Efimov effect in quantum magnets

Yusuke Nishida (Tokyo Tech)

ISSP International Workshop on "Emergent Quantum Phases in Condensed Matter" June 18 (2013)

Plan of this talk

- 1. Universality in physics
- 2. What is the Efimov effect?

Keywords: universality, discrete scale invariance, RG limit cycle

- 3. Efimov effect in quantum magnets*
- 4. New progress: Super Efimov effect

nature physics

ARTICLES

PUBLISHED ONLINE: 13 JANUARY 2013 | DOI: 10.1038/NPHYS2523

Efimov effect in quantum magnets

Yusuke Nishida*, Yasuyuki Kato and Cristian D. Batista



Introduction

- 1. Universality in physics
- 2. What is the Efimov effect?
- 3. Efimov effect in quantum magnets
- 4. New progress: Super Efimov effect

(ultimate) Goal of research

Solid

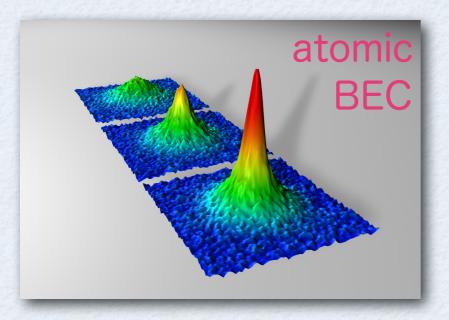
(hcp)

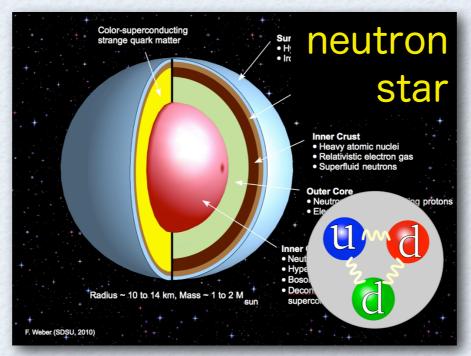
Superfluid

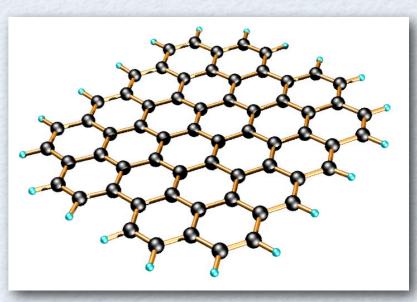
Normal Liquid

Temperature (K)

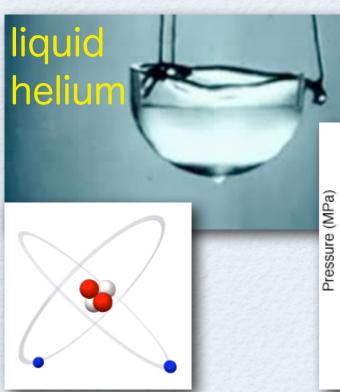
Understand physics of few and many particles governed by quantum mechanics

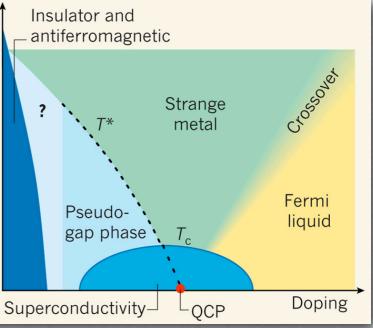






graphene



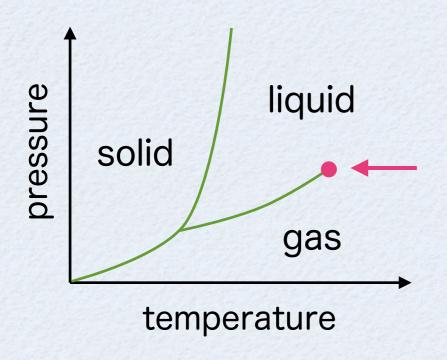


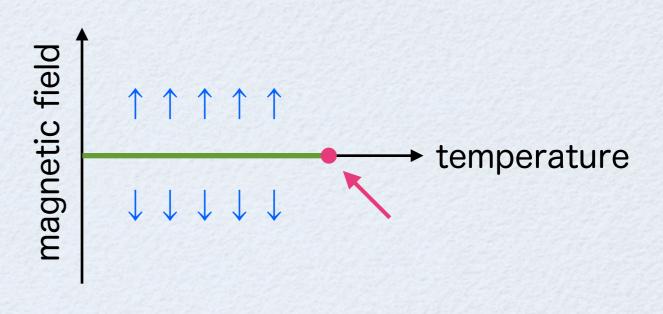
When physics is universal?

