Entanglement, quantum
spin liquids, and DMRG

Leon Balents, KITP

$$%: NSF, DOE



Plan

Introduction
Topological entanglement entropy

Calculations of TEE with DMRG, and
minimally entangled states

Comparison of scaling of Renyi and von
Neumann entropies

Application of MES to less exotic
problems



Rajiv Singh
UC Davis

Hong-Chen Jiang
KITP Zhenghan Wang Hong Yao

Microsoft Q Tsingua



§ i

iiia

Classification

=Y
-
5

11440

cohqmology 'K-matrix General Subject

000, 040, 080 | AC Z2 Tl

010,020,090 |z fibonacci

030 AE IQHE

050 AP ASL

060 AS E8

070 PN SO(6)s

100 B-BJ Philosophy (Gen.)

110-120 BD Speculative Philosophy

130, 150 BF Psychology

140,180,190 | B Philosophy (Gen.)

160 BC Logic

170 BJ Ethics

200, 210,290 | BL Religions. Mythology

220 BS The Bible

230 BT Doctrinal Theology

240, 250 BV Practical Theology

260, 270 BR Christianity

280 BX Christian Denominations

300 H Soc. Sci. (General)

310 HA Statistics

320 J Gen. Legislative papers

330 HB Economic Theory

340 K Law

350 JF-JS Political Institutions

360 HN, HV | Social History, Soc.
Pathology

370 L Education (General)

380 HD Industries. Land Use.
Labor

390 GT Manners and customs




Classification

cohomology 'K-matrix General Subject

000, 040, 080 | AC Z2 Tl

010,020,090 |z fibonacci

030 AE IQHE

050 AP ASL

060 AS E8

070 PN SO(6)3

100 B-BJ Philosophy (Gen.)

110-120 BD Speculative Philosophy

130, 150 BF Psychology

140,180,190 | B Philosophy (Gen.)

160 BC Logic

170 BJ Ethics

200, 210,290 | BL Religions. Mythology

220 BS The Bible

230 BT Doctrinal Theology

240, 250 BV Practical Theology

260, 270 BR Christianity

280 BX Christian Denominations

300 H Soc. Sci. (General)

310 HA Statistics

320 J Gen. Legislative papers

330 HB Economic Theory

340 K Law

350 JF-JS Political Institutions

360 HN, HV | Social History, Soc.
Pathology

370 L Education (General)

380 HD Industries. Land Use.
Labor

390 GT Manners and customs




Classification

I’'d like to find some books

cohomology 'K-matrix General Subject

000, 040, 080 | AC Z2 Tl

010,020,090 |z fibonacci

030 AE IQHE

050 AP ASL

060 AS E8

070 PN SO(3)s

100 B-BJ Philosophy (Gen.)

110-120 BD Speculative Philosophy

130, 150 BF Psychology

140,180,190 | B Philosophy (Gen.)

160 BC Logic

170 BJ Ethics

200, 210,290 | BL Religions. Mythology

220 BS The Bible

230 BT Doctrinal Theology

240, 250 BV Practical Theology

260, 270 BR Christianity

280 BX Christian Denominations

300 H Soc. Sci. (General)

310 HA Statistics

320 J Gen. Legislative papers

330 HB Economic Theory

340 K Law

350 JF-JS Political Institutions

360 HN, HV | Social History, Soc.
Pathology

370 L Education (General)

380 HD Industries. Land Use.
Labor

390 GT Manners and customs




Quantum spin liquids

® | ong sought non-magnetic ground
states of quantum spin systems

® |nteresting because of high degree of
entanglement

e Anderson’s RVB
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Classes of QSLs
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anyons characterized by
fusion rules and mutual
statistics
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Herbertsmithite
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Fractionalized excitations in the spin-liquid state
of a kagome-lattice antiferromagnet
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The search Is over?

MIT researchers discover a new kind of
magnetism

Experiments demonstrate ‘quantum spin liquid,” which could have
applications in new computer memory storage.

