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Quantum spin liquids
• Long sought non-magnetic ground 

states of quantum spin systems

• Interesting because of high degree of 
entanglement

• Anderson’s RVB

+ + … 
� =



Classes of QSLs
• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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Z2 spin liquid
• Cartoon + + … 

� =

spinon vison
(e) (m)

 ! � 

=

(ε)

anyons characterized by 
fusion rules and mutual 

statistics



Materials

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t

t'

t

a cb
X

ET
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S
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S

S

Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.

170 Kanoda " Kato

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

11
.2

:1
67

-1
88

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

Sa
nt

a 
B

ar
ba

ra
 o

n 
09

/0
7/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.

κ-(ET)2X β’-Pd(dmit)2
ZnCu3(OH)6Cl2

Introduction

100

101

102

103

104

105

106

107

0 50 100 150 200 250 300

!
 (

m
"

 c
m

)

T(K)

Pr

Nd

Gd

Sm

Eu

Tb

Dy

Ho

Ln
2
Ir

2
O

7

103

104

105

106

60 80 100 300

Tb

Dy
Ho

Resistivity (polycrystalline samples)
Ln2Ir2O7

Ir4+: 5d5 Conduction electrons

Ln3+: (4f)n Localized moment
Magnetic frustration

Itinerant electron system 
on the pyrochlore lattice 

Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)

IrO6

Ln

O!

pyrochlore oxides

1

Yb2Ti2O7
Pr2Zr2O7



Herbertsmithite

0 5 10 15 20 0 0.15 0.3 0.45

0
 

10
 

20
 

(-K
 K

 0
)

(H H 0) (H H 0)

!h
--

!h
--

!h
--

!h
--

  

 

0

1

2

3

0

 

  

 

0

1

2

3

0

 

  

 

0

1

2

00

 

  

-2 -1 0 1 20
 

0

1

2

0
 

  

 

0

1

2

3

0

 

  

-2 -1 0 1 20
 

0

1

2

3

0

 

  

-2 -1 0 1 20
 

0

1

2

0
 

(a)      =6meV

(d)       integrated

(b)      =2meV

(e) Dimer

   

over 1 to 9meV

   

(c)      =0.75meV

calculation

FIG. 1:

0 5 10 15

  

-2 -1 0 1 20
 

0

1

2

3

0

 

  

0 1 2 300
 

0
2

4

6

8

10

12

 

  

0 10
 

 

 

0 2 4 6 8 1000
 

0

10

20

30

0

 

K
M
!

 

0 2 4 6 8 1000
 

0

20

40

60

000

 

(-K
 K

 0
)

(m
eV

)
"

h-
-

S t
ot
(Q

,  
 )(

Ba
rn

s 
st

.-1
 e

V-1
 fo

rm
. u

ni
t-1

)
"

         (meV) (H H 0)"h
--

(H 0 0) (H H 0)

S m
ag

(Q
,  

 )(
eV

-1
 fo

rm
. u

ni
t-1

)
"

M ! M !* M ! K M K ! K M K

K ! K
!

!* M

M

M
M

M

(H
 H

 0
) i

n 
pa

rt 
(b

)

(H
 0

 0
) i

n 
pa

rt 
(a

)
*

!

(a) (b)

(c)

(d)

FIG. 2:

10

ZnCu3(OH)6Cl2



The search is over?



The search is over?

Before we use nearly featureless data to 
declare victory, we should have some better 

understanding
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Phase diagrams
• DMRG gives powerful access to ground 

states of 1d strips of reasonable width
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No “obvious” gauge structure/soluble limit. 
Diagnostics for QSL states in general models?

- ground state degeneracy
- topological entanglement entropy



Entanglement 
entropy

BA
⇢A = TrB | ih |

SvN (A) = �Tr [⇢A ln ⇢A]

S↵(A) = � 1

1� ↵
lnTr ⇢↵A

von Neumann

Renyi



Entanglement 
entropy

BA
⇢A = TrB | ih |

SvN (A) = �Tr [⇢A ln ⇢A]

S↵(A) = � 1

1� ↵
lnTr ⇢↵A

von Neumann

Renyi
= p ln 2

p singlets



Topological EE

B
A

• TQFT result for a smooth boundary

S↵(A) ⇠ c↵L� �

� = lnD total quantum dimension

2006



Topological EE

• TQFT result for a smooth boundary

S↵(A) ⇠ c↵L� �

Z2 spin liquid

2006

exist for more general states that contain virtual string-
breaking fluctuations. In the general case, the nonlocal
correlations can be captured by ‘‘fattened string operators’’
Wfat!C" that act on spins within some distance l of C where
l is the length scale for string breaking.

