Hydrodynamic theory for Higgs-confining and Coulomb phases in quantum spin ice

Shigeki Onoda

Condensed Matter Theory Lab. & Quantum Matter Theory Research Team, RIKEN

Thanks to: Y. Tanaka, Y. Kato (RIKEN), Y.-J. Kao (Natl. Taiwan Univ.), L. Balents, S. Lee (KITP, UCSB)

SO-Tanaka, PRL 105, 047201 (2010), PRB 83, 094411 (2011).
SO, J. Phys.: Conf. Series 320, 012065 (2011).
L.-J. Chang, SO, Y. Su et al. Nature Comm. 3:992 (2012).
S. Lee, SO, L. Balents, PRB 86, 104412 (2012).
SO, J. Phys.: Cond. Matter, Topical Review (invited).

SIKEP

Diamond lattice

Diamond

 $(Dy,Ho)_2Ti_2O_7$ Classical spin ice

 $Yb_2Ti_2O_7$, $Pr_2Zr_2O_7$ Quantum spin ice

Cut, Carat, Clarity

Diamond lattice

RIKEN

courtesy of Y. Yasui Pyrochlore lattice

Spin ice & emergent monopoles

AF Ising model on a pyrochlore lattice

Moessner-Sondhi

Experiments and numerics on dipolar spin ice

Harris, Ramirez, Bramwell, Sakakibara, Hiroi, Maeno, Gingras

Dy₂Ti₂O₇, Ho₂Ti₂O₇

SIKEN

Castelnovo-Moessner-Songhi, Nature 451, 42-45 (2008)

Metamagnetic transition under H // (111) → liquid-gas phase transition of monopoles

Exp., Sakakibara et al., Phys. Rev. Lett. 90, 207205 (2003).

Dipolar spin correlations: Coulomb physics

• O(N) Heisenberg antiferromagnet

S.V. Isakov, K. Gregor, R. Moessner, S. L. Sondhi, *Phys. Rev. Lett.* 93, 167204 (2004).

Works well for N=1 (Ising) and infinity.

(hh0)

S.T. Bramwell and M.J.P. Gingras

cf. pinch-point singularity C. L. Henley, *Phys. Rev. B* 71 014424 (2005) divergence-free condition, i.e., spin-ice rule div $M \rightarrow 0$

More recent experiments on dipolar spin ice: Morris et al., Fennell et al.

(100)

Classical to quantum spin ice

Spin-flip exchange interaction $\delta J S_r^+ S_{r'}^-$

c.f. Quite **different** from a quantum tunneling of protons in water ice

$$\mathcal{H} = J \sum_{\langle i,j \rangle} S_i^z S_j^z - \Gamma \sum_i S_i^x$$

 $\Rightarrow Effective ring-exchange$ $\Rightarrow A fixed flux$ $<math>\phi = curl A = 0, or \pi$

Transfer monopole charge Kinetic energy

Classical-to-quantum Coulomb-phase physics

• Classical case: particles obeying a Coulombic law

$$H_{cl} \approx \frac{1}{8\pi} \mathbf{E}^2 - \mu \psi^+ \psi + u \psi^+ \psi \psi^+ \psi \qquad \longrightarrow \quad \text{Coulomb propagator}$$
$$\mathbf{E} = \hat{S}^z \mathbf{Z} \rightarrow \nabla \cdot \mathbf{E} = g(\psi^+ \psi)$$

 ψ^+,ψ : Spinon operators creating and annihilating the gauge charge • Quantum case: kinetic energy with gauge field (QED)

 $\begin{aligned} & \mathsf{U}(1) \text{ quantum spin liquid, unless condensed} \\ & H_{qm} \approx \frac{1}{8\pi} (\mathbf{E}^2 + \mathbf{B}^2) + \frac{1}{2m} \psi^+ (-i\hbar \nabla + g\mathbf{A})^2 \psi - \mu \psi^+ \psi + u \psi^+ \psi \psi^+ \psi \\ & \nabla \cdot \mathbf{E} = g(\psi^+ \psi) \leftarrow \mathbf{E} = \hat{S}^z \mathbf{Z} \\ & \mathbf{B} = \nabla \times \mathbf{A} \leftarrow \hat{S}_r^\pm = \psi_{r\pm d}^+ e^{\pm iA_{r+d,r-d}} \psi_{r\mp d} \\ & [A_{r+d,r-d}, E_{r+d,r-d}] = i \end{aligned}$

