Electron Theory of Permanent Magnets

Takashi Miyake (AIST, Tsukuba)

Outline

Coercivity and magnetocrystalline anisotropy

- Rare-earth magnets
- Standard theory
- An example: NdFe₁₁TiN
- Interface and magnetic reversal

Nd₂Fe₁₄B μ_0M_s =1.61 T, μ_0H_c >0.8 T K_u=4.3 MJ/m³, κ=1.54 (BH)_{max}<510 kJ/m³ T_c=312°C

Nd-Fe-B

Ferrite

Maximum energy product (BH)_{max}

Conditions for strong magnets

without using rare-metals Temperature effects

$$(BH)_{max} = \mu_0 M_S^2 / 4$$
 if $H_C > M_S / 2$

Anisotropy magnetic field

In the Stoner-Wolfarth model,

$$H_{A} = 2 K_{1} / (\mu_{0}M_{S})$$
$$E_{A} = K_{1} \sin^{2}\theta + \cdots$$

Anisotropy magnetic field

Magnetic Anisotropy Energy

- Shape anisotropy
- Crystalline anisotropy

Coercivity vs. anisotropy magnetic field

Dysprosium substitution

 $\mathcal{K}(Nd_2Fe_{14}B) < \mathcal{K}(Dy_2Fe_{14}B)$ ⁸

Challenges

Temperature dependence MagnetoCrystalline Anisotropy (MCA) energy Magnetization and Curie temperature

Difference between coercivity and anisotropy magnetic field

New hard magnets

 $E_A = K_1 \sin^2 \theta + \cdots$

Transition-metal alloys

L1₀-type alloy

Fe (bcc): ~1 μ eV Co (hcp): ~60 μ eV

FePt: $\sim 3 \text{ meV/f.u.}$ CoPt: $\sim 1 \text{ meV/f.u.}$

Rare-earth magnets

	M _S (T)	<i>K</i> ₁ (MJ/m ³)	H _A (MA/m)	$T_{\rm C}({\rm K})$	
Nd ₂ Fe ₁₄ B	1.60	4.5	5.3	586	
Pr ₂ Fe ₁₄ B	1.56	5.5	6.9	569	2-14-1 family
Dy ₂ Fe ₁₄ B	0.712	5.4	11.9	598	
SmCo ₅	1.07	17.2	28	1,000	1-5 family
Sm ₂ Co ₁₇	1.25	3.2	5.1	1,193	2-17 family
Sm ₂ Fe ₁₇ N ₃	1.54	8.6	20.7	746	
NdFe ₁₁ TiN	1.45	6.7	9.6	729	1-12 family

 \bullet Fe c \bigcirc Fe e \bullet Fe j₁ \bullet Fe j₂ \bullet Fe k₁ \bullet Fe k₂ \otimes B g

Herbst, RMP (1991)

$R_{n-m}T_{5n+2m}$ series

n=1, m=0: 1-5 family (CaCu₅-type) n=2, m=1: 1-12 family (ThMn₁₂-type) n=3, m=1: 2-17 family (Th₂Zn₁₇-type, Th₂Ni₁₇-type)

Larson, Mazin and Papaconstantopoulos, PRB 67, 214405 (2003)

Li and Cadogan, JMMM 109, 153 (1992)

Outline

Coercivity and magnetocrystalline anisotropy

- Rare-earth magnets
- Standard theory
- An example: NdFe₁₁TiN
- Interface and magnetic reversal

LDA band structure of $GdCo_5$

minority spin

- large magnetization
- exchange coupling \rightarrow Curie temp.