To determine whether a state is topologically ordered,
one has to determine whether the state contains such non-
local correlations or entanglement. While it is difficult to
find the explicit form of the fattened string operators Wfat
[13], one can establish their existence or nonexistence
using quantum information theory. The idea is that if the
string operators exist, then the entropy of an annular region
(such as A1 in Fig. 1) will be lower than one would expect
based on local correlations.

The combination !S1 # S2" # !S3 # S4" measures ex-
actly this anomalous entropy. To see this, notice that !S1 #
S2" is the amount of additional entropy associated with
closing the region A2 at the top. Similarly, !S3 # S4" is the
amount of additional entropy associated with closing the
region A4 at the top. If ! has only local correlations with
correlation length ! then these two quantities are the same
up to corrections of order O!e#R=!", since A2; A4 only
differ by the region at the bottom. For such states,
limR!1!S1 # S2" # !S3 # S4" $ 0. Thus, a nonzero value
for Stop signals the presence of nonlocal correlations and
topological order.

The universality of Stop can also be understood from this
picture. Small deformations of ! will typically modify the
form of the string operators Wfat and change their width l.
However, as long as l remains finite, !S1 # S2" # !S3 # S4"
will converge to the same value when the width r of the
annular region is larger than l.

A simple example.—Let us compute the topological
entropy of the ground state ! of the Z2 model and confirm
(1) in this case. We will first compute the entanglement
entropy SR for an arbitrary region R. To make the boundary
more symmetric, we split the sites on the boundary links
into two sites (see Fig. 3). The wave function ! generalizes
to the new lattice in the natural way.

We will decompose ! into ! $ P
l!

in
l !out

l where !in
l

are wave functions of spins inside R, !out
l are wave func-

tions of spins outside R, and l is a dummy index. A simple
decomposition can be obtained using the string picture. For

any q1; . . . ; qn, with qm $ 0; 1, and
P
mqm even, we can

define a wave function !in
q1;...;qn on the spins inside of R:

!in
q1;...;qn!X" $ 1 if (a) the strings in X form closed loops

and (b) X satisfies the boundary condition that there is a
string on im if qm $ 1, and no string if qm $ 0. Similarly,
we can define a set of wave functions !out

r1...;rn on the spins
outside of R.

If we glue !in and !out together—setting qm $ rm for
all m—the result is !. Formally, this means that

! $
X

q1%&&&%ql even

!in
q1;...;qn!

out
q1...;qn : (2)

It is not hard to see that the functions
f!in

q1;...;qn :
P
mqmeveng, and f!out

r1...;rn :
P
mrmeveng are or-

thonormal. Therefore, the density matrix for the region R
is an equal weight mixture of all the f!in

q1...;qn :
P
mqmeveng.

There are 2n#1 such states. The entropy is therefore SR $
!n# 1" log2 [8].

This formula applies to simply connected regions like
the one in Fig. 3. The same argument can be applied to
general regions R and leads to SR $ !n# j" log2, where n
is the number of spins along @R, and j is the number of
disconnected boundary curves in @R.

We are now ready to calculate the topological entropy
associated with !. According to (1) we need to calculate
the entropy of the four regions shown in Fig. 1. From SR $
!n# j" log 2, we find S1$!n1#2" log 2, S2 $ !n2 # 1"'
log 2, S3 $ !n3 # 1" log 2, and S4 $ !n4 # 2" log 2,
where n1; n2; n3; n4 are the number of spins along the
boundaries of the four regions. The topological entropy is
therefore #Stop $ !n1 # n2 # n3 % n4 # 2" log 2. But the
four regions are chosen such that !n1 # n2" $ !n3 # n4".
Thus the size dependent factor cancels out and #Stop $
#2 log 2 $ # log!22". This agrees with (1) since the total
quantum dimension of Z2 gauge theory is D $ 2.