A1. Continuous phase transitions $\Leftrightarrow \xi/r_0 \rightarrow \infty$

E.g. Water

vs. Magnet





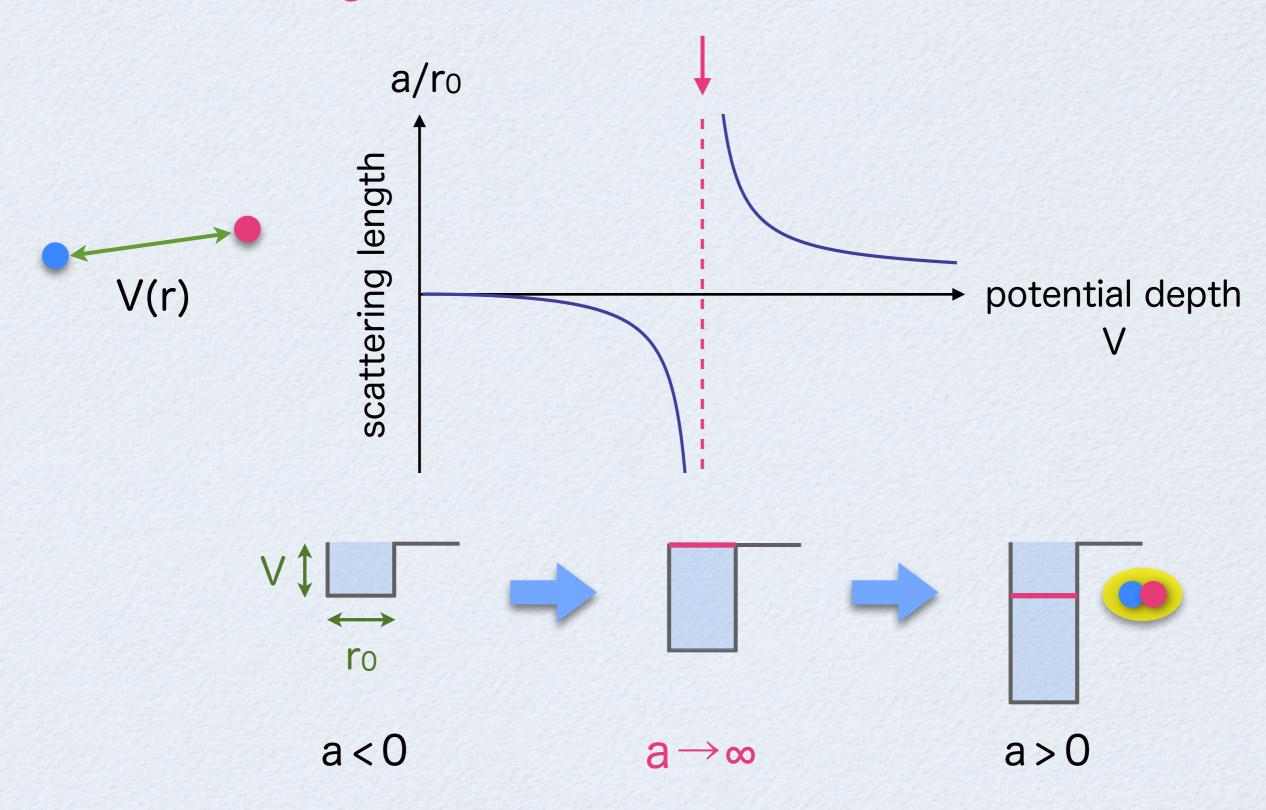
Water and magnet have the same exponent $\beta \approx 0.325$

$$\rho_{\rm liq} - \rho_{\rm gas} \sim (T_{\rm c} - T)^{\beta}$$
 $M_{\uparrow} - M_{\downarrow} \sim (T_{\rm c} - T)^{\beta}$

$$M_{\uparrow} - M_{\downarrow} \sim (T_{\rm c} - T)^{\beta}$$

When physics is universal?

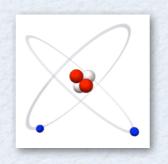
A2. Scattering resonances ⇔ a/r₀→∞



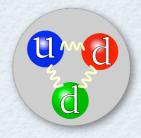
When physics is universal?

A2. Scattering resonances ⇔ a/r₀→∞

E.g. ⁴He atoms



vs. proton/neutron



van der Waals force:

 $a \approx 1 \times 10^{-8} \text{ m} \approx 20 \text{ r}_0$

Ebinding $\approx 1.3 \times 10^{-3} \text{ K}$

nuclear force:

 $a \approx 5 \times 10^{-15} \text{ m} \approx 4 \text{ ro}$

Ebinding $\approx 2.6 \times 10^{10} \text{ K}$

Atoms and nucleons have the same form of binding energy

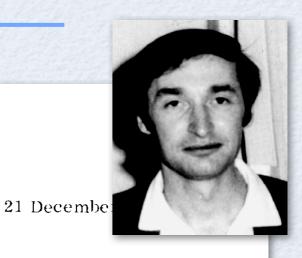
$$E_{\text{binding}} \to -\frac{\hbar^2}{m a^2} \qquad (a/r_0 \to \infty)$$

Physics only depends on the scattering length "a"

- 1. Universality in physics
- 2. What is the Efimov effect?
- 3. Efimov effect in quantum magnets
- 4. New progress: Super Efimov effect

Volume 33B, number 8

PHYSICS LETTERS



Efimov (1970)

ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES IN A THREE-BODY SYSTEM

V. EFIMOV

A.F. Ioffe Physico-Technical Institute, Leningrad, USSR

Received 20 October 1970

Resonant two-body forces are shown to give rise to a series of levels in three-particle systems. The number of such levels may be very large. Possibility of the existence of such levels in systems of three α -particles (12 C nucleus) and three nucleons (3 H) is discussed.

The range of nucleon-nucleon forces r_0 is known to be considerably smaller than the scattering lengts a. This fact is a consequence of the resonant character of nucleon-nucleon forces. Apart from this, many other forces in nuclear physics are resonant. The aim of this letter is to expose an interesting effect of resonant forces in a three-body system. Namely, for $a > r_0$ a series of bound levels appears. In a certain case, the number of levels may become infinite.

Let us explicitly formulate this result in the simplest case. Consider three spinless neutral

ticle bound states emerge one after the other. At $g = g_0$ (infinite scattering length) their number is infinite. As g grows on beyond g_0 , levels leave into continuum one after the other (see fig. 1).

