Spin liquid phases in the SU(4) and SU(3) Heisenberg model on the honeycomb lattice

K. Penc Institute for Solid State Physics and Optics, Wigner Research Centre, Budapest, Hungary and Institute for Solid State Physics, The University of Tokyo, Kashiwa

Collaborators:

Miklós Lajkó Wigner Research Centre, Budapest

Philippe Corboz ETH Zürich

Frédéric Mila EPF Lausanne

Andreas Läuchli Uni. Innsbruck

Supported by: Hungarian OTKA and Swiss National Foundation

What are the SU(N) symmetric Heisenberg models that we are interested in?

N species on each site that are treated equally.

```
\mathcal{P}_{ij}|\beta_i\alpha_j\rangle = |\alpha_i\beta_j\rangle
```

simplest example: SU(2) S=1/2 (fundamental representation) [but not the S=1 !]

Why do we care about SU(N) Heisenberg models?

- (i) Spin models
- (ii) Spin-orbital models
- (iii) f-electron systems
- (iv) Cold alkaline-earth atoms in optical lattices

SU(4) highest symmetry of spin-orbital model (e.g. LiNiO₂ and NaNiO₂)

Spin-orbital models : Microscopic theory

+ the standard perturbation theory to get the effective Hamiltonian.

Spin-orbital models: Kugel-Khomskii Hamiltonian

$$\mathcal{H}_{ij} = -\frac{2}{\tilde{U}+2J_p} \left[2tt'\mathbf{T}_i\mathbf{T}_j - 4tt'T_i^yT_j^y + (t-t')^2(\mathbf{n}_{ij}^z\mathbf{T}_i)(\mathbf{n}_{ij}^z\mathbf{T}_j) + \frac{1}{2}(t^2 - t'^2)\left(\mathbf{n}_{ij}^z\mathbf{T}_i + \mathbf{n}_{ij}^z\mathbf{T}_j\right) + \frac{1}{4}(t^2 + t'^2) \right] \mathcal{P}_{ij}^{S=0} \\ -\frac{2}{\tilde{U}} \left[4tt'T_i^yT_j^y + \frac{1}{2}(t^2 + t'^2) + \frac{1}{2}(t^2 - t'^2)\left(\mathbf{n}_{ij}^z\mathbf{T}_i + \mathbf{n}_{ij}^z\mathbf{T}_j\right) \right] \mathcal{P}_{ij}^{S=0} \\ -\frac{2}{\tilde{U}-J_H} \left[-2tt'\mathbf{T}_i\mathbf{T}_j - (t-t')^2(\mathbf{n}_{ij}^z\mathbf{T}_i)(\mathbf{n}_{ij}^z\mathbf{T}_j) + \frac{1}{4}(t^2 + t'^2) \right] \mathcal{P}_{ij}^{S=1}$$

$$\mathcal{P}_{ij}^{S=0} = \frac{1}{4} - \mathbf{S}_i \mathbf{S}_j \qquad \qquad \mathcal{P}_{ij}^{S=1} = \mathbf{S}_i \mathbf{S}_j + \frac{3}{4}$$

For t=t' and $J_p=0$ $\mathcal{H}_{ij}=\frac{4t^2}{\tilde{U}}\left(\mathbf{T}_i\mathbf{T}_j+\frac{3}{4}\right)\left(\mathbf{S}_i\mathbf{S}_j-\frac{1}{4}\right)+\frac{4t^2}{\tilde{U}-J_H}\left(\mathbf{T}_i\mathbf{T}_j-\frac{1}{4}\right)\left(\mathbf{S}_i\mathbf{S}_j+\frac{3}{4}\right)$ SU(2)×SU(2) symmetric

t=t' and
$$J_p = J_H = 0$$

 $\mathcal{H}_{ij} = \frac{8t^2}{\tilde{U}} \Big(\mathbf{T}_i \mathbf{T}_j + \frac{1}{4} \Big) \Big(\mathbf{s}_i \mathbf{s}_j + \frac{1}{4} \Big) \sim \mathcal{P}_{ij}$ permutation
 $\mathcal{SU}(4)$ symmetric operator