Bose condensation of spinons $\psi \rightarrow$ Higgs transition, monopole supercurrent

Gapless "Photon" excitations in a quantum Coulomb phase (T=0)

Lattice U(1) gauge theory Hamiltonian

$$\mathcal{H}'_{U(1)} = \frac{\mathcal{U}}{2} \sum_{\mathbf{r} \in A, n} \left[(\nabla_{O} \times \mathcal{A})_{(\mathbf{r}, n)} \right]^{2} \qquad \mathcal{U} \sim \delta^{3} J$$

$$+ \frac{1}{2\mathcal{K}} \sum_{\mathbf{s} \in A', m} \left[\frac{\partial \mathcal{A}_{(\mathbf{s}, m)}}{\partial t} \right]^{2} \qquad \mathcal{K} \sim 1/J$$

$$+ \frac{\mathcal{W}}{2} \sum_{\mathbf{s} \in A', m} \left[(\nabla_{O} \times \nabla_{O} \times \mathcal{A})_{(\mathbf{s}, m)} \right]^{2} \qquad \mathbf{He}$$

$$\mathbf{Be}$$

$$\frac{\omega(k)}{\sqrt{\mathsf{UK}}} = \int_{-2\pi}^{-2\pi} \int_{0}^{0} \int_{(k_{x}a_{0}, k_{x}a_{0}, 0)}^{0} \int_{2\pi}^{2\pi} \int_{2\pi}^{0} \int_{2\pi}$$

SIKE

Velocity c
$$\sim \delta^{3/2} J$$

A measure of quantum Coulomb regime T < $\delta^{3/2}J \sim 1 K$ (Yb2Ti2O7)

Hermele-Fischer-Balents 2004 Benton-Sikora-Shannon 2012

In the Higgs phase, however, absorbed into Higgs bosons.

At a T > 0 Coulomb phase no well defined photons!

Candidate pyrochlore magnets A₂B₂O₇

Specific examples: Derivation of realistic superexchange int.

Anderson's superexchange int. \rightarrow Project onto the gr. doublets

Effective pseudospin-1/2 model

Anisotropic superexchange interaction [SO-Tanaka (2009, 2010), SO (2011)]

SIK=r

Interacting U(1) Higgs model: QED with charged bosonic spinons

S. Lee, S.O., L. Balents $\eta_a = \pm 1[a \in A(B)] \left| \mathsf{PRB} (2012) \right|$ $S_i^z = \eta_a E_{ab}$ $S_i^+ = \Phi_a^\dagger e^{iA_{ab}} \Phi_b$ $\Phi_a = e^{-i\varphi_a}$ Gauss' law $Q_a = (divE)_a$ $\Phi_a^{\dagger} \Phi_a = 1$ $[A_{ab}, E_{ab}] = i$ **Monopolar spinons** (Higgs bosons) $[\Phi_a, Q_a] = \Phi_a$ Increasing/decreasing the charge $H_{QED} = \frac{J_{zz}}{2} \sum_{\mathbf{r}} Q_{\mathbf{r}}^2 - J_{\pm} \sum_{\mathbf{r}} \sum_{\mu \neq \nu} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{\dagger} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}} \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{-\eta_{\mathbf{r}}} \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}}^{+\eta_{\mathbf{r}}}$ Starting from spin ice $+\frac{J_{\pm\pm}}{2}\sum \sum (\gamma_{\mu\nu}^{-2\eta_{\mathbf{r}}}\Phi_{\mathbf{r}}^{\dagger}\Phi_{\mathbf{r}}^{\dagger}\Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}\Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}}(\mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{\eta_{\mathbf{r}}}\mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}}^{\eta_{\mathbf{r}}})$ +h.c) with deconfined spinons **+a** $(\mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{z}) (\gamma_{\mu\nu}^{-\eta_{\mathbf{r}}} \Phi_{\mathbf{r}}^{\dagger} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}} \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}}^{\eta_{\mathbf{r}}}) + h.c.) + \text{const.}$ $+J_{z\pm}$ $\mathbf{r} \quad \mu \neq \nu$ Non-Kramers doublets (integer spins) (Pr) **SIKEN**

Classification of mean-field phases

Let's study the case of integer spins: non-Kramers doublets (Pr)

