Entanglement, quantum spin liquids, and DMRG

Leon Balents, KITP

\$\$\$: NSF, DOE

Plan

- Introduction
- Topological entanglement entropy
- Calculations of TEE with DMRG, and minimally entangled states
- Comparison of scaling of Renyi and von Neumann entropies
- Application of MES to less exotic problems

People

Rajiv Singh UC Davis

Hong Yao Tsingua

Hong-Chen Jiang KITP

Zhenghan Wang Microsoft Q

Classification

K-matrix	General Subject
AC	Z ₂ TI
Z	fibonacci
AE	IQHE
AP	ASL
AS	E8
PN	SO(6) ₃
B-BJ	Philosophy (Gen.)
BD	Speculative Philosophy
BF	Psychology
В	Philosophy (Gen.)
BC	Logic
BJ	Ethics
BL	Religions. Mythology
BS	The Bible
BT	Doctrinal Theology
BV	Practical Theology
BR	Christianity
BX	Christian Denominations
Н	Soc. Sci. (General)
HA	Statistics
J	Gen. Legislative papers
HB	Economic Theory
К	Law
JF-JS	Political Institutions
HN, HV	Social History, Soc.
	Pathology
L	Education (General)
HD	Industries. Land Use.
GT	Manners and customs
	K-matrix AC Z AE AP AS PN B-BJ BD BF BC BC BJ BL BS BT BV BR BS BT BV BR BX BT BV BR BX H HA HA J HA HA J HA HA HA J HB HA HA HA J HB HA C BT BT BT BT BT BT BT BT BT BT BT BT BT

Classification

cohomology	K-matrix	General Subject
000, 040, 080	AC	Z ₂ TI
010, 020, 090	Z	fibonacci
030	AE	IQHE
050	AP	ASL
060	AS	E8
070	PN	SO(6) ₃
100	B-BJ	Philosophy (Gen.)
110-120	BD	Speculative Philosophy
130, 150	BF	Psychology
140, 180, 190	В	Philosophy (Gen.)
160	BC	Logic
170	BJ	Ethics
200, 210, 290	BL	Religions. Mythology
220	BS	The Bible
230	BT	Doctrinal Theology
240, 250	BV	Practical Theology
260, 270	BR	Christianity
280	BX	Christian Denominations
300	н	Soc. Sci. (General)
310	HA	Statistics
320	J	Gen. Legislative papers
330	HB	Economic Theory
340	К	Law
350	JF-JS	Political Institutions
360	HN, HV	Social History, Soc.
		Pathology
370	L	Education (General)
380	HD	Industries. Land Use.
		Labor
390	GT	Manners and customs

Classification

I'd like to find some books

[cohomology	K-matrix	General Subject
000, 040, 080	AC	72 TI
010,020,090	Z	fibonacci
030	AE	IQHE
050	AP	ASL
060	AS	E8
070	PN	SO(3) ₆
100	B-BJ	Philosophy (Gen.)
110-120	BD	Speculative Philosophy
130, 150	BF	Psychology
140, 180, 190	В	Philosophy (Gen.)
160	BC	Logic
170	BJ	Ethics
200, 210, 290	BL	Religions. Mythology
220	BS	The Bible
230	BT	Doctrinal Theology
240, 250	BV	Practical Theology
260, 270	BR	Christianity
280	BX	Christian Denominations
300	н	Soc. Sci. (General)
310	HA	Statistics
320	J	Gen. Legislative papers
330	НВ	Economic Theory
340	К	Law
350	JF-JS	Political Institutions
360	HN, HV	Social History, Soc.
		Pathology
370	L	Education (General)
380	HD	Industries. Land Use.
		Labor
390	GT	Manners and customs

Quantum spin liquids

 Long sought non-magnetic ground states of quantum spin systems

- Interesting because of high degree of entanglement
 - Anderson's RVB

Classes of QSLs

- Topological QSLs
 - full gap
- U(1) QSL
 - gapless emergent "photon"
- Algebraic QSLs
 - Relativistic CFT (power-laws)
- Spinon Fermi surface QSL

compact U(1) gauge theory

QED₃

QED₃ w/ μ>0

Classes of QSLs

- Topological QSLs
 - full gap
- U(1) QSL
 - gapless emergent "photon"
- Algebraic QSLs
 - Relativistic CFT (power-laws)
- Spinon Fermi surface QSL

compact U(1) gauge theory

QED₃

QED₃

w/ µ>0

Materials

κ-(ET)₂X β'-Pd(dmit)₂

 $ZnCu_3(OH)_6Cl_2$

 $\frac{Yb_2Ti_2O_7}{Pr_2Zr_2O_7}$

Herbertsmithite

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

Tian-Heng Han, Joel S. Helton, Shaoyan Chu, Daniel G. Nocera, Jose A. Rodriguez-Rivera, Collin Broholm & Young S. Lee

The search is over?