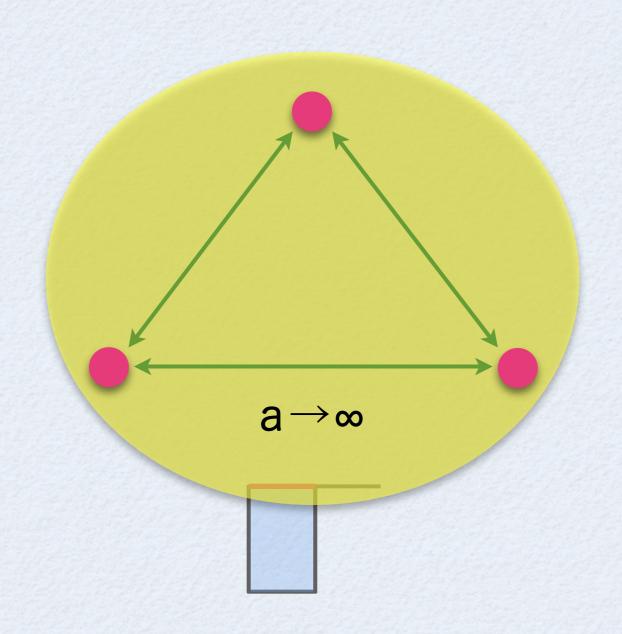
The number of levels is given by the equation

$$N \approx \frac{1}{\pi} \ln \left(\left| a \right| / r_{\rm O} \right) \tag{1}$$

All the levels are of the 0^+ kind; corresponding wave functions are symmetric; the energies $E_N \ll 1/r_0^2$ (we use $\hbar = m = 1$); the range of these bound states is much larger than r_0 .

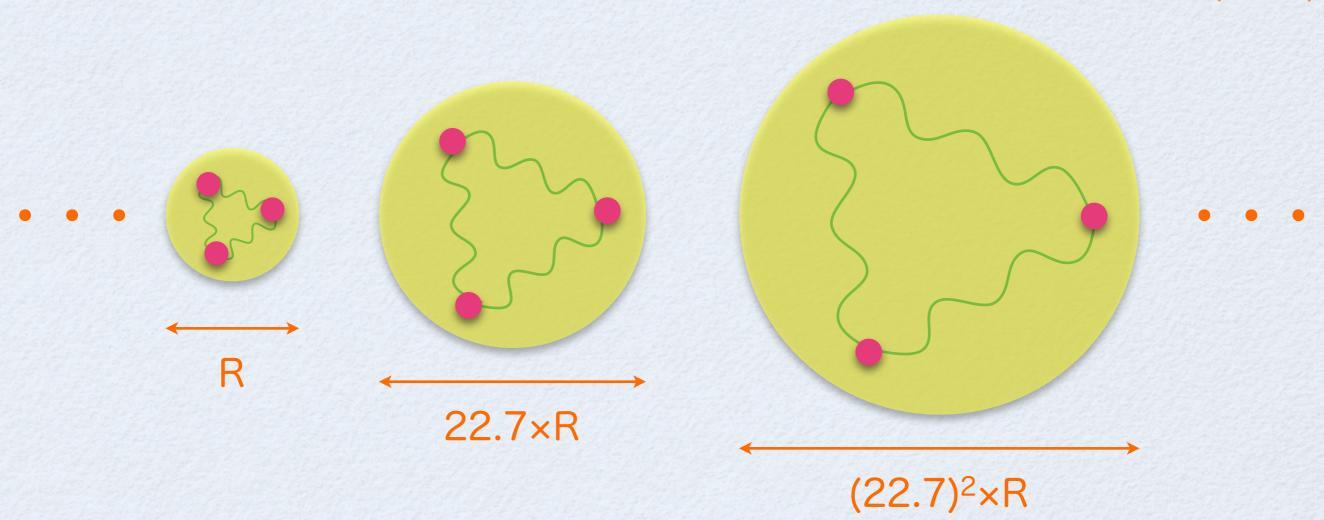
When 2 bosons interact with infinite "a", 3 bosons always form a series of bound states

Efimov (1970)



When 2 bosons interact with infinite "a", 3 bosons always form a series of bound states

Efimov (1970)



Discrete scaling symmetry

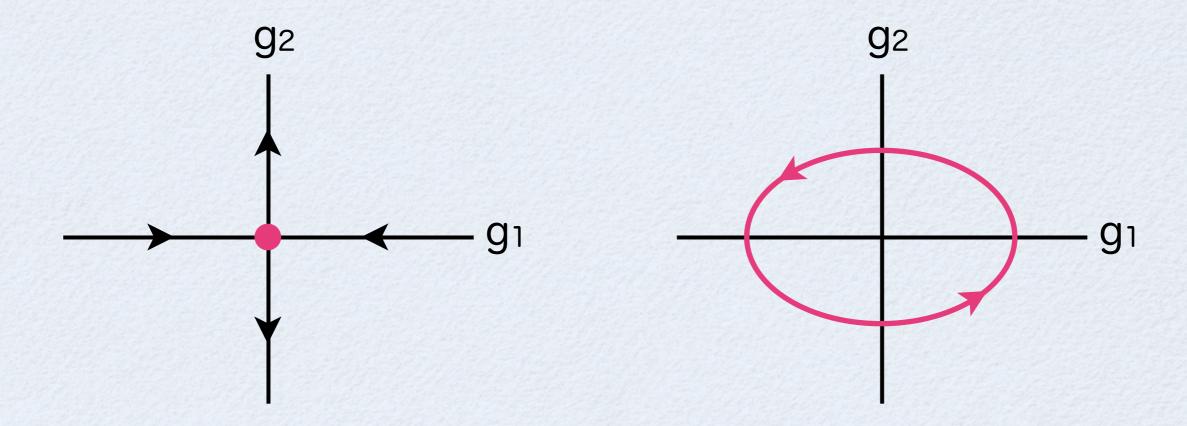
When 2 bosons interact with infinite "a", 3 bosons always form a series of bound states

Efimov (1970)

Discrete scaling symmetry

Renormalization group limit cycle

Renormalization group flow diagram in coupling space



RG fixed point

⇒ Scale invariance

E.g. critical phenomena

RG limit cycle

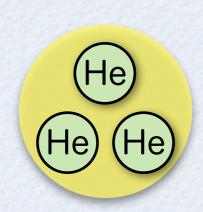
⇒ Discrete scale invariance

E.g. Efimov effect

Rare manifestation in physics!

Where Efimov effect appears?