	$\langle s^z_{\mathbf{r},\mathbf{r}\pm\mathbf{e}_\mu} angle$	$\langle s^{\pm}_{{\bf r},{\bf r}\pm{\bf e}_{\mu}}\rangle$	$\langle \Phi_{\mathbf{r}} \rangle$	$\langle \Phi_{\mathbf{r}} \Phi_{\mathbf{r}} \rangle$	$\langle \Phi^{\dagger}_{\mathbf{r}} \Phi_{\mathbf{r}\pm\mathbf{e}_{\mu}} \rangle$
Ising order	$\neq 0$	0	0	0	0
(confined)					
QSL					
U(1)	0	$\neq 0$	0	0	0
Z_2	0	$\neq 0$	0	$\neq 0$	0
(charge-2 Higgs)					
XY order					
U(1)	0	$\neq 0$	0	0	$\neq 0$
Classical	0	$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$
(confined Higgs)					

S. Lee, SO, L. Balents, PRB 86, 104412 (2012).

Mean-field phase diagram in the case of non-Kramers doublets (Pr)

Is $Pr_2Zr_2O_7$ a U(1) QSL?

For exchange parameters for Pr₂Zr₂O₇ (1/N) expansion

Dipolar spin ice

ARTICLE

Received 27 Jan 2012 | Accepted 5 Jul 2012 | Published 7 Aug 2012

DOI: 10.1038/ncomms1989

Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇

Lieh-Jeng Chang^{1,2}, Shigeki Onoda³, Yixi Su⁴, Ying-Jer Kao⁵, Ku-Ding Tsuei⁶, Yukio Yasui^{7,8}, Kazuhisa Kakurai² & Martin Richard Lees⁹

Next talk by L.-J. Chang!

Evidence of the 1st–order phase ferromagnetic transition at ~0.21 K

c.f. Sample dependence: the best available sample shows FM, while others does not. Hodges et al, Thompson et al, Gardner et al, Ross et al

Phase diagram and the hypothetical magnetic structure

Interacting U(1) Higgs model: QED with charged bosonic spinons revisited...

$$\begin{split} & \begin{array}{c} & S_i^z = \eta_a E_{ab} \\ & S_i^+ = \Phi_a^\dagger e^{iA_{ab}} \Phi_b \\ & \begin{array}{c} & Gauss' \, Iaw Q_a = (divE)_a \\ & & \left[A_{ab}, E_{ab}\right] = i \\ & & \left[\Phi_a, Q_a\right] = \Phi_a \\ \end{split} \end{split}$$

$$\eta_a = \pm 1[a \in A(B)]$$

$$\Phi_a = e^{-i\varphi_a}$$

$$\Phi_a^{\dagger}\Phi_a = 1$$

Monopolar spinons (Higgs bosons) Increasing/decreasing the charge

S.O.

Starting from spin ice with deconfined spinons

$$\begin{split} H_{QED} &= \frac{J_{zz}}{2} \sum_{\mathbf{r}} Q_{\mathbf{r}}^{2} - J_{\pm} \sum_{\mathbf{r}} \sum_{\mu \neq \nu} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{\dagger} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}} \left\{ \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{-\eta_{\mathbf{r}}} \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{s}_{\mu}}^{-\eta_{\mathbf{r}}} \mathbf{s}_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}$$

Effects of thermal fluctuations on gauge fields

• Immediately kill the gauge fields and confine spinons c.f. Fradkin, Shenker 1986

Castro-Neto, Pujol, Fradkin 2006

1-loop calculations beyond gauge mean-field theory

Quantum-classical crossover of Coulomb phases

Summary

- Quantum spin ice for $(Pr,Yb)_2TM_2O_7$
 - Magnetic monopole charges ($\nabla \cdot M \neq 0$) carried by spinons!
 - \rightarrow Emergent gapless U(1) spin liquid (Fictitious dual QED)
 - → Higgs transitions to classical spin-gapped ferromagnets "Superconductivity" of magnetic monopoles (gauge group U1 -> Z2)
 - \rightarrow Neutron-scattering on high-quality single crystal Yb₂Ti₂O₇
 - 1. deconfined bosonic spinons carrying monopole charge in the high-T phase
 - 2. Confined spinons to form classical ferromag. in the low-T phase

U(1) quantum spin liquid? Remnants of pinch-point singularity