MIT researchers discover a new kind of magnetism

Experiments demonstrate 'quantum spin liquid,' which could have applications in new computer memory storage.

Quantum spin liquid

From Wikipedia, the free encyclopedia

This article **may be too technical for most readers to understand**. Please help improve this article to make it understandable to non-experts, without removing the technical details. The talk page may contain suggestions. *(December 2012)*

In condensed matter physics, **quantum spin liquid** is a state that can be achieved in a system of interacting **quantum spins**. The state is referred to as a "liquid" as it is a disordered state in comparison to a ferromagnetic spin state,^[1] much in the way liquid water is in a disordered state compared to crystalline ice. However, unlike other disordered states, a quantum spin liquid state preserves its disorder to very low temperatures.^[2]

The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact with their nearest neighbors via the so-called antiferromagnetic interaction. Quantum spin liquids generated further interest when in 1987 Anderson proposed a theory that described high temperature superconductivity in terms of a disordered spin-liquid state.^[3] A quantum spin liquid state was first realized experimentally in crystalline herbertsmithite by Young Lee and his group at the Massachusetts Institute of Technology in December 2012.^[4]

The search is over?

MIT researchers discover a new kind of magnetism

Quar

From Wiki

Experiments demonstrate 'quantum spin liquid,' which could have applications in new computer memory storage.

Before we use nearly featureless data to declare victory, we should have some better understanding

This article **may be too technical for most readers to understand**. Please help improve this article to make it understandable to non-experts, without removing the technical details. The talk page may contain suggestions. (December

2012)

In condensed matter physics, quantum spin liquid is a state that can be achieved in a system of interacting quantum spins. The state is referred to as a "liquid" as it is a disordered state in comparison to a ferromagnetic spin state,^[1] much in the way liquid water is in a disordered state compared to crystalline ice. However, unlike other disordered states, a quantum spin liquid state preserves its disorder to very low temperatures.^[2]

The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact with their nearest neighbors via the so-called antiferromagnetic interaction. Quantum spin liquids generated further interest when in 1987 Anderson proposed a theory that described high temperature superconductivity in terms of a disordered spin-liquid state.^[3] A quantum spin liquid state was first realized experimentally in crystalline herbertsmithite by Young Lee and his group at the Massachusetts Institute of Technology in December 2012.^[4]

 $Yb_2Ti_2O_7$ $Pr_2Zr_2O_7$

$$H = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z$$

$$-J_{\pm} \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$$

$$+ J_{z\pm} \sum_{\langle i,j \rangle} \left[S_i^z \left(\zeta_{ij} S_j^+ + \zeta_{ij}^* S_j^- \right) + i \leftrightarrow j \right]$$

$$+ J_{\pm\pm} \sum_{\langle i,j \rangle} \left(\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij}^* S_i^- S_j^- \right)$$

Phase diagrams

 DMRG gives powerful access to ground states of 1d strips of reasonable width

$$H = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z$$

$$-J_{\pm} \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$$

$$+ J_{z\pm} \sum_{\langle i,j \rangle} \left[S_i^z \left(\zeta_{ij} S_j^+ + \zeta_{ij}^* S_j^- \right) + i \leftrightarrow j \right]$$

$$+ J_{\pm\pm} \sum_{\langle i,j \rangle} \left(\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij}^* S_i^- S_j^- \right)$$

Entanglement entropy

 $\rho_A = \operatorname{Tr}_B |\psi\rangle \langle \psi|$

von Neumann $S_{vN}(A) = -\text{Tr} \left[\rho_A \ln \rho_A\right]$ Renyi $S_{\alpha}(A) = -\frac{1}{1-\alpha} \ln \text{Tr} \rho_A^{\alpha}$

Entanglement entropy

$$\rho_A = \mathrm{Tr}_B |\psi\rangle \langle \psi|$$

von Neumann $S_{vN}(A) = -\operatorname{Tr} \left[\rho_A \ln \rho_A \right]$ Renyi $S_{\alpha}(A) = -\frac{1}{1-\alpha} \ln \operatorname{Tr} \rho_A^{\alpha}$ $= p \ln 2$

Topological EE

• TQFT result for a smooth boundary

$$S_{\alpha}(A) \sim c_{\alpha}L - \gamma$$

 $\gamma = \ln \mathcal{D}$ total quantum dimension

Topological EE

loops cross boundary even number of times

2006

• TQFT result for a smooth boundary

 $\gamma = \ln 2$

$$S_{\alpha}(A) \sim c_{\alpha}L - \gamma$$

Z₂ spin liquid

Smooth boundary?