Quantum spin liquid

From Wikipedia, the free encyclopedia

This article may be too technical for most readers to understand. Please help improve this article to make it
€ understandable to non-experts, without removing the technical details. The talk page may contain suggestions. (December
2012)

In condensed matter physics, quantum spin liquid is a state that can be achieved in a system of interacting quantum spins. The state is referred to as a "liquid" as it is
a disordered state in comparison to a ferromagnetic spin state,['! much in the way liquid water is in a disordered state compared to crystalline ice. However, unlike other
disordered states, a quantum spin liquid state preserves its disorder to very low temperatures.[2]

The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact with their
nearest neighbors via the so-called antiferromagnetic interaction. Quantum spin liquids generated further interest when in 1987 Anderson proposed a theory that described
high temperature superconductivity in terms of a disordered spin-liquid state.l®] A quantum spin liquid state was first realized experimentally in crystalline herbertsmithite
by Young Lee and his group at the Massachusetts Institute of Technology in December 2012.14



The search Is over?

MIT researchers discover a new kind of
magnetism

Experiments demonstrate ‘quantum spin liquid,” which could have
applications in new computer memory storage.

€ understandable to non-experts, without removing the technical details. The talk page may contain suggestions. (December
2012)

In condensed matter physics, quantum spin liquid is a state that can be achieved in a system of interacting quantum spins. The state is referred to as a "liquid" as it is
a disordered state in comparison to a ferromagnetic spin state,['! much in the way liquid water is in a disordered state compared to crystalline ice. However, unlike other
disordered states, a quantum spin liquid state preserves its disorder to very low temperatures.[zl

The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact with their
nearest neighbors via the so-called antiferromagnetic interaction. Quantum spin liquids generated further interest when in 1987 Anderson proposed a theory that described
high temperature superconductivity in terms of a disordered spin-liquid state.3l A quantum spin liquid state was first realized experimentally in crystalline herbertsmithite
by Young Lee and his group at the Massachusetts Institute of Technology in December 2012.14



Models

A N
% 5%

¥
H=J) S;-Sj+-
(i3)

T Z S7S7

(1,9)
—Je > (SFS;+575)

(i3
+ Jox > [S7(GiST+¢5Sy) +i e ]

Yb2TI207
Pr2Zr207 (5)

+ e > (4SS +758787)



Phase diagrams

e DMRG gives powerful access to ground
states of 1d strips of reasonable width
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| Diagnostics for QSL states in general models? |
| - ground state degeneracy '
- topological entanglement entropy
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Entanglement

entropy
A
pa ="Trp |¢) (Y]
von Neumann Syn(A) = —Tr[palnp,]

Renyi Sa(A) = — .




Entanglement
entropy

von Neumann Syn(A) = —Tr[palnpy]

Renyi Sa(A) = — .



Topological EE

e TQFT result for a smooth boundary

Sa(A) ~co L — 7~

v=1InD total quantum dimension



Topological EE
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e TQFT result for a smooth boundary

Sa(A) ~co L —

v =1In2 Z> spin liquid



Smooth boundary?




Smooth boundary?
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Smooth boundary??
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QMC results

Isakov, Hastings, RGM Nature Physics 7, 772 (2011)
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heroic efforts get you halfway there



Cylinder

Easily
implemented
on lattice

® Only scales are circumference Ly,
length Lx, and lattice spacing

Sa ~ CaLly — L,z L,>1

+O(€_Ly/£a)



Cylinder

Easily
implemented
on lattice

® Only scales are circumference Ly,
length Lx, and lattice spacing

Sa ~ CaLy — L, >

Y

L,>1

—|—O(€_Ly/£o‘)



DMRG

e Systems is split into “blocks”

Left Block

Right Block W

snaking path on cylinder
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e Really a Schmidt decomposition
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Full entanglement spectrum
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Example 1: J1-Jo2
model
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Hongchen Jiang, Hong Yao, LB (2012)

decades of work
shows that
Intermediate phase
has a gap and no
magnetic order



Entropy S(Ly)

Example 1: J1-J2
model
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y=0.70 £ 0.02 J2=0.50
=0.72+0.04 J2=0.56

match to In(2) = 0.69- - -




Entropy S(Ly)