General string-net models.—To derive (1) in the general
(parity invariant) case, we compute the topological entropy
for the exactly soluble string-net models discussed in
Ref. [10]. The ground states of these models describe all
!2% 1"-dimensional parity invariant topological orders.
The models and the associated topological orders are char-
acterized by several pieces of data: (a) an integer N—the
number of string types. (b) A completely symmetric tensor
"ijk where i; j; k $ 0; 1; . . . ; N and "ijk only takes on the
values 0 or 1. This tensor represents the branching rules:

jm

im

R

FIG. 3 (color online). A simply connected region R in the
honeycomb lattice. We split the sites on the boundary links
into two sites labeled im and jm, where m $ 1; . . . ; n.

C

l

FIG. 2 (color online). The state ! contains nonlocal correla-
tions originating from the fact that strings always cross a curve C
an even number of times. These correlations can be measured by
a string operator W!C" (blue curve). For more general states, a
fattened string operator Wfat!C" (blue region) is necessary.

PRL 96, 110405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006

110405-2

loops cross 
boundary 

even number 
of times

� = ln 2
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Smooth boundary?

cannot be 
achieved for disc-
like region on a 

lattice

�� = SA + SB + SC

�SAB � SAC � SBC + SABC



Smooth boundary?

cannot be 
achieved for disc-
like region on a 

lattice

�� = SA + SB + SC

�SAB � SAC � SBC + SABC

challenging due to cancellation of large 
numbers, and smaller length scales

LL/2

L/4



QMC results
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the Toric Code

Isakov, Hastings, RGM  Nature Physics 7, 772 (2011)
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A B C D

• One can separate out this topological contribution:

• This “Topological Entanglement Entropy” is independent of 
Renyi index: relevant for all numerical methods

Spin Liquid state: Loop Gas

Hamma, Ionicioiu, Zanardi - Phys. Lett. A 337, 22 (2005)
    - Phys. Rev. A 71, 022315 (2005)

Kitaev and Preskill - Phys. Rev. Lett. 96, 110404 (2006)
Levin and Wen, - Phys. Rev. Lett. 96, 110405 (2006)
Flammia, Hamma, Hughes, Wen, Phys. Rev. Lett 103, 261601 (2009)
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DMRG
• Systems is split into “blocks”

• Really a Schmidt decomposition

| i =
X

i

ci| iL ⌦ | iR Full entanglement spectrum 
and all Sα readily available
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ed
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snaking path on cylinder



Example 1: J1-J2 
model
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Hongchen Jiang, Hong Yao, LB (2012)
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γ = 0.70 ± 0.02
= 0.72 ± 0.04

J2=0.50
J2=0.56

match to ln(2) = 0.69⋅⋅⋅

seems good...look more carefully



State dependence
• A basic characteristic of topological 

phases is ground state degeneracy

• For the Z2 case (toric code), it is two-
fold on the cylinder

Φ = 0 Φ = π

|0i |1i
I m



State dependence
• The EE depends upon the state

Φ = 0 Φ = π

0  �  ln 2 |0i, |1i
MES 

c.f. Yi Zhang 
et al, 2011

“minimally entangled states”, 
“minimum entropy states”

|±i = 1p
2
(|0i± |1i)

|0i |1i



State dependence
• The EE depends upon the state
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State dependence
• The EE depends upon the state

0  �  ln 2 |0i, |1i
MES 

c.f. Yi Zhang 
et al, 2011

|±i = 1p
2
(|0i± |1i)

|+i |�i

Y

x

�x

r,r+y

= �1

Y

x

�x

r,r+y

= +1

definite parity of loops around cylinder



State dependence
• The EE depends upon the state

0  �  ln 2 |0i, |1i
MES 

c.f. Yi Zhang 
et al, 2011
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S(|±i) = S(|0, 1i) + ln 2



Quasi-degeneracy

• Hamiltonian

Ly

He↵ = �h (|0ih1|+ |1ih0|)� h0 (|0ih0|� |1ih1|)

Lx
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Toric Code model
• Hamiltonian

HTC = �
X

s

As �
X

p
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A
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=
Y
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s+µ

Bp =
Y

µ
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p+µ

S =
ln 2

2
Ly � ln 2

Hongchen Jiang, Zhenghan Wang, LB (2012)



