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Outline

|. Introduction to the quantum interaction quench problem.

How does an isolated quantum system thermalize?
Is there any intermediate nonthermal quasi-stationary state!

2. Interaction quench in the presence of a long-range order.
Antiferromagnetic phase in the fermionic Hubbard model studied by the
nonequilibrium dynamical mean-field theory (DMFT).

3. Nonthermal criticality.
A long-lived quasi-stationary state with effective T > T, showing a Higgs
amplitude mode characterized by a nonthermal critical point.

4. Nonthermal universality class.
Distinct from the conventional Ginzburg-Landau universality.
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Interaction quench problem

An abrupt change of the interaction parameter in an isolated quantum system generates
a nonequilibrium dynamics of interest.

Fermionic Hubbard model:

H(t) = ZVUCL_C]O- + U(1) Z lTC,TCllC,l

1],07

The interaction quench can be experimentally implemented in cold-atom systems
trapped in an optical lattice by changing the lattice potential depth or using Feshbach
resonance. Greiner, et al., Nature '02, Bloch, Dalibard, Zwerger, RMP "08.
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Why study interaction quench!?

It provides a lot of fundamental theoretical questions:
Does an isolated quantum system thermalize after quench!? If so, how does it thermalize? Is
there any intermediate nonthermal quasi-stationary state (nonthermal fixed point)?
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n(€x,t)=(ckt(t)ck(t)) : momentum distribution function
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Prethermalization

The weakly correlated system evolves to an intermediate “prethermalized” state, in which
an integrated quantity such as the double occupancy d=(n; n;) thermalizes much earlier
than the momentum distribution n(€x,t).
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Prethermalization can be understood from a unitary perturbation theory (Moeckel,
Kehrein, PRL ’08) and the generalized Gibbs ensemble (Kollar,; Wolf, Eckstein, PRB "1 |).
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Interaction quench w/ long-range order

How does the fermionic system thermalize after the interaction quench in the presence of
a long-range order? When one goes across the thermal phase transition point, how does
the order parameter relax!?

The problem of dynamical phase transition has been discussed with a macroscopic
(phenomenological) Ginzburg-Landau equation,

_Mﬁz_m _ ré_m _ Far

_ 2 2
pv o = s =am + blm|*m — cV*m

which is valid only when the order parameter varies sufficiently slowly in time. In the
quench problem, we have to go beyond GL Eq.
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Fermionic Hubbard model

We study interaction quenches in the repulsive (attractive) fermionic Hubbard model:
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Nonequilibrium DMFT

Schmidt, Monien ‘02; Freericks, Turkowski, Zlatic, PRL ‘06.

Nonequilibrium lattice problem is mapped to a single-site impurity problem embedded in
an effective dynamical mean field A(t, t).

Gi'(1,1") = G™P[A](1, 1)

N T | A(t,t')
HaTh 7
! | ~—

Lattice model

t/

?l\T

Impurity model

S, 1) = 65 (1, 1)
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Quench: ordered » normal

We calculate the time evolution of the staggered
magnetization m=(|nt -n,|) for quenches Ui~ Us
(Ui > Up). Ui is fixed, while Ur is systematically
changed to go across the phase transition line.
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Nonthermal criticality
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M :Thermal values of order parameter reached in the long-time limit.

W :Frequency of the amplitude mode (“Higgs mode”).

Tnth : Relaxation time of order parameter in the intermediate time scale.
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This implies...

nonthermal ordered state

0120 Nonthermal

thermal critical point
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Two step relaxation

Relaxation crossovers from the nonthermal critical behavior in the intermediate time scale

to the thermal critical behavior in the long time scale.
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Quench: normal » ordered

We can study dynamical symmetry breaking from
the paramagnetic to antiferromagnetic state with
quenches U;» Ur (Ui < Uy).To trigger symmetry

breaking, we introduce small seed magnetic field.
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Nonthermal criticality
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Mmax : Maximum of the first peak in amplitude oscillation.

Mmin
my, :Thermal values of order parameter reached in the long-time limit.
T;  :Rate of the initial exponential growth (m « e¥T).
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Summary of critical behavior

intermediate time scale | longer time scale
T x |Up — U,|™! x Uf_UC’@*
x |Us — U,|! x |Uy — U2
w x Uy — U, : —
Mnth, W

Muyth, W
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Hartree approximation

We have seen that the order-parameter dynamics in the intermediate time scale cannot be
described by the conventional Ginzburg-Landau theory.

For very small U, the time-dependent Hartree approximation is applicable.
Lo, 1) = Unng(1)0(t, 1)

It turns out that equation of motion is reduced to Bloch equation for “spin precession”.

0 > S S r
220k = bid) X Fu®) by = (~26,0, UOm() b
Here we introduce momentum distributions analogous to Anderson’s pseudospin F
representation for superconductors (Anderson, Phys. Rev.’58). k
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Integrable equation

This equation is mathematically equivalent to time-dependent BCS (or BdG) equation,
which is known to be integrable. Barankoy, Levitoy, Spivak, PRL '04;Yuzbashyan et al. PRB
'05;Warner, Leggett, PRB ’05; Barankoyv, Levitov, PRL ’06;Yuzbashyan, Dzero, PRL ’'06. Ek

0 ,
E&k(t) = Dy(t) X Fr(1) )

We find that this equation defines a universality class distinct from GL.

In the case of dynamical symmetry breaking (Ui < Us), one can show that the order
parameter obeys a “GL-like” equation

azm _ afnth
or? om
with a nonthermal potential
1 Ut
Foth = —=am” + —Lm"
nth D 3
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Nonthermal criticality

1 U?
fnth = —iam + ?fmél

The constant a satisfies a condition

2Ek _
~Uy Ekj Ge ali@ =1

where fo(€x) is a momentum distribution determined from the initial condition. From this,
one can show that

_ TR ) 3 ’
a = Cl()(Uf U*) ap = (ﬂ,@U%D(EF))

which contrasts with the conventional GL theory,

a=ay(Uy—U,)

This evidences that the nonthermal critical point belongs to a universality class different
from the conventional GL.
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Away from integrable regime

As one increases U, integrability is quickly lost. For example, the length of the pseudospin
|5‘k| is conserved for each k. However, it is already not conserved at U~I.
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But still qualitative features of the nonthermal critical point are maintained.
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Summary

initial state )} ——> ( nonthermal critical point ) ——> ( thermal state

intermediate time scale | longer time scale
T x |Up — U,|™! x |Up — U] ™!
x |Up — U, x |Up — U|"?
W x |Up — U, —
Mnth, W Muth, (W
Mth Mth
o ® > Uf
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