- × Originally, Efimov considered 3 H nucleus (≈3n) and 12 C nucleus (≈3 α)
- \triangle ⁴He atoms (a $\approx 1 \times 10^{-8}$ m $\approx 20 \text{ r}_0$)?
 - 2 trimer states were predicted
 - 1 was observed (1994)



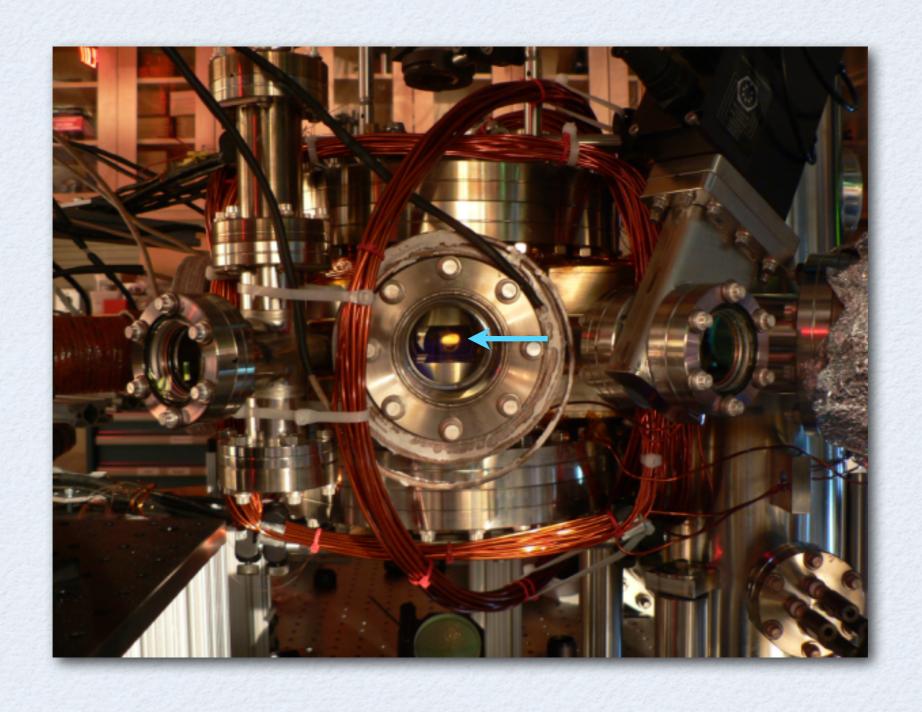
$$E_b = 125.8 \text{ mK}$$

$$(E_b = 2.28 \text{ mK})$$

Ultracold atoms!

Ultracold atom experiments

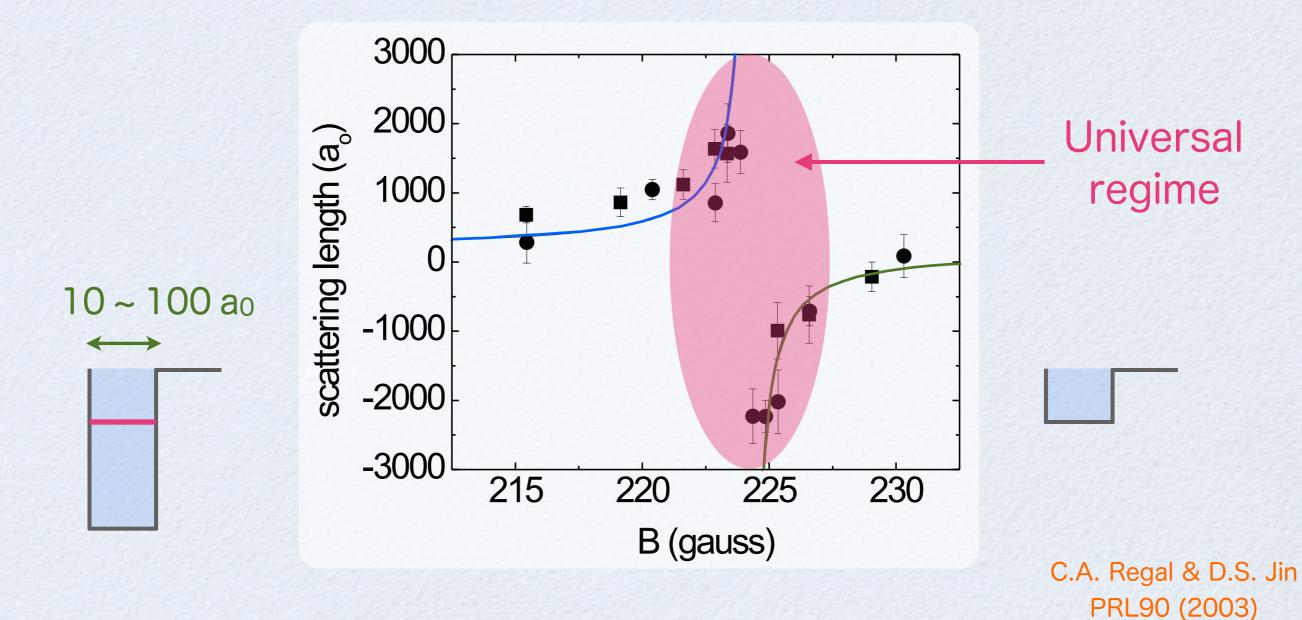
Ultracold atoms are ideal to study universal quantum physics because of the ability to design and control systems at will