Example 1: J1-J2
model

H=J1) S;-S;+.J2 ) S;-S; e
(i7) ((ij))

y=0.70 £ 0.02 J2=0.50
=0.72+0.04 J2=0.56

match to In(2) = 0.69- - -

o 2 4 & 8 10 12 14 seems good...look more carefully



State dependence

® A basic characteristic of topological
phases is ground state degeneracy

® For the Z> case (toric code), it is two-
fold on the cylinder
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State dependence

c.f. Yi Zhang

e The EE depends upon the state ot al, 2011
—=(0)£]1))  0<y <2 0),]1)

MES

“minimally entangled states”,
“minimum entropy states”
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State dependence

c.f. Yi Zhang

e The EE depends upon the state ot al, 2011

=[1) 0<y<In2 0), 1)

MES




State dependence

c.f. Yi Zhang
e The EE depends upon the state et al, 2011
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definite parity of loops around cylinder



State dependence

c.f. Yi Zhang
e The EE depends upon the state ot al, 2011
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QuaLsi-degeneracy

® Hamiltonian

Heg = —h ([0)(1] + [1){0[) — A (J0)(0] — [1)(1])



QuaS| degeneracy

® Hamiltonian

Heg = —h ([0)(1] + [1){0[) — A (J0)(0] — [1)(1])

vison hopping h ~ hoLye"=/¢



QuaS| degeneracy

® Hamiltonian

Heg = —h ([0)(1] + [1){0[) — A (J0)(0] — [1)(1])

vison hopping h ~ hoLye"=/¢
spinon hopping W o~ hlLye Lv/¢



QuaS| degeneracy

® Hamiltonian GS is MES for Ly large
Heg = —h (|0)(1] +]1)(0]) — A" (|0)(0] — [1)(1])

vison hopping h ~ hoLye"=/¢
spinon hopping W o~ hlLye Lv/¢



Toric Code model

e Hamiltonian
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Entropy S(Ly)

Toric Code model

e Hamiltonian
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Perturbed Toric Code

¢ Hamiltonian:
H=Hpc — Z \hyo! + h,o;]

1

® Phase diagram:
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Entropy S(Ly)

Perturbed Toric Code

e Hamiltonian:

H=Hpc — Z \hyo! + h,o;]
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Perturbed Toric Code

e State dependence: h, =0

G = 10)(1] +[1){0] = Ha, v [GH] =0

® The absolute ground stateisa G
eigenstate, |+) , not a MES



Perturbed Toric Code

e State dependence: h, =0

G = |0)(1| + [1)(0] = IIQ(“D (G, H] =0
ﬁﬁﬁi*v‘ﬁ

REBRNARELLE

® The absolute ground stateisa G
eigenstate, |+) , not a MES

Heg = —h ([0)(1] + [1){0[) — A (J0)(0] — [1)(1])
=0



Perturbed Toric Code
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Perturbed Toric Code

Entropy S

DMRG
favors MES




Perturbed Toric Code

e State dependence: k.
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last qubit of entanglement takes exponential effort



Perturbed Toric Code

e State dependence: h, =0

4T (b) hx=0.3, hz=0.0
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Kagome

® Hamiltonian .
H=038:-S;+5 > S8, KoK
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Entropy S(Ly)

[ 0.698(8) J, = 0.10
770 0.694(6) Jo =0.15

[In(2) = 0.693- -]



v=1/2 FQHE
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Entropy S(Ly)
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Not topological

(a) Transverse-Field Ising model
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Von Neumann vs.

strong
subadditivity

replica
field
theory

correspondence
to true entropy

QMC

Both are expected to give universal TEE



Von Neumann vs.

strong
subadditivity

replica
field
theory

correspondence
to true entropy

QMC

Numerical result: Renyi scales much worse



Trouble?