Perturbed Toric Code
• Hamiltonian:

• Phase diagram:

H = H
TC

�
X

i
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Tupitsyn et al, 
2010
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• Hamiltonian:

H = H
TC

�
X

i

[h
x

�x

i

+ h
z

�z

i

]

0 2 4 6 8 10 12 14 16
-1

0

1

2

3

4

5

0 2 4 6 8 10 12 14
-1

0

1

2

3

4

(a) hx=hz=h

0

-ln2

 

 

En
tro

py
 S

(L
y)

 h=0.2
 h=0.3
 h=0.4

 Ly

 

 

En
tro

py
 S

(L
y)

 G=+-1
 G=0

0

-ln2

(b) hx=0.3, hz=0.0 Ly



Perturbed Toric Code
• State dependence:

• The absolute ground state is a G 
eigenstate, |±〉, not a MES

hz = 0

[G,H] = 0G = |0ih1|+ |1ih0| =
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Perturbed Toric Code
• State dependence:

• The absolute ground state is a G 
eigenstate, |±〉, not a MES

hz = 0

[G,H] = 0G = |0ih1|+ |1ih0| =
Y
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i=(x,y)
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• State dependence: hz = 0
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Perturbed Toric Code
• State dependence: hz = 0

G|±i = ±|±i
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Kagome
• Hamiltonian

• Courtesy of Steve White:

H = J1
X

hiji

Si · Sj + J2
X

hhijii

Si · Sj

J1

J2
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C〉, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
〈C|"Si|C〉 = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)
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FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the

a Z2 state?

S. Yan et al, 
2010

We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q$ð ~ri%~rjÞh ~Si $ ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si $ ð ~Sj & ~SkÞ $ ~Sl $ ð ~Sm & ~SnÞi, where the loops consid-
ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as
expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S! ¼
ð1% !Þ%1log2tr"

!, 0 ' !<1, where " is a subsystem
density matrix. Scaling is expected as S! ’ #c% $, where
# is an !-dependent constant. $, the topological entangle-
ment entropy, is independent of! [77–79] and depends only
on the total quantum dimensionD as $ ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S! for cylinders
of fixed c and extrapolate in L%1 to L ! 1; a linear
extrapolation in c ! 0 yields $. Results are 1D mapping
independent. We show intermediate values of ! (Fig. 6),
which all show a clearly finite value of $, with a value very
consistent with $ ¼ 1; large-! results agree. Small-!
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
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cylinders, leading to a spin gap estimate of 0.13(1).
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Kagome

� =

⇢
0.698(8) J2 = 0.10
0.694(6) J2 = 0.15

[ ln(2) = 0.693⋅⋅⋅]



ν=1/2 FQHE

For example, � = 0.001(5) at h = 0.40. Therefore, our method allows us to unambiguously

extract the non-zero topological entanglement entropy � if and only if the toric-code model is

in a topologically ordered phase.

In the case of a purely electric perturbation, h
z

= 0, h
x

= h 6= 0, two loop operators

commute with H . Specifically, these are

G = G
y

=
L

xY

x=1

�x

x,y

, (S2)

G
x

=

L

yY

y=1

�x

x,y

. (S3)

In the low energy sector where A
s

= +1 for all s, G
y

is independent of y and G
x

is independent

of x. By construction, G and G
x

have eigenvalues ±1. The operator G
x

probes the presence or

absence of an electric particle at the end of the cylinder. This degree of freedom is not associated

to the ground state degeneracy, and indeed we find G
x

= +1 always in our numerics. The

operator G counts the parity of the number of electric flux lines winding around the cylinder, and

does operate in the topologically degenerate subspace. Physically, eigenstates of G are equal

weight superpositions of the vison and no-vison eigenstates, which are the MES, as discussed

in the main text. For h
z

= 0, the energy eigenstates must also be eigenstates of G, and the

splitting between them is expected to be expontially small in L
x

.

B Fractional quantum Hall model

We next consider the so-called Haldane model (21) on the honeycomb lattice filled with hard-

core bosons:

H = �t0
X

hhrr0ii

h
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r

ei�r
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Von Neumann vs. 
Renyi

strong 
subadditivity

correspondence 
to true entropy

dSn/dn 
<0

replica 
field 

theory

QMC

Both are expected to give universal TEE



Von Neumann vs. 
Renyi

strong 
subadditivity

correspondence 
to true entropy

dSn/dn 
<0

replica 
field 

theory

QMC

Numerical result: Renyi scales much worse



Trouble?