Smooth boundary?

cannot be achieved for disclike region on a lattice

$$-\gamma = S_A + S_B + S_C$$
$$-S_{AB} - S_{AC} - S_{BC} + S_{ABC}$$

Smooth boundary?

cannot be achieved for disclike region on a lattice

 $-\gamma = S_A + S_B + S_C$

 $-S_{AB} - S_{AC} - S_{BC} + S_{ABC}$

challenging due to cancellation of large numbers, and smaller length scales

QMC results

Isakov, Hastings, RGM Nature Physics 7, 772 (2011)

heroic efforts get you halfway there

Easily implemented on lattice

 Only scales are circumference L_y, length L_x, and lattice spacing

$$S_{\alpha} \sim c_{\alpha} L_y - \gamma \qquad \qquad L_x \gtrsim L_y \gg 1$$

$$+O(e^{-L_y/\xi_\alpha})$$

Cylinder

Easily implemented on lattice

Only scales are circumference L_y, length L_x, and lattice spacing

$$S_{\alpha} \sim c_{\alpha} L_y - \gamma \qquad \qquad I$$

 $L_x \gtrsim L_y \gg 1$

 $+O(e^{-L_y/\xi_\alpha})$

DMRG

• Systems is split into "blocks"

Really a Schmidt decomposition

$$|\Psi\rangle = \sum_{i} c_{i} |\Psi\rangle_{L} \otimes |\Psi\rangle_{R}$$

Full entanglement spectrum and all S_{α} readily available

Example 1: J₁-J₂ model

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

decades of work shows that intermediate phase has a gap and no magnetic order

Example 1: J₁-J₂ model

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

 $\gamma = 0.70 \pm 0.02$ J₂=0.50 = 0.72 \pm 0.04 J₂=0.56

match to $ln(2) = 0.69 \cdots$

Example 1: J₁-J₂ model

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

 $\gamma = 0.70 \pm 0.02$ J₂=0.50 = 0.72 \pm 0.04 J₂=0.56

match to $ln(2) = 0.69 \cdots$

seems good...look more carefully

- A basic characteristic of topological phases is ground state degeneracy
- For the Z₂ case (toric code), it is twofold on the cylinder

• The EE depends upon the state

c.f. Yi Zhang *et al,* 2011

 $|\pm\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle \pm |1\rangle\right) \qquad 0 \le \gamma \le \ln 2$

 $|0\rangle, |1\rangle$ MES

"minimally entangled states", "minimum entropy states"

- The EE depends upon the state
- c.f. Yi Zhang *et al,* 2011

c.f. Yi Zhang

et al, 2011

- The EE depends upon the state
- $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle) \qquad 0 \le \gamma \le \ln 2 \qquad |0\rangle, |1\rangle$ MES

definite parity of loops around cylinder
State dependence

• The EE depends upon the state

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle) \qquad 0 \le \gamma \le \ln 2 \qquad |0\rangle, |1\rangle$$
MES

$$\prod_{x} \sigma_{r,r+y}^{x} = +1$$

1

$$\prod_{x} \sigma_{r,r+y}^{x} = -1$$

 $-\rangle$

c.f. Yi Zhang

et al, 2011

 $|+\rangle$ $S(|\pm\rangle) = S(|0,1\rangle) + \ln 2$

• Hamiltonian

 $H_{\text{eff}} = -h\left(|0\rangle\langle 1| + |1\rangle\langle 0|\right) - h'\left(|0\rangle\langle 0| - |1\rangle\langle 1|\right)$

• Hamiltonian

 $H_{\text{eff}} = -h\left(|0\rangle\langle 1| + |1\rangle\langle 0|\right) - h'\left(|0\rangle\langle 0| - |1\rangle\langle 1|\right)$

vison hopping $h \sim h_0 L_y e^{-L_x/\xi}$

• Hamiltonian

 $H_{\text{eff}} = -h\left(|0\rangle\langle 1| + |1\rangle\langle 0|\right) - h'\left(|0\rangle\langle 0| - |1\rangle\langle 1|\right)$

vison hopping $h \sim h_0 L_y e^{-L_x/\xi}$ spinon hopping $h' \sim h'_0 L_x e^{-L_y/\xi}$

• Hamiltonian GS is MES for L_x large $H_{\text{eff}} = -h \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) - \frac{h'(|0\rangle\langle 0| - |1\rangle\langle 1|)}{h'(|0\rangle\langle 0| - |1\rangle\langle 1|)}$

vison hopping $h \sim h_0 L_y e^{-L_x/\xi}$ spinon hopping $h' \sim h'_0 L_x e^{-L_y/\xi}$