32+ h=h=0.3
X z
Maybe | should shorten
this section and talk
24 about HC's new results?
c [ n=1
@ 1.6 e n=2
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A = 7
o =
-E vV n
LLl

12
Hongcheng Jiang + LB (2013)



Trouble?

e Naively extrapolated TEE

0.77
(2)h,=0.0
0.75+
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Series Expansion

® \We can check the DMRG, and get
some insight, from numerical series
expansion

® \\Ne use the linked cluster method,
where the series can be extracted from
a study of exact solutions on small
clusters

clusters to O(h%) toric code

H variables on
links




Series Expansion

¢ Entanglement entropy is exactly linear
In Ly until clusters span cylinder width

Sa = CoLy —In2

line L (1o 99,4, 30 h
Co = — | In2 — — o= h b, =
entropy 2 32 a—1128 v

clusters to O(h%) toric code

H variables on
links




Line Entropy

reasonable agreement for O(h*) expansion

0.346}

0.344}

~

0.342 -@ Theory

-2 DMRG
0.340} 0.340}

0.338} (a) von Neumann (n=1) 0.338. (b) Renyi (n=2)

0.346}

0.344+

0.342+

h. ~ 0.33
0.340+

0.338} (c) Renyi (n=3) 0.338} (d) Renyi (n=4)

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
h h
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TEE

o TEE is subdominant term in an
asymptotic large Ly expansion

e Reliable extraction is more difficult
with increasing line entropy

1 9o 3a h*
o= (In2—-=h"
‘ 2(n 32 +04—1128>

large sensitivity of line entropy
with increasing Renyi index:
larger Ly needed to extract TEE?



0.77

0.75

0.69

TEE

® Running two point fits at Ly and Ly+»2

(a) h.=0.3, h =0

—a—nN=1
- —e—n=2
. —4—n=3

—v-n=4

(b) h,=h =0.3

4'6|'_8

4 6L 8 10

non-monotonic behavior: still far from converging for Renyi entropies



TEE

e Correlation length criteria?

0.77 2.0

— 107
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Sy determines TEE to < 1% for Ly/c = 10



Kagome

® Problems even more severe
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Kagome

® Problems even more severe

0.7 |

Ln(2) 0.77

| Toric-Code model y
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more on MES

® | ong-range entanglement can arise
even in non-exotic systems

e Symmetry breaking

H=-J) 879 —h) S
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e

or |1)=

-

WA

G

o

~~—"

|
| = =)
I — — =
< — <—

- -— -—
== <= <




more on MES
e Schrodinger cat CL A




Schrodinger cat
Comy

IR

e (Cat state is the global ground state
e BUT...undesirable

e Not physical: decoherence collapses the
cat into a symmetry broken state

e Cannot directly measure local observables



Long-range
entanglement

® The cat state has higher entanglement

S(1+)) = 5(10),[1)) +n2

® Jo get it requires capturing
entanglement between farthest pairs of
spins in the system

e DMRG will avoid this state for very long
systems, finding MES (physical!)



Long-range
entanglement

® The cat state has higher entanglement

S(1+)) = 5(10),[1)) +n2

® Jo get it requires capturing
entanglement between farthest pairs of
spins in the system

e BUT, for shorter systems, or long
simulations, the cat appears



Cat states

® The “best’” simulations find a
superposition (partial cat)

® |ocal quantities, e.g. magnetization of
Ising model, can be any value
between tm

1.0

.
0.8}
0.6}
0.4+

= Standard “
% Improved |

0.2}

0. —
8.0 02 04 06 08 1.0 1.2



Collapse the cat

’m.v.v;nv.v.v.'.'.v v

® |t can be useful to select a MES by
making small “observations” of the state

® This can be done in DMRG by
iIntroducing a “quench” - a short period
of increased truncation error - followed
by recovery



Magnetization m_

Entanglement Entropy

TFIM

0.9

) o ® This procedure allows
o} B OE:;%Z“Z | a direct measurement
e e of order parameters,
L i e 0t critical properties, etc

() ;

Yoo s E 20 e One obtains a MES
Jsl (B without a priori

i ol il e | knowledge of broken
- . Eé% i v symmetry, topological
o4r e J e order, etc., even for
. “short” systems
00




FIn

DMRG is remarkably efficient at obtaining TEE for
realistic quantum spin models with short
correlation lengths from the von Neumann entropy

Empirically, the scaling limit occurs only in
prohibitively large systems for the Renyi entropies

Definitive identification of the kagome lattice QSL
as a Zz topological phase. In the future we should
use the methods to push connections to
experiments on e.g. herbertsmithite

MES are also useful for study of more
conventional phases