Hongcheng Jiang + LB (2013)

Maybe I should shorten 
this section and talk 
about HC’s new results?



Trouble?
• Naively extrapolated TEE



Series Expansion
• We can check the DMRG, and get 

some insight, from numerical series 
expansion

• We use the linked cluster method, 
where the series can be extracted from 
a study of exact solutions on small 
clusters

�µ
ij

toric code 
variables on 

links

clusters to O(h4)



Series Expansion
• Entanglement entropy is exactly linear 

in Ly until clusters span cylinder width 

�µ
ij

toric code 
variables on 

links

clusters to O(h4)

S↵ = c↵Ly � ln 2

c↵ =
1

2

✓
ln 2� 9↵

32
h4 +

3↵

↵� 1

h4

128

◆
h
x

= h, h
z

= 0

line 
entropy



Line Entropy

h
x

= h, h
z

= 0

hc ⇡ 0.33

reasonable agreement for O(h4) expansion



TEE
• TEE is subdominant term in an 

asymptotic large Ly expansion

• Reliable extraction is more difficult 
with increasing line entropy

c↵ =
1

2

✓
ln 2� 9↵

32
h4 +

3↵

↵� 1

h4

128

◆

large sensitivity of line entropy 
with increasing Renyi index: 

larger Ly needed to extract TEE?



TEE
• Running two point fits at Ly and Ly+2

non-monotonic behavior: still far from converging for Renyi entropies



TEE
• Correlation length criteria?

SvN determines TEE to < 1% for Ly/ξ ≈ 10



Kagome
• Problems even more severe



Kagome
• Problems even more severe

kagome



more on MES
• Long-range entanglement can arise 

even in non-exotic systems

• Symmetry breaking

H = �J
X

hiji

Sz

i

Sz

j

� h
X

i

Sx

i

h≲J: or|0i = |1i =



more on MES
• Schrödinger cat

H = �J
X

hiji

Sz

i

Sz

j

� h
X

i

Sx

i

h≲J: |±i = 1p
2( )±



Schrödinger cat

• Cat state is the global ground state

• BUT...undesirable

• Not physical: decoherence collapses the 
cat into a symmetry broken state

• Cannot directly measure local observables



Long-range 
entanglement

• The cat state has higher entanglement

• To get it requires capturing 
entanglement between farthest pairs of 
spins in the system

• DMRG will avoid this state for very long 
systems, finding MES (physical!)

S(|±i) = S(|0i, |1i) + ln 2



Long-range 
entanglement

• The cat state has higher entanglement

• To get it requires capturing 
entanglement between farthest pairs of 
spins in the system

• BUT, for shorter systems, or long 
simulations, the cat appears

S(|±i) = S(|0i, |1i) + ln 2



Cat states

• The “best” simulations find a 
superposition (partial cat)

• local quantities, e.g. magnetization of 
Ising model, can be any value 
between ±m

4

Fig.2(a) (black square) we can see that with the increase
of the number of state m0 (here m = m0), there is only
a tiny region with the MES and correct entanglement
entropy. This tiny region can become a little bit larger
if we increase the system size, e.g., N = 10 × 10 in (b)
compared with N = 12×6 in (a). However, if we decrease
the system size, instead of increasing it, we may not be
able to get the MES at all, such as N = 6 × 6, or even
smaller N = 4× 4 (not shown).
Therefore, the standard procedure is not efficient to

get the MES in finite systems. Instead, if we use the
improved procedure, we can get the MES easily and sys-
tematically. As seen in Fig 2, if the number of statesm0 is
larger than some critical valuesm0c, the whole region will
be the MES with correct entanglement entropy. One may
notice that the critical value m0c may slightly depend on
the number of states m1 kept in the first sweep. Gener-
ally, the larger m1 is, the smaller m0c will be, as shown
in the figure for both N = 12× 6 and 10× 10. Here, one
key point is that the entanglement entropy for the MES
does on the system length Lx. For example, the entan-
glement entropy for Lx = 12 is equal to that in the long
cylinder limit for Ly = 6, which is also true for Ly = 10,
and even smaller Ly = 4, as shown in Fig.2 and Fig.3.
Therefore, these results suggest that if we get the MES,
we can directly study the thermodynamic limit proper-
ties in finite systems, e.g., entanglement entropy, without
doing the finite-size extrapolation. Accordingly, the cor-
rect TEE can be extrapolated by fitting S(Ly) = αLy−γ
for systems with finite length, e.g., Lx = Ly and Lx = 12,
both are equal to the value in the long cylinder limit (see
Fig.3).