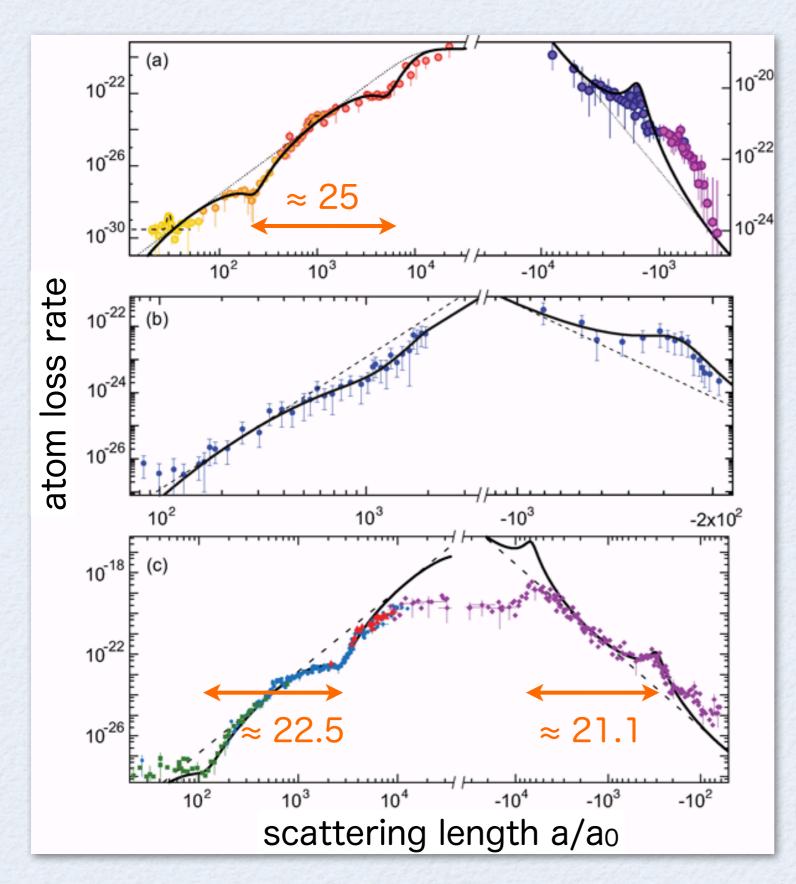
Ultracold atom experiments

Ultracold atoms are ideal to study universal quantum physics because of the ability to design and control systems at will

✓ Interaction strength by Feshbach resonances



Ultracold atom experiments



Florence group for ³⁹K (2009)

Bar-Ilan University for ⁷Li (2009)

Rice University for ⁷Li (2009)

Discrete scaling & Universality!

Efimov effect is "universal"?

- · Efimov effect is "universal"
 - appears regardless of microscopic details (physics technical term)
- Efimov effect is not "universal"
 universal = present or occurring everywhere
 (Merriam-Webster Online)

Can we find the Efimov effect in other physical systems?

Efimov effect in quantum magnets

- 1. Universality in physics
- 2. What is the Efimov effect?
- 3. Efimov effect in quantum magnets
- 4. New progress: Super Efimov effect

Quantum magnet

Anisotropic Heisenberg model on a 3D lattice

$$H = -\sum_r \bigg[\sum_{\hat{e}} (JS_r^+ S_{r+\hat{e}}^- + J_z S_r^z S_{r+\hat{e}}^z) + D(S_r^z)^2 - BS_r^z\bigg]$$
 exchange anisotropy single-ion anisotropy

Spin-boson correspondence

fully polarized state (B→∞)

No boson = vacuum

$$\Rightarrow$$

N spin-flips

N bosons = magnons

Quantum magnet

Anisotropic Heisenberg model on a 3D lattice

$$H = -\sum_{r} \left[\sum_{\hat{e}} (JS_{r}^{+}S_{r+\hat{e}}^{-} + J_{z}S_{r}^{z}S_{r+\hat{e}}^{z}) + D(S_{r}^{z})^{2} - BS_{r}^{z} \right]$$

xy-exchange coupling

⇔ hopping

single-ion anisotropy

⇔ on-site attraction

z-exchange coupling

⇔ neighbor attraction

N spin-flips

N bosons = magnons

Quantum magnet

Anisotropic Heisenberg model on a 3D lattice

$$H = -\sum_{r} \left[\sum_{\hat{e}} (JS_{r}^{+}S_{r+\hat{e}}^{-} + J_{z}S_{r}^{z}S_{r+\hat{e}}^{z}) + D(S_{r}^{z})^{2} - BS_{r}^{z} \right]$$

xy-exchange coupling

⇔ hopping

single-ion anisotropy

⇔ on-site attraction

z-exchange coupling

⇔ neighbor attraction

Tune these couplings to induce scattering resonance between two magnons

⇒ Three magnons show the Efimov effect

Two-magnon resonance

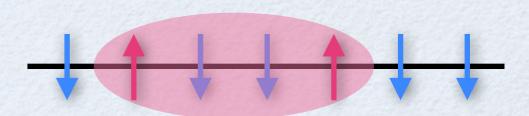
Scattering length between two magnons

$$\frac{a_{S}}{a} = \frac{\frac{3}{2\pi} \left[1 - \frac{D}{3J} - \frac{J_{z}}{J} \left(1 - \frac{D}{6SJ} \right) \right]}{2S - 1 + \frac{J_{z}}{J} \left(1 - \frac{D}{6SJ} \right) + 1.52 \left[1 - \frac{D}{3J} - \frac{J_{z}}{J} \left(1 - \frac{D}{6SJ} \right) \right]}$$

Two-magnon resonance (a_s→∞)

- $J_z/J = 2.94$ (spin-1/2)
- $J_z/J = 4.87$ (spin-1, D=0)
- D/J = 4.77 (spin-1, ferro $J_z=J>0$)
- D/J = 5.13 (spin-1, antiferro $J_z=J<0$)

•



Three-magnon spectrum

At the resonance, three magnons form bound states with binding energies E_n

•	S	pi	n-	.1	12
---	---	----	----	----	----

$0 -2.09 \times 10^{-1}$	
$1 -4.15 \times 10^{-4}$	22.4
$2 -8.08 \times 10^{-7}$	22.7

• Spin-1, D=0

n	E_n/J	$\sqrt{E_{n-1}/E_n}$
0	-5.16×10^{-1}	
1	-1.02×10^{-3}	22.4
2	-2.00×10^{-6}	22.7