• strong SOC + crystal-electric field \rightarrow MCA

Effective Hamiltonian

$$H = 2\boldsymbol{H}_{ex} \cdot \boldsymbol{S} + \lambda \boldsymbol{L} \cdot \boldsymbol{S} + \boldsymbol{V}_{cry}$$

Exchange magnetic field

Effective Hamiltonian

$$H = 2\boldsymbol{H}_{ex} \cdot \boldsymbol{S} + \lambda \boldsymbol{L} \cdot \boldsymbol{S} + \boldsymbol{V}_{cry}$$

Exchange magnetic field

Effective Hamiltonian

$$H = 2H_{ex} \cdot S + \lambda L \cdot S + V_{cry}$$

Spin-orbit interaction

 $\lambda > 0 \quad \Longrightarrow \quad \uparrow + \downarrow = \uparrow \quad J / / - S$ light rare-earth (n<7) : L S J = |L - S|heavy rare-earth $\lambda < 0 \implies \uparrow \uparrow \uparrow = \uparrow J // S$ (n>7) : L S J = |L + S|Gd (n=7) : $\lambda = 0$ \Box \uparrow = \uparrow J = SJ = |S|

Effective Hamiltonian $H = 2H_{ex} \cdot S + \lambda L \cdot S + V_{crv}$ $2(g_{I}-1)\boldsymbol{J}\cdot\boldsymbol{H}_{ex}$ $g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ Lande factor light RE : $J = |L - S| \implies g_I < 1$

heavy RE : $J = |L + S| \implies g_J > 1$

Effective Hamiltonian $H = 2H_{ex} \cdot S + \lambda L \cdot S + V_{crv}$

Crystal Electric Field (CEF)

Effective Hamiltonian $H = 2H_{ex} \cdot S + \lambda L \cdot S + V_{crv}$

Crystal Electric Field (CEF)

Spherical Harmonics

Stevens' operator-equivalent method

MCA

$$H = 2(g_{J} - 1)J \cdot H_{ex} + \sum_{l,m} B_{l}^{m} O_{l}^{m}$$

$$B_{l}^{m} = \theta_{J} < r^{l} > A_{l}^{m}$$

$$\theta_{2} = \alpha_{J}, \ \theta_{4} = \beta_{J}, \ \theta_{6} = \gamma_{J}$$
Stevens'
factor
$$A_{l}^{m} \quad CEF \text{ parameter}$$

$$O_{2}^{0} = 3J_{z}^{2} - J(J + 1)$$

$$O_{2}^{2} = J_{x}^{2} - J_{y}^{2}$$

$$O_{2}^{-2} = (J_{x}^{2} - J_{y}^{2})/2$$

$$O_{4}^{4} = (J_{x}^{4} + J_{y}^{4})/2$$
Renergy
$$K_{1} = -3J(J - 1/2) \alpha_{J} \langle r^{2} \rangle A_{2}^{0}$$

$$K_{1} = -3J(J-1/2)\alpha_{J} \langle r^{2} \rangle A_{2}^{0}$$

$$\frac{\alpha_{J} \times 10^{2} \quad J}{\text{Nd}}$$

$$\frac{\alpha_{J} \times 10^{2} \quad J}{\text{Nd}}$$

$$\frac{-0.64}{9/2}$$

$$\frac{9/2}{15/2}$$

$$\frac{15/2}{\text{opposite sign}}$$

$$\frac{15/2}{5/2}$$

$$K_1 = -3J(J-1/2)\alpha_J \langle r^2 \rangle A_2^0$$

	$\alpha_J \times 10^2$	J
Nd	-0.64	9/2
Dy	-0.63	15/2
Sm	+4.13	5/2

 $K_1 = -3J(J-1/2)\alpha_J \langle r^2 \rangle A_2^0$

4f electron cloud

Density Functional Theory

Reasonably good for M and Tc of 3d metals ex.) exchange coupling $J_{ii} \rightarrow Classical$ Heisenberg model

MCA energy

numerical problem for 3*d* metals difficult to treat 4*f* electrons (LDA+U?, SIC? , •••)

Slater-Pauling curve

$$J_{ij} = \frac{1}{4\pi} \int^{E_F} d\epsilon \mathrm{Im} \mathrm{Tr}_L \{ \Delta_i T^{ij}_{\uparrow} \Delta_j T^{ji}_{\downarrow} \}$$

Takahashi, Ogura and Akai, J. Phys.: Cond. Mat. (2007)