IV. TRANSVERSE-FIELD ISING MODEL

The TCM has the topologically ordered ground state,
for which our improved procedure indeed works nicely.
As we will show in this section, it also works for systems
with topologically trivial ground state, e.g., states with
spontaneously (internal) discrete symmetry breaking. To
show this, let’s consider the transverse field Ising chain

H = −
∑

〈ij〉

σz
i σ

z
j − h

∑

i

σx
i , (2)

where σx
i and σz

i are Pauli matrices on site i. This model
is known to have a topological trivial ground state in all
magnetic fields, and a second order phase transition at
critical field hc = 1.0[12]. Without magnetic field h = 0,
the ground state is a ferromagnet with all spins paral-
lel along z-axis. There are two possible ferromagnetic
ground states | ⇑〉 = ΠN

i=1| ↑〉i and | ⇓〉 = ΠN
i=1| ↓〉i,

where N is the total number of spins in the chain. The
ground states are simple product states, as expected far
from a quantum critical point. The system chooses one
of the two states on small external perturbations, such
as the transverse field h. That choice between the states
spontaneously breaks the Z2 reflection symmetry across

FIG. 4: (Color online) (a) Magnetization along the z-direction
mz = |〈σz〉|, and (b) von Neumann entanglement entropy ver-
sus the transverse magnetic field h with different system sizes
N , obtained using the improved procedure (see Fig.1(b) and
Table.I). Insets: (i) in (a) Magnetization mz and (b) entan-
glement entropy for N = 128, obtained using the standard
procedure (black square) and improved procedure (red star,
m1 = m0); (ii) log plot for mz = A|hc − h|β , where hc is
the critical field. The red dashed line denotes the results in
the thermodynamic limit. Here other parameters are nq = 4,
ε = 10−1, and m0 = 64.

the xy-plane, under which | ↑〉i is interchanged with | ↓〉i.
Above the quantum critical point, i.e., h > hc, a ground
state that is very different from | ⇑〉 and | ⇓〉 appears, in
which all spins are parallel to the applied field.

Similar to the TCM, the standard procedure can pick
up arbitrary linear superposition of the (quasi) degener-
ate states | ⇑〉 and | ⇓〉. Therefore, the corresponding
physical quantitiescan be any values between the mini-
mal and maximal values, e.g., magnetization and entan-
glement entropy in the insets of Fig4. On the contrary,
the improved procedure works nicely and allows us to
get the MES with correct ground state properties, e.g.,
magnetization mz = |〈σz〉| and entanglement entropy,
even quite close to the quantum phase transition point.
Therefore, we are able to study the thermodynamic limit
properties directly, by only working with finite systems.
Subsequently, the quantum phase transition point can



Collapse the cat

• It can be useful to select a MES by 
making small “observations” of the state

• This can be done in DMRG by 
introducing a “quench” - a short period 
of increased truncation error - followed 
by recovery
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Fig.2(a) (black square) we can see that with the increase
of the number of state m0 (here m = m0), there is only
a tiny region with the MES and correct entanglement
entropy. This tiny region can become a little bit larger
if we increase the system size, e.g., N = 10 × 10 in (b)
compared with N = 12×6 in (a). However, if we decrease
the system size, instead of increasing it, we may not be
able to get the MES at all, such as N = 6 × 6, or even
smaller N = 4× 4 (not shown).
Therefore, the standard procedure is not efficient to