• Spin-1, Jz=J>0

n	E_n/J	$\sqrt{E_{n-1}/E_n}$
0	-5.50×10^{-2}	_
1	-1.16×10^{-4}	21.8

• Spin-1, Jz=J<0

n	E_n/J	$\sqrt{E_{n-1}/E_n}$
0	-4.36×10^{-3}	
1	-8.88×10^{-6}	(22.2)

Three-magnon spectrum

At the resonance, three magnons form bound states with binding energies E_n

• Spin-1/2

n	E_n/J	$\sqrt{E_{n-1}/E_n}$
0	-2.09×10^{-1}	
1	-4.15×10^{-4}	22.4
2	-8.08×10^{-7}	22.7

• Spin-1, D=0

n	E_n/J	$\sqrt{E_{n-1}/E_n}$
0	-5.16×10^{-1}	
1	-1.02×10^{-3}	22.4
2	-2.00×10^{-6}	22.7

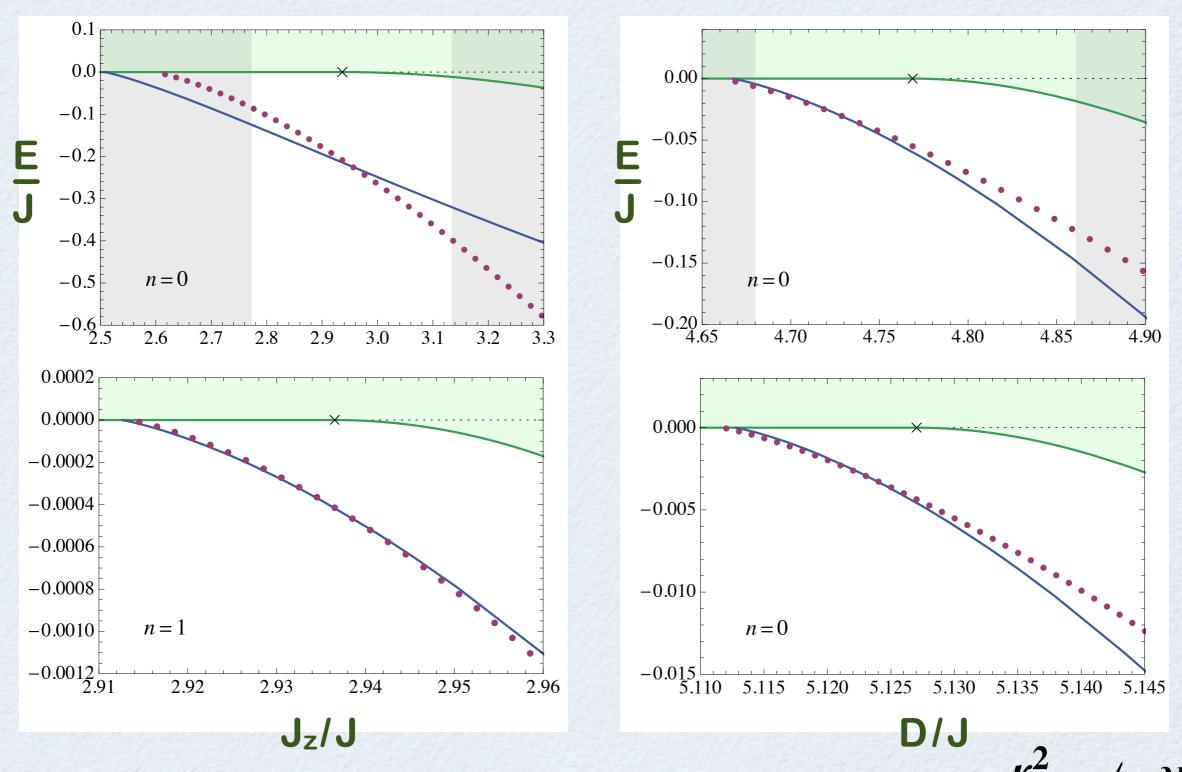
Universal scaling law by ~ 22.7 confirms they are Efimov states!

• S=1, Jz=J>

• S=1, J_z=J<

Three-magnon spectrum

Spin-1/2



Agree with universal prediction : $E_n = -\lambda^{-2n} \frac{\kappa_*}{m} F\left(\frac{\lambda^n}{\kappa_* a_s}\right)$

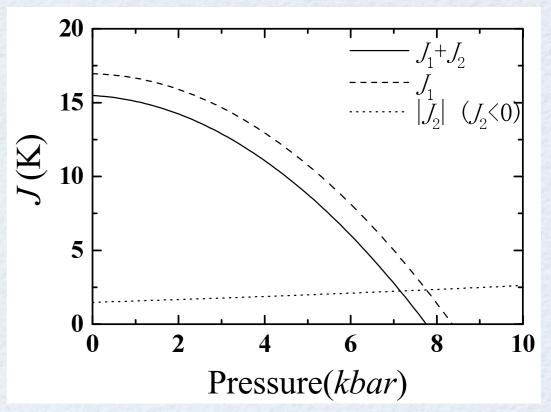
T. Kawamoto et al, JPSJ (2001)

- 1. Find a good compound whose anisotropy is close to the critical value
 - E.g. Ni-based organic ferromagnet with D/J~3 (critical 4.8)

R. Koch et al., Phys. Rev. B 67, 094407 (2003)

C.f. TDAE-C₆₀

- 2. Tune the exchange coupling with pressure to induce the two-magnon resonance
- 3. Observe the Efimov states of three magnons with
 - absorption spectroscopy
 - inelastic neutron scattering



electron spin resonance

(see Y.N., arXiv:1302.5908)

Toward experimental realization 28/35

- 1. Find a good compound R. Koch et al., Phys. Rev. B
- 2. Tune the exchange with pressure to i the two-magnon
- 3. Observe th of three magnon
 - absorption
 - inelastic n



Г. Kawamoto et al, JPSJ (2001)

Find interested experimentalists!