First-principles calculation of CEF parameters

Kohn-Sham equation

$$\left\{-\frac{\hbar^2}{2m}\Delta + v_{\text{eff}}(\mathbf{r})\right\}\psi_{\mathbf{k}j}(\mathbf{r}) = E_{\mathbf{k}j}\psi_{\mathbf{k}j}(\mathbf{r})$$

$$v_{\text{eff}}(\mathbf{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} W_{lm}(r_R) Z_{lm}(\hat{\mathbf{r}}_R)$$

real spherical harmonics

CEF parameters

$$A_{lm}\langle r_R^l \rangle = F_{lm}\langle W_{lm} \rangle = F_{lm} \int W_{lm}(r_R) \underline{\varphi^2(r_R)} dr_R$$

4f atomic orbital

Outline

Coercivity and magnetocrystalline anisotropy

- Rare-earth magnets
- Standard theory
- An example: NdFe₁₁TiN
- Interface and magnetic reversal

RFe₁₁Ti

 RFe₁₂ is unstable
 RFe_{12-x}M_x (*M*=AI,Ti,V,Cr,Mo,W,···)
 Drastic change by N-doping ex.) uniaxial anisotropy in NdFe₁₁TiN

Hu et al., J. Phys: Cond.Mat. **1**, 755 (1989)

NdFe₁₂ vs. NdFe₁₂N

 $A_{20} \langle r^2 \rangle$

NdFe₁₂ -83 K NdFe₁₂N +413 K

A.Sakuma, JPSJ 61, 4119 (1992)

 $NdFe_{12}$ vs. $NdFe_{11}Ti$

 $A_{20} \left< r^2 \right>$

NdFe ₁₂	-83 K	
NdFe ₁₁ Ti	+54 K	

(1) Grain boundary phase: microscopic structures and composition

- (2) Magnetic properties at interfaces
- (3) Relation between MCA and coercivity

main phase: Nd₂Fe₁₄B grain boundary phase: Fe-Cu-Nd amorphous, Nd oxides, ···

$Nd_2Fe_{14}B$ surface

		Nd ₂ F		
	RE site	This work	LDA+U	Dy ₂ Fe ₁₄ B
Surface	4f	-908	-413	-954
	4g	-751	-432	-890
Inside	4 <i>f</i>	546	517	513
	4g	777	291	585

Moriya, Tsuchiura and Sakuma, J. Appl. Phys. 105, 07A740 (2009); Tanaka et al., J. Appl. Phys. 109, 07A702 (2011)

Micromagnetics

Landau-Lifshitz-Gilbert (LLG) equation

$$\frac{\partial \boldsymbol{m}_i}{\partial t} = -\frac{|\boldsymbol{\gamma}|}{1+\alpha^2} \left(\boldsymbol{m}_i \times \boldsymbol{H}_i^{\text{eff}} + \frac{\alpha}{m_i} \left(\boldsymbol{m}_i \times (\boldsymbol{m}_i \times \boldsymbol{H}_i^{\text{eff}}) \right) \right)$$

$$\boldsymbol{H}_{i}^{\mathrm{eff}} = \boldsymbol{H} + \boldsymbol{H}_{i}^{\mathrm{ex}} + \boldsymbol{H}_{i}^{\mathrm{a}}$$

T 0.37

$$\boldsymbol{H}_{i}^{\mathrm{ex}} = \sum_{j \neq i} \frac{\int_{j}^{\mathrm{ex}} \boldsymbol{m}_{j}}{\boldsymbol{m}} \frac{\boldsymbol{m}_{j}}{\boldsymbol{m}_{j}}$$
$$\boldsymbol{H}_{i}^{\mathrm{a}} = \frac{2K_{\mathrm{u}1}}{\boldsymbol{m}_{j}} \left(\frac{\boldsymbol{m}_{j}}{\boldsymbol{m}_{j}} \cdot \boldsymbol{A}\right) \boldsymbol{A}$$

Ab-inotio evaluation of parameters
Spatial variation
Large-scale simulation

(coarse graining, massive-parallel calc.)

Summary

Coercivity and magnetocrystalline anisotropy

- Rare-earth magnets
- Standard theory
- An example: NdFe₁₁TiN
- Interface and magnetic reversal