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Outline

1. Introduction to the quantum interaction quench problem.
     How does an isolated quantum system thermalize?
     Is there any intermediate nonthermal quasi-stationary state?

2. Interaction quench in the presence of a long-range order.
     Antiferromagnetic phase in the fermionic Hubbard model studied by the 
nonequilibrium dynamical mean-field theory (DMFT).

3. Nonthermal criticality.
     A long-lived quasi-stationary state with effective T > Tc, showing a Higgs 
amplitude mode characterized by a nonthermal critical point.

4. Nonthermal universality class.
     Distinct from the conventional Ginzburg-Landau universality.
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Interaction quench problem
An abrupt change of the interaction parameter in an isolated quantum system generates 
a nonequilibrium dynamics of interest. 

The interaction quench can be experimentally implemented in cold-atom systems 
trapped in an optical lattice by changing the lattice potential depth or using Feshbach 
resonance.  Greiner, et al., Nature ’02, Bloch, Dalibard, Zwerger, RMP ’08.
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Why study interaction quench?
It provides a lot of fundamental theoretical questions:
Does an isolated quantum system thermalize after quench? If so, how does it thermalize? Is 
there any intermediate nonthermal quasi-stationary state (nonthermal fixed point)?
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Prethermalization

Eckstein, Kollar, Werner, PRB ’10.

at the location of the Fermi surface for finite times after an
interaction quench.50 Because a discontinuity in the momen-
tum distribution of a Fermi liquid in thermal equilibrium can
exist only at zero temperature, while on the other hand, a
quenched system is always excited with respect to the
ground state, the existence of a finite jump !n!t" clearly
indicates that the system is not yet fully thermalized. The
size of the discontinuity is thus well suited to characterize
the relaxation after the quench.

In the weak-coupling regime #Fig. 4!a"$, n!" , t" rapidly
evolves toward a distribution #t#2 in Fig. 4!a"$, which is not
yet thermalized, but changes only slowly in time. This emer-
gence of long-lived nonthermal states is an example of
prethermalization,22 which is observed in a wide range of
classical and quantum systems.23 As shown by Moeckel and
Kehrein,22 the nonthermal state remains stable for all times
within second-order unitary perturbation theory in U /V, i.e.,
higher-order corrections become effective only on the long

time scale V3 /U4. In the limit of infinite dimensions their
weak-coupling result for the transient behavior toward the
prethermalization plateau has the form

npert!",t" = n!"" − 4U2F!",t" , !71"

F!",t" = %
−$

$

dE
sin2!E − ""t/2

!E − ""2 J"!E" , !72"

J"!E" =% d"1!% d"2!% d"1%!"1! + "2! − "1 − E"

&'!"1!"'!"2!"'!"1"&n!""n!"1"#1 − n!"1!"$#1 − n!"2!"$

− #1 − n!""$#1 − n!"1"$n!"1!"n!"2!"' . !73"

For a half-filled band and a symmetric density of states,
'!""='!−"", we obtain

F!",t" = −
sgn!""

2 %
0

t

ds!t − s"Re#R!s"3eis("($ , !74"

where R!s"=)d"(!−""'!""eis". This yields !n!t" and also
d!t" by using the energy conservation after the quench,

!npert!t" = 1 − 4U2%
0

t

ds!t − s"Re#R!s"3$ , !75"

dpert!t" =
1
4

− 2U%
0

t

ds Im#R!s"4$ . !76"

Numerical evaluations of these functions are plotted and
compared to our DMFT results in Fig. 5 for the semielliptic
density of states !24" with V=1. Regarding the transient be-
havior and the prethermalization plateau we find very good
agreement for U#1. Interestingly the prethermalization pla-
teau of !n!t" is almost correctly predicted by the weak-
coupling results even for U#2. For larger times, the system
relaxes further toward the thermal value.

In the strong-coupling regime #Fig. 4!c"$, the relaxation is
dominated by damped collapse and revival oscillations of
approximate periodicity 2) /U. The decay of these oscilla-
tions is not fully accessible within CTQMC due to the dy-
namical sign problem. However, our results show that n!" , t"
oscillates around a nonthermal distribution #Fig. 6!c"$. This
behavior is similar to what was found for the double occu-
pation d!t",20 i.e., a decay on the time scale 1 /V to oscilla-
tions around a nonthermal value which does not change on
much longer time scales.

The interaction quench to U=3.3V is characterized by a
rapid thermalization of the momentum distribution #Figs.
4!b" and 6!b"$, without signatures of either collapse and re-
vival oscillations or a prethermalization plateau in n!" , t".
Numerically we cannot detect a finite width of the crossover
regime between the weak- and strong-coupling behavior,
which indicates that there is a single point U=Udyn*3.2V
which marks a dynamical transition in the Hubbard model.20

A further investigation of this phenomenon and its relation to
the Mott transition in equilibrium will require a systematic
analysis of interaction quenches which start from a wide
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FIG. 4. !Color online" Momentum distribution n!" , t" after an
interaction quench in the Hubbard model from the noninteracting
ground state to interaction U=2 !a", U=3.3 !b", and U=5 !c".