get the MES in finite systems. Instead, if we use the
improved procedure, we can get the MES easily and sys-
tematically. As seen in Fig 2, if the number of statesm0 is
larger than some critical valuesm0c, the whole region will
be the MES with correct entanglement entropy. One may
notice that the critical value m0c may slightly depend on
the number of states m1 kept in the first sweep. Gener-
ally, the larger m1 is, the smaller m0c will be, as shown
in the figure for both N = 12× 6 and 10× 10. Here, one
key point is that the entanglement entropy for the MES
does on the system length Lx. For example, the entan-
glement entropy for Lx = 12 is equal to that in the long
cylinder limit for Ly = 6, which is also true for Ly = 10,
and even smaller Ly = 4, as shown in Fig.2 and Fig.3.
Therefore, these results suggest that if we get the MES,
we can directly study the thermodynamic limit proper-
ties in finite systems, e.g., entanglement entropy, without
doing the finite-size extrapolation. Accordingly, the cor-
rect TEE can be extrapolated by fitting S(Ly) = αLy−γ
for systems with finite length, e.g., Lx = Ly and Lx = 12,
both are equal to the value in the long cylinder limit (see
Fig.3).

IV. TRANSVERSE-FIELD ISING MODEL

The TCM has the topologically ordered ground state,
for which our improved procedure indeed works nicely.
As we will show in this section, it also works for systems
with topologically trivial ground state, e.g., states with
spontaneously (internal) discrete symmetry breaking. To
show this, let’s consider the transverse field Ising chain

H = −
∑

〈ij〉

σz
i σ

z
j − h

∑

i

σx
i , (2)

where σx
i and σz

i are Pauli matrices on site i. This model
is known to have a topological trivial ground state in all
magnetic fields, and a second order phase transition at
critical field hc = 1.0[12]. Without magnetic field h = 0,
the ground state is a ferromagnet with all spins paral-
lel along z-axis. There are two possible ferromagnetic
ground states | ⇑〉 = ΠN

i=1| ↑〉i and | ⇓〉 = ΠN
i=1| ↓〉i,

where N is the total number of spins in the chain. The
ground states are simple product states, as expected far
from a quantum critical point. The system chooses one
of the two states on small external perturbations, such
as the transverse field h. That choice between the states
spontaneously breaks the Z2 reflection symmetry across

FIG. 4: (Color online) (a) Magnetization along the z-direction
mz = |〈σz〉|, and (b) von Neumann entanglement entropy ver-
sus the transverse magnetic field h with different system sizes
N , obtained using the improved procedure (see Fig.1(b) and
Table.I). Insets: (i) in (a) Magnetization mz and (b) entan-
glement entropy for N = 128, obtained using the standard
procedure (black square) and improved procedure (red star,
m1 = m0); (ii) log plot for mz = A|hc − h|β , where hc is
the critical field. The red dashed line denotes the results in
the thermodynamic limit. Here other parameters are nq = 4,
ε = 10−1, and m0 = 64.

the xy-plane, under which | ↑〉i is interchanged with | ↓〉i.
Above the quantum critical point, i.e., h > hc, a ground
state that is very different from | ⇑〉 and | ⇓〉 appears, in
which all spins are parallel to the applied field.

Similar to the TCM, the standard procedure can pick
up arbitrary linear superposition of the (quasi) degener-
ate states | ⇑〉 and | ⇓〉. Therefore, the corresponding
physical quantitiescan be any values between the mini-
mal and maximal values, e.g., magnetization and entan-
glement entropy in the insets of Fig4. On the contrary,
the improved procedure works nicely and allows us to
get the MES with correct ground state properties, e.g.,
magnetization mz = |〈σz〉| and entanglement entropy,
even quite close to the quantum phase transition point.
Therefore, we are able to study the thermodynamic limit
properties directly, by only working with finite systems.
Subsequently, the quantum phase transition point can

• This procedure allows 
a direct measurement 
of order parameters, 
critical properties, etc

• One obtains a MES 
without a priori 
knowledge of broken 
symmetry, topological 
order, etc., even for 
“short” systems



Fin
• DMRG is remarkably efficient at obtaining TEE for 

realistic quantum spin models with short 
correlation lengths from the von Neumann entropy

• Empirically, the scaling limit occurs only in 
prohibitively large systems for the Renyi entropies

• Definitive identification of the kagome lattice QSL 
as a Z2 topological phase.  In the future we should 
use the methods to push connections to 
experiments on e.g. herbertsmithite

• MES are also useful for study of more 
conventional phases


