Designing permanent magnets from first-principles

Hisazumi Akai¹⁾ and Masako Ogura²⁾

¹⁾ISSP, University of Tokyo ²⁾Department of Physics, Osaka University

Permanent magnets (PM)

- Magnetization
- Coercivity
- Temperature characteristics

How to use magnetic field?

Using magnetic field produced by magnets

Closed magnetic circuit

Magnetic field cannot be used

Actual situation

Magnet is under magnetic field

PM = ferro + coercivity

- PM is used at the second quadrant
- Without coercivity, PM cannot be used.

Maximum energy product

$$\blacksquare$$
 $B=M+\mu_0H$

Ideal PM

Hard PM and soft PM

H_c is much smaller than magnetic anisotropy.

Magnetic domain

- Domain structures
- **■** Initially no net magnetization
- **■** Under field, preferable domain expands

Hard PM

- Strong magnetic anisotropy
 - Crystalline magnetic anisotropy
 - Shape magnetic anisotropy
- Magnetic domain structure
 - Pinning of domain wall
 - Single domain structure

- Single-domain structure →fine particles
- Acicular crystal →spinodal decomposition
- Pinning →defects
- Spin-orbit coupling →rare-earth
- Orbital moment →orbital degeneracy

Designing permanent magnets from first-principles

- How?
- Possible?
- Present status?

First-principles electronic structure calculation?

- Based on the density functional theory (DFT)
- \blacksquare Ab-initio, yet approximations needed for E_{xc}
 - Local approximation (LDA, GGA, ...)
 - Local + something (SIC, hybrid, ...)
 - A bit better approaches (EXX-OEP, EXX+RPA, GW, ...)
- Mainly for crystals, i.e. periodic systems
 - APW, KKR, their linearized versions, pseudo-potential, ...
- Various kinds of extension
 - Impurity, disorder, clusters, multilayers, surfaces, interfaces,...
 - Structural optimization, ab-initio molecular dynamics,...

What can be discussed?

- Properties at ground state
 - Electron density n, spin density m
 - Quantities that are functional of n and m
 - total energy, magnetization, electrostatic potential, ...
 - First order perturbation to the total energy
 - static susceptibility, hyperfine fields, isomer shifts
 - Ground state under constraint
 - *E* [*m*], ...
 - Second order perturbation such as susceptibility,
 conductivity, ... not completely justifiable, marginal

Slightly beyond DFT -yet acceptable

Local susceptibility χ_{ij} , exchange constants J_{ij}

$$J_{ij} = \frac{1}{\chi_{ii}} \chi_{ij} \frac{1}{\chi_{jj}}$$

- Atomic pair interactions
- Conductivity σ_{\bullet} optical conductivity $\sigma_{\mu\nu}(\omega)$
- Temperature effects (through Fermi distribution function)
- Combination with many-body perturbation theories

Designing permanent magnets

- First step: simulation of magnetic systems
- Second step: simulation of permanent magnets
- Third step: design permanent magnets

First step

simulation of magnetic systems

- Magnetization
- Curie temperature
- Crystal magnetic anisotropy

Magnetization

Accurate enough for materials used for permanent magnets

Slater-Pauling curves (1991)

Magnetization of 3d disordered alloys

Well described within DFT-LDA

KKR-CPA-LDA

Curie temperature

Method applicable for which local magnetic moment well developed

Calculation of J_{ij}

Map to Heisenberg model

Apply statistical method

Curie temperature Slater-Pauling curves

C. Takahashi et al

J. Phys. Cond. Matter, 19 (2007) 365233.

Crystalline magnetic anisotropy of transition metals

- Framework of DFT (More or less)
 - spin-orbit coupling
- Cubic phase –numerically difficult

Total energy ~1000Ry

Cohesive energy ~0.3Ry

Magnetic energy ~0.02Ry

Crystal structure energy ~0.02Ry

Magnetic structure energy ~0.01Ry

Crystalline magnetic anisotropy energy 0.0000001 ~ 0.00001Ry

Numerical precision of theory 10⁻⁶Ry

MAE of rare-earths

- LDA not works well
 - self-interaction ≅ exchange
 - Introducing "orbitals" needed
 - SIC(self-interaction correction) a better choice
 - LDA+U (i.e. Hartree-Fock approximation) not preferable
- Spin-orbit coupling
- Hybridization of f-orbital yet important
- Less numerical difficulty

MAE and orbital degeneracy

- Unquenched orbital moment
- Hardly occurs in metals except for rare earths
 - Narrow bands comparable to spin-orbit splitting
 - $\text{Li}_2(\text{Li}_{0.7}\text{Fe}_{0.3})\text{N}$

$$Li_2(Li_{0.7}Fe_{0.3})N$$

MAE field 2200kOe, coercivity field 120kOe

Aims at this stage

- Reproduce basic properties of magnetic materials quantitatively—quantum simulation
- Design new magnetic materials—CMD
 - Larger magnetization
 - Higher Curie temperature
 - Strong magnetic anisotropy
- Design preferable materials for permanent magnets
 - No rare-earth metals
 - No environmental problem
 - Low price

Next step -design permanent magnets

- Coercivity mechanism
 - Phenomenological description ⇒ microscopic theory
 - How to realize a magnetic single-domain
 - Spinodal decomposition
 - Possible sintering process
 - Grains, grain surfaces, and related properties
 - Grain boundary
 - Pinning mechanism of domain walls
- High temperature properties
 - Predictive power without relying on specific models

Some examples

- Method
 - Local density approximation of DFT
 - KKR Green's function method
- Calculation of *J* _{ij}
- MAE (magnetic anisotropy energy) Slater-Pauling curves
- MAE of SmFeN

Summary

- Towards designing permanent magnets
 - 1st step description of magnetic materials
 - 2nd step description of permanent magnets
 - 3rd step designing permanent magnets
- Overview of the first-principles approach
 - $-J_{ii}$
 - $-T_{\rm c}$
 - $-K_1$