = 0$: 3-leg ladder $\alpha = 1$: regular triangle tube $\alpha \to \infty$: 2-leg ladder + single chain $M = M_{\rm s}/3$ state ($M_{\rm s}$: saturation magnetization) we are interested in the $M = M_s/3$ state when $J_1 \ll 1$ (maybe plateau)

Two mechanisms of 1/3 plateau

3-leg ladder uud plateau

Dimer-monomer plateau

■ Plateau width W near $\alpha = 1$ and $J_1 \ll 1$ (by DMRG) normalized by the saturation field H_s

anomalous behavior of the plateau width near $\alpha=1$ new and exiotic!!

Spin States of Isosceles Triangles

• Eigenstates of isosceles triangles at $S_{\text{tot}}^z = 1/2$

state energy
$$S_{\text{tot}} P$$

 $\psi_1 = \frac{1}{\sqrt{6}} (|\uparrow\uparrow\downarrow\rangle - 2|\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle) - 1 + \alpha/4, \ (\alpha < 1, \text{GS}) 1/2 + 1$
 $\psi_2 = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\uparrow\rangle) = |\uparrow\rangle_2 [1,3] -3\alpha/4, \ (\alpha > 1, \text{GS}) 1/2 - 1$
 $\psi_3 = \frac{1}{\sqrt{3}} (|\uparrow\uparrow\downarrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle) 1/2 + \alpha/4 3/2 + 1$
 $P: 1 \Leftrightarrow 3 \text{ parity}$

wave functions do not depend on α

O Behavior of plateau width near the mechanism-changing point

Usual cases

W decreases near λ_c

reconstruction of the unit cell occurs at λ_c

example 1 : S = 1/2 bond-alteranting model at M = 0,

spingap $\propto |\delta|^{2/3}/\sqrt{|\log|\delta||}$

example 2 : S=1/2 distorted diamond chain model at $M=M_{\rm s}/3$

• present case (note that $J_r \gg J_1$) reconstruction of the unit cell does not occur at $\alpha = 1$ unit cell is always a triangle for $\alpha \leq 1$ GS of a triangle is changed at $\alpha = 1$ energy difference between ψ_1 and ψ_2 states, $E_2 - E_1 = 1 - \alpha$ pertubation by J_1 , both of ψ_1 and ψ_2 states are relevant when $J_1 \gtrsim |1 - \alpha|$ thus, in the $1 - J_1 \leq \alpha \leq 1 + J_1$ region, interesting phenomena will occur in fact, the increase of W is observed in this region

 J_r

Perturbation Theory from the $J_1 \ll 1$ Limit

• Eigenstates of isosceles triangles at $S_{tot}^z = 1/2$

state energy
$$S_{\text{tot}} P$$

 $\psi_1 = \frac{1}{\sqrt{6}} (|\uparrow\uparrow\downarrow\rangle - 2|\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle) - 1 + \alpha/4, \ (\alpha < 1, \text{GS}) 1/2 + 1$
 $\psi_2 = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\uparrow\rangle) = |\uparrow\rangle_2 [1, 3] -3\alpha/4, \ (\alpha > 1, \text{GS}) 1/2 - 1$
 $\psi_3 = \frac{1}{\sqrt{3}} (|\uparrow\uparrow\downarrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle) 1/2 + \alpha/4 3/2 + 1$

Perturbation theory by use of pseudospin representation pseudospin \overrightarrow{T} $(T = 1/2), \ \psi_2 \Leftrightarrow | \Uparrow \rangle, \ \psi_1 \Leftrightarrow | \Downarrow \rangle$ note that $S_{\text{tot}}^z = 1/2$ for both of $| \Uparrow \rangle$ and $| \Downarrow \rangle$

lowest order in J_1

$$\mathcal{H}_{\text{eff}} = J_1 \sum_{j} \left(T_j^x T_{j+1}^x + T_j^z T_{j+1}^z \right) - (\alpha - 1) \sum_{j} T_j^z$$

transverse field XZ (or equivalently, XY) model

\bigcirc Transverse field XZ model

transverse field XXZ model ($\Delta \equiv J_z/J_{xy}$) field *h* along the *x*-direction (Dmitriev et al, PRB **65**, 172409 (2002); JETP **95**, 538 (2002)) 1: *z*-Néel, $(-1)^j \langle S_j^z \rangle$ LRO, (of course $\langle S_j^x \rangle$ LRO) 2: *z*-Ferro, $\langle S_j^z \rangle$ LRO, (of course $\langle S_j^x \rangle$ LRO) 3: *y*-Néel, $(-1)^j \langle S_j^y \rangle$ LRO, (of course $\langle S_j^x \rangle$ LRO) 4: No LRO, (of course $\langle S_j^x \rangle$ LRO)

their results read for our case

 $\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & &$

semiclassical picture

suppose the pseudo spin \overrightarrow{T} turn to the +x direction

$$\begin{aligned} |T_{+x}\rangle &= \frac{1}{\sqrt{2}} (|\Uparrow\rangle + |\Downarrow\rangle) = \left(\frac{1}{2} + \frac{1}{4\sqrt{3}}\right) |\uparrow\uparrow\downarrow\rangle - \frac{1}{\sqrt{3}} |\uparrow\downarrow\uparrow\rangle + \left(\frac{1}{2} - \frac{1}{4\sqrt{3}}\right) |\downarrow\uparrow\uparrow\rangle \\ \langle S_1^z\rangle &\equiv \langle T_{+x}|S_1^z|T_{+x}\rangle = \frac{1}{2\sqrt{3}} + \frac{1}{6} = 0.455 \\ \langle S_2^z\rangle &\equiv \langle T_{+x}|S_2^z|T_{+x}\rangle = \frac{1}{6} = 0.167 \\ \langle S_3^z\rangle &\equiv \langle T_{+x}|S_3^z|T_{+x}\rangle = \frac{1}{2\sqrt{3}} - \frac{1}{6} = -0.122 \end{aligned}$$

these expectation values well explain the DMRG results

 $J_1 = 0.1, \alpha = 0.95$

Expectation value of each spin by DMRG for small J₁

Expectation value of each spin by DMRG for intermediate J₁

Expectation value of each spin by DMRG for large J₁

Z₂-symmetry breaking state in the 1/3 plateau of asymmetric spin tube

Phenomenological renormalization

■ New phase

Excitation Δ_0 with k= π , Parity=odd

is degenerated with the ground state at m/ms=1/3

■ Scaled gap $L\Delta_0$

should be decreasing fn. of L at the new phase.

 $J_1 = 0.3$

Phase diagram for m/ms=1/3

Dimer-monomer plateau

New phaseStaggered order

uud plateau

y DMRG

y DMRG

Summary

1/3 magnetization plateau of S=1/2 three-leg spin tube

- New exotic phase between two conventional plateau phases
- New phase:

translational symmetry breaking,

staggered magnetization, dimer, chial order

Chirality at m=1/3 K. Okunishi et al. PRB 2012

DMRG calculation (L=144)

$$\begin{split} \chi_j &= \sum_{i=1}^3 (\boldsymbol{S}_{i,j} \times \boldsymbol{S}_{i+1,j})^z / 3, \\ \mu_j &= S_{1,j}^z - (S_{2,j}^z + S_{3,j}^z) / 2, \end{split}$$

Spin imbalance phase