Toric Code model

Toric Code model

• Hamiltonian:

$$H = H_{TC} - \sum_{i} \left[h_x \sigma_i^x + h_z \sigma_i^z \right]$$

• Phase diagram:

• State dependence: $h_z = 0$

The absolute ground state is a G eigenstate, |±>, not a MES

• State dependence: $h_z = 0$

The absolute ground state is a G eigenstate, |±>, not a MES

 $H_{\text{eff}} = -h\left(|0\rangle\langle 1| + |1\rangle\langle 0|\right) - \frac{h'\left(|0\rangle\langle 0| - |1\rangle\langle 1|\right)}{=0}$

• State dependence: $h_z = 0$

mc

• State dependence: $h_z = 0$

last qubit of entanglement takes exponential effort

• State dependence: $h_z = 0$

Kagome

• Hamiltonian

$$H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

• Courtesy of Steve White:

v=1/2 FQHE

$$H = -t' \sum_{\langle \langle rr' \rangle \rangle} \left[b^{\dagger}_{r'} b_r e^{i\phi_{r'r}} + \text{H.c.} \right]$$

- $t \sum_{\langle rr' \rangle} \left[b^{\dagger}_{r'} b_r + \text{H.c.} \right] - t'' \sum_{\langle \langle \langle rr' \rangle \rangle \rangle} \left[b^{\dagger}_{r'} b_r + \text{H.c.} \right] ,$

Not topological

Von Neumann vs. Renyi

Both are expected to give universal TEE

Von Neumann vs. Renyi

Numerical result: Renyi scales much worse

Trouble?

Trouble?

Naively extrapolated TEE

Series Expansion

- We can check the DMRG, and get some insight, from numerical series expansion
- We use the linked cluster method, where the series can be extracted from a study of exact solutions on small clusters

clusters to O(h⁴)

toric code variables on links

Series Expansion

 Entanglement entropy is *exactly* linear in L_y until clusters span cylinder width

$$S_{\alpha} = c_{\alpha}L_y - \ln 2$$

Line Entropy

reasonable agreement for O(h⁴) expansion

TEE

- TEE is *subdominant* term in an *asymptotic* large L_y expansion
 - Reliable extraction is more difficult with increasing line entropy

$$c_{\alpha} = \frac{1}{2} \left(\ln 2 - \frac{9\alpha}{32} h^4 + \frac{3\alpha}{\alpha - 1} \frac{h^4}{128} \right)$$

large sensitivity of line entropy with increasing Renyi index: larger Ly needed to extract TEE?

TEE

• Running two point fits at Ly and Ly+2

non-monotonic behavior: still far from converging for Renyi entropies

TEE

• Correlation length criteria?

 S_{vN} determines TEE to < 1% for $L_y/\xi \approx 10$

Kagome

• Problems even more severe

Kagome

• Problems even more severe

more on MES

- Long-range entanglement can arise even in non-exotic systems
- Symmetry breaking

more on MES

Schrödinger cat

- Cat state is the global ground state
- BUT...undesirable
 - Not physical: decoherence collapses the cat into a symmetry broken state
 - Cannot directly measure local observables

Long-range entanglement

• The cat state has higher entanglement

 $S(|\pm\rangle) = S(|0\rangle, |1\rangle) + \ln 2$

- To get it requires capturing entanglement between farthest pairs of spins in the system
- DMRG will avoid this state for very long systems, finding MES (physical!)

Long-range entanglement

• The cat state has higher entanglement

 $S(|\pm\rangle) = S(|0\rangle, |1\rangle) + \ln 2$

- To get it requires capturing entanglement between farthest pairs of spins in the system
- BUT, for shorter systems, or long simulations, the cat appears
Cat states

- The "best" simulations find a superposition (partial cat)
 - local quantities, e.g. magnetization of Ising model, can be any value between ±m

Collapse the cat

- It can be useful to select a MES by making small "observations" of the state
- This can be done in DMRG by introducing a "quench" - a short period of increased truncation error - followed by recovery

TFIM

- This procedure allows a *direct* measurement of order parameters, critical properties, etc
- One obtains a MES without a priori knowledge of broken symmetry, topological order, etc., even for "short" systems

Fin

- DMRG is remarkably efficient at obtaining TEE for realistic quantum spin models with short correlation lengths from the *von Neumann* entropy
- Empirically, the scaling limit occurs only in prohibitively large systems for the Renyi entropies
- Definitive identification of the kagome lattice QSL as a Z₂ topological phase. In the future we should use the methods to push connections to experiments on e.g. herbertsmithite
- MES are also useful for study of more conventional phases