INTERACTION QUENCH IN THE HUBBARD MODEL:… PHYSICAL REVIEW B 81, 115131 !2010"

115131-11

The weakly correlated system evolves to an intermediate “prethermalized” state, in which 
an integrated quantity such as the double occupancy d=⟨n↑ n↓⟩#thermalizes much earlier 
than the momentum distribution n(ϵk,t).

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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Eckstein, Kollar, Werner, PRL ’09.

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P
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Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-
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(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
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oscillating terms dephase in the long-time average
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the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
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which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret
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of spectral weight to the Hubbard subbands at (U.
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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Prethermalization can be understood from a unitary perturbation theory (Moeckel, 
Kehrein, PRL ’08) and the generalized Gibbs ensemble (Kollar, Wolf, Eckstein, PRB ’11).
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Interaction quench w/ long-range order
How does the fermionic system thermalize after the interaction quench in the presence of 
a long-range order? When one goes across the thermal phase transition point, how does 
the order parameter relax?

The problem of dynamical phase transition has been discussed with a macroscopic 
(phenomenological) Ginzburg-Landau equation,

which is valid only when the order parameter varies sufficiently slowly in time. In the 
quench problem, we have to go beyond GL Eq.
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Fermionic Hubbard model

normal phase
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We study interaction quenches in the repulsive (attractive) fermionic Hubbard model:



Glat
ii (t, t�) = Gimp[�](t, t�)

/23

Impurity model

Schmidt, Monien ‘02; Freericks, Turkowski, Zlatić, PRL ‘06. 

Nonequilibrium DMFT

10

Lattice model

t t�

�(t, t�)

Nonequilibrium lattice problem is mapped to a single-site impurity problem embedded in 
an effective dynamical mean field ⋀(t, t’).



U f = 1.0, 1.1, . . . , 1.9
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Quench: ordered → normal
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We calculate the time evolution of the staggered 
magnetization m=⟨|n↑ -n↓|⟩#for quenches Ui → Uf 
(Ui > Uf). Ui is fixed, while Uf is systematically 
changed to go across the phase transition line.
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Momentum distribution

Ui = 2� U f = 1.4 Ui = 2� U f = 1.2



: Thermal values of order parameter reached in the long-time limit.
: Frequency of the amplitude mode (“Higgs mode”).
: Relaxation time of order parameter in the intermediate time scale.
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Nonthermal criticality

Uc

mthw
tnth-1

Ui = 2

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1

0.2

0.3

0

0.2

0.4

0.6

Uf

w
,
t-
1

m



/2314

This implies...
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thermal critical point

nonthermal ordered state
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!a" Ui ! 2.5
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nonth. critical 
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Two step relaxation
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Relaxation crossovers from the nonthermal critical behavior in the intermediate time scale 
to the thermal critical behavior in the long time scale.

�nth



Ui = 1.75,U f = 1.8, 1.9, . . . , 2.6
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Quench: normal → ordered
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We can study dynamical symmetry breaking from 
the paramagnetic to antiferromagnetic state with 
quenches Ui → Uf (Ui < Uf). To trigger symmetry 
breaking, we introduce small seed magnetic field.



Ui = 1.75
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Nonthermal criticality

mmax
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mth
ti-1H¥4L

Uc

1.6 1.8 2.0 2.2 2.4
0.0

0.1

0.2

0.3

0.4

Uf

: Maximum of the first peak in amplitude oscillation.
: Minimum of the first peak in amplitude oscillation.
: Thermal values of order parameter reached in the long-time limit.
: Rate of the initial exponential growth (m ∝#et/τi).



intermediate time scale longer time scale
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Summary of critical behavior
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Hartree approximation
We have seen that the order-parameter dynamics in the intermediate time scale cannot be 
described by the conventional Ginzburg-Landau theory.

For very small U, the time-dependent Hartree approximation is applicable.

��k

�bk

It turns out that equation of motion is reduced to Bloch equation for “spin precession”.

Here we introduce momentum distributions analogous to Anderson’s pseudospin
representation for superconductors (Anderson, Phys. Rev. ’58).



��
2m
�t2 =

�Fnth

�m

Fnth = �
1
2

am2 +
U2

f

8
m4

/2320

�

�t
��k(t) = �bk(t)� ��k(t)

Integrable equation
This equation is mathematically equivalent to time-dependent BCS (or BdG) equation, 
which is known to be integrable. Barankov, Levitov, Spivak, PRL ’04; Yuzbashyan et al. PRB 
’05; Warner, Leggett, PRB ’05; Barankov, Levitov, PRL ’06; Yuzbashyan, Dzero, PRL ’06.

We find that this equation defines a universality class distinct from GL.

In the case of dynamical symmetry breaking (Ui < Uf), one can show that the order 
parameter obeys a “GL-like” equation

with a nonthermal potential

��k

�bk
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Nonthermal criticality

Fnth = �
1
2

am2 +
U2

f

8
m4

The constant a satisfies a condition

where f0(ϵk) is a momentum distribution determined from the initial condition. From this, 
one can show that

which contrasts with the conventional GL theory,

This evidences that the nonthermal critical point belongs to a universality class different 
from the conventional GL. 



|��k|
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Away from integrable regime
As one increases U, integrability is quickly lost. For example, the length of the pseudospin
       is conserved for each k. However, it is already not conserved at U~1.

But still qualitative features of the nonthermal critical point are maintained. 
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intermediate time scale longer time scale
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