Efimov effect: universality, discrete scale invariance, RG limit cycle

atomic physics nuclear physics

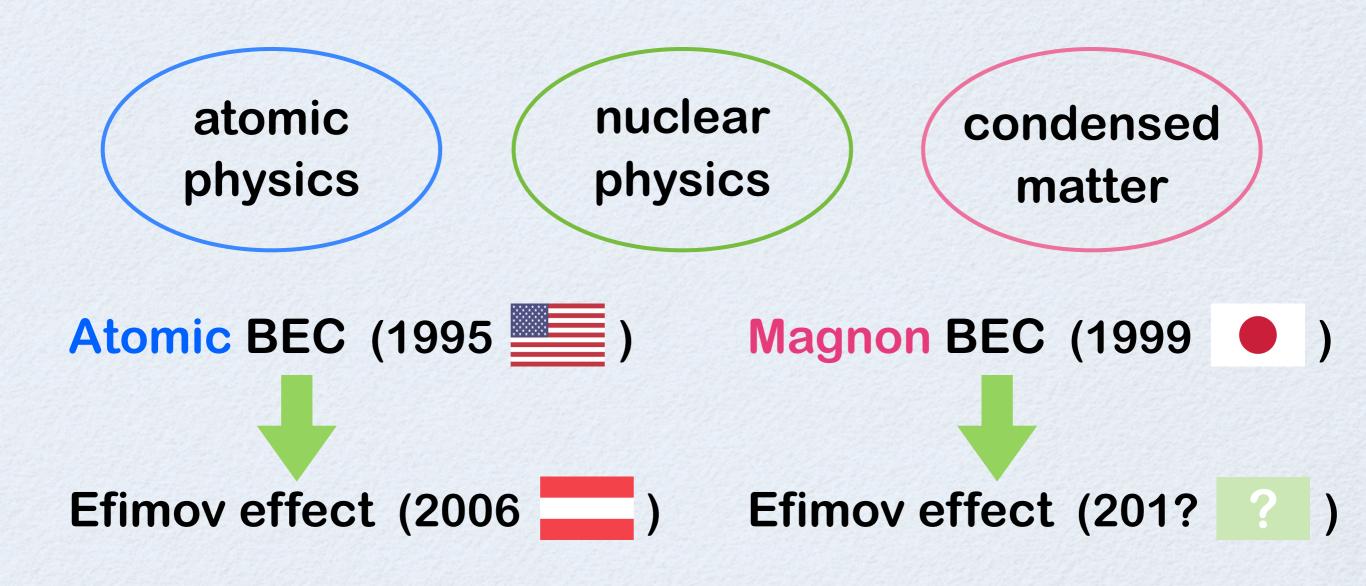
condensed matter

Efimov effect in quantum magnets induced by

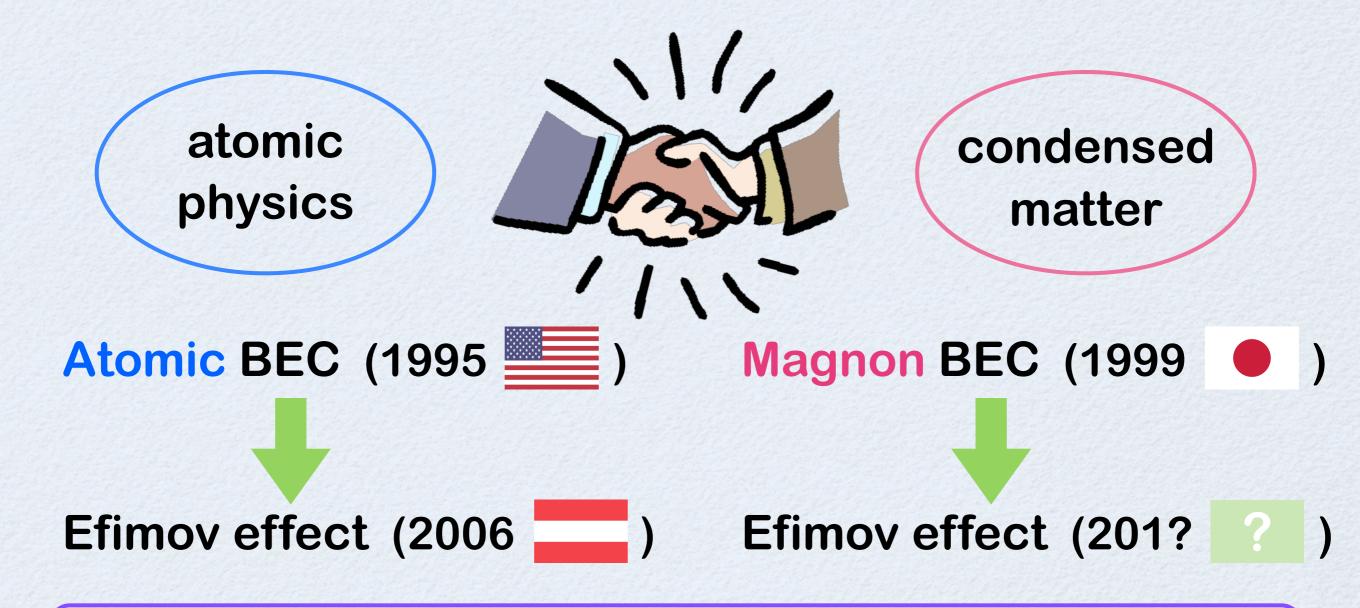
- exchange anisotropy
 spatial anisotropy
- single-ion anisotropy
 fructration

[Y.N., Y.K, C.D.B, Nature Physics 9, 93-97 (2013)]

Efimov effect: universality, discrete scale invariance, RG limit cycle



Efimov effect: universality, discrete scale invariance, RG limit cycle



New link between atomic and magnetic systems

Efimov effect: universality, discrete scale invariance, RG limit cycle

atomic physics

condensed matter

Few-body physics

Many-body physics

magnetism

superconductivity

superfluidity

•

How interplay?

New progress

- 1. Universality in physics
- 2. What is the Efimov effect?
- 3. Efimov effect in quantum magnets
- 4. New progress: Super Efimov effect

PRL **110,** 235301 (2013)

PHYSICAL REVIEW LETTERS

week ending 7 JUNE 2013

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida, Sergej Moroz, and Dam Thanh Son³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

²Department of Physics, University of Washington, Seattle, Washington 98195, USA

³Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

(Received 18 January 2013; published 4 June 2013)

We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital angular momentum $\ell=\pm 1$ and their binding energies obey a universal doubly exponential scaling $E_3^{(n)} \propto \exp(-2e^{3\pi n/4+\theta})$ at large n. This "super Efimov effect" is found by a renormalization group analysis and confirmed by solving the bound state problem. We also provide an indication that there are $\ell=\pm 2$ four-body resonances associated with every three-body bound state at $E_4^{(n)} \propto \exp(-2e^{3\pi n/4+\theta-0.188})$. These universal few-body states may be observed in ultracold atom experiments and should be taken into account in future many-body studies of the system.

DOI: 10.1103/PhysRevLett.110.235301 PACS numbers: 67.85.Lm, 03.65.Ge, 05.30.Fk, 11.10.Hi

Introduction.—Recently topological superconductors have attracted great interest across many subfields in physics [1,2]. This is partially because vortices in topological superconductors bind zero-energy Majorana fermions and obey non-Abelian statistics, which can be of potential use for fault-tolerance topological quantum computation [3,4]. A canonical example of such topological superconductors is a *p*-wave paired state of spinless fermions in two dimensions [5], which is believed to be realized in Sr_2RuO_4 [6]. Previous mean-field studies revealed that a topological quantum phase transition takes place across a

of resonantly interacting fermions in two dimensions should be taken into account in future many-body studies beyond the mean-field approximation.

Renormalization group analysis.—The above predictions can be derived most conveniently by a renormalization group (RG) analysis. The most general Lagrangian density that includes up to marginal couplings consistent with rotation and parity symmetries is

$$\mathcal{L} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi + \phi_a^{\dagger} \left(i \partial_t + \frac{\nabla^2}{4} - \varepsilon_0 \right) \phi_a$$

Super Efimov effect

superconductors bind zero-energy Majorana fermions and obey non-Abelian statistics, which can be of potential use for fault-tolerance topological quantum computation [3,4]. A canonical example of such topological superconductors is a *p*-wave paired state of spinless fermions in two dimensions [5], which is believed to be realized in Sr₂RuO₄ [6]. Previous mean-field studies revealed that a topological quantum phase transition takes place across a *p*-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless fermions in two dimensions right at the p-wave resonance. We predict that three such fermions form an infinite tower of bound states of orbital angular momentum $\ell=\pm 1$ and their binding energies obey a universal doubly exponential scaling

$$E_3^{(n)} \propto \exp(-2e^{3\pi n/4 + \theta}) \tag{1}$$

at large n. Here θ is a nonuniversal constant defined modulo $3\pi/4$. This novel phenomenon shall be termed a super Efimov effect, because it resembles the Efimov effect in which three spinless bosons in three dimensions right at an s-wave resonance form an infinite tower of $\ell=0$ bound states whose binding energies obey the universal exponential scaling $E_3^{(n)} \propto e^{-2\pi n/s_0}$ with $s_0 \approx 1.00624$ [10] (see Table I for comparison). While the Efimov effect is possible in other situations [11,12], it does not take place in two dimensions or with p-wave interactions [12–14]. We also provide an indication that there are $\ell=\pm 2$ four-body resonances associated with every three-body bound state at

$$E_4^{(n)} \propto \exp(-2e^{3\pi n/4 + \theta - 0.188}),$$
 (2)

which also resembles the pair of four-body resonances in the usual Efimov effect [15,16]. These universal few-body states

Renormalization group analysis.—The above predictions can be derived most conveniently by a renormalization group (RG) analysis. The most general Lagrangian density that includes up to marginal couplings consistent with rotation and parity symmetries is

$$\mathcal{L} = \psi^{\dagger} \left(i \partial_{t} + \frac{\nabla^{2}}{2} \right) \psi + \phi_{a}^{\dagger} \left(i \partial_{t} + \frac{\nabla^{2}}{4} - \varepsilon_{0} \right) \phi_{a}
+ g \phi_{a}^{\dagger} \psi (-i \nabla_{a}) \psi + g \psi^{\dagger} (-i \nabla_{-a}) \psi^{\dagger} \phi_{a}
+ v_{3} \psi^{\dagger} \phi_{a}^{\dagger} \phi_{a} \psi + v_{4} \phi_{a}^{\dagger} \phi_{-a}^{\dagger} \phi_{-a} \phi_{a}
+ v_{4}^{\prime} \phi_{a}^{\dagger} \phi_{a}^{\dagger} \phi_{a} \phi_{a}.$$
(3)

Here and below, $\hbar=m=1, \nabla_{\pm}\equiv\nabla_{x}\pm i\nabla_{y}$, and sums over repeated indices $a=\pm$ are assumed. ψ and ϕ_{\pm} fields correspond to a spinless fermion and $\ell=\pm 1$ composite boson, respectively. The *p*-wave resonance is defined by the divergence of the two-fermion scattering amplitude at zero energy, which is achieved by tuning the bare detuning parameter at $\varepsilon_{0}=g^{2}\Lambda^{2}/(2\pi)$ with Λ being a momentum cutoff.

TABLE I. Comparison of the Efimov effect versus the super Efimov effect.

Efimov effect	Super Efimov effect	
Three bosons	Three fermions	
Three dimensions	Two dimensions	
s-wave resonance	<i>p</i> -wave resonance	
$\ell = 0$	$\ell = \pm 1$	
Exponential scaling	Doubly exponential scaling	