SU(4) on honeycomb lattice

Motivation: Spin-Orbital Short-Range Order on a Honeycomb-Based Lattice

S. Nakatsuji^{1,*}, K. Kuga¹, K. Kimura¹, R. Satake², N. Katayama², E. Nishibori², H. Sawa², R. Ishii³, M. Hagiwara³, F. Bridges⁴, T. U. Ito⁵, W. Higemoto⁵, Y. Karaki⁶, M. Halim⁷, A. A. Nugroho⁷, J. A. Rodriguez-Rivera^{8,9}, M. A. Green^{8,9}, C. Broholm^{8,10}

Ba₃CuSb₂O₉

We consider the Kugel-Khomskii model for the S=1/2 and two Cu orbitals at the symmetric SU(4) point.

CeB_6 : almost SU(4) on cubic lattice

Anisotropic SU(4) spin wave treatment sufficient. (R. Shiina et al, J. Phys. Soc. Jpn. **66**, 1741 (1997)

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Jacob F. Sherson et al., Nature 467, 68 (2010) [bosonic]

also Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level W. S. Bakr *et al.*, Science **329**, 547 (2010) [bosonic]

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Jacob F. Sherson et al., Nature 467, 68 (2010) [bosonic]

also

Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level W. S. Bakr *et al.*, Science **329**, 547 (2010) [bosonic]

SU(6) Mott physics in cold atoms

An SU(6) Mott insulator of an atomic **Fermi** gas realized by large-spin Pomeranchuk cooling

Shintaro Taie, Rekishu Yamazaki, Seiji Sugawa & Yoshiro Takahashi

Nature Physics 8, 825-830 (2012) doi:10.1038/nphys2430

SU(2) vs. SU(3) – two sites $\mathcal{P}_{12}(|\alpha\beta\rangle - |\beta\alpha\rangle) = -(|\alpha\beta\rangle - |\beta\alpha\rangle) \quad \text{E}=-1$, odd wave function $\mathcal{H} = \mathcal{P}_{12} \quad \mathcal{P}_{12}(|\alpha\beta\rangle + |\beta\alpha\rangle) = +(|\alpha\beta\rangle + |\beta\alpha\rangle) \quad \text{E}=+1$, even wave function

 $|ac\rangle + |ca\rangle$, and $|bc\rangle + |cb\rangle$.

even (symmetrical)

 $\square |\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle \text{ triplet}$ even (symmetrical)

SU(3) irreps on 3 sites

Addition of three SU(3) spins (27 states):

$$3 \times 3 \times 3 = 1 + 2 \times 8 + 10$$
$$\Box \otimes \Box \otimes \Box = = 2 \times 10 \oplus 2 \times 100 \oplus 100$$

SU(3) singlet

$$= |ABC\rangle + |CAB\rangle + |BCA\rangle - |BAC\rangle - |ACB\rangle - |BCA\rangle$$

spins fully antisymmetrized

in the SU(3) singlet the spins are fully entangled: we cannot write it in a product form

What methods do we use?

(i) Variational – site factorized wave function
(ii) Flavor wave calculations
(iii) Exact diagonalization of small clusters
(iv) iPEPS: infinite project entangled pair states(variational approach based on tensor ansatz)
(v) Variational – Gutzwiller projected fermionic wave functions

Variational (classical) approach

a site-product wave function for e.g. SU(3):

$$|\Psi\rangle = \prod_{i} |\psi_{i}\rangle$$
$$|\psi_{i}\rangle = d_{A,i} |A\rangle_{i} + d_{B,i} |B\rangle_{i} + d_{C,i} |C\rangle_{i}$$

$$E_{\text{var}} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = J \sum_{\langle i, j \rangle} \left| \mathbf{d}_i \cdot \bar{\mathbf{d}}_j \right|^2$$

minimal, when the \mathbf{d}_i and \mathbf{d}_j on the bond are orthogonal

SU(3) flavour-wave theory

$$\mathcal{P}_{ij} = \sum_{\mu,\nu \in \{A,B,C\}} a^{\dagger}_{\mu,i} a^{\dagger}_{\nu,j} a_{\nu,i} a_{\mu,j}$$

1/M expansion:

$$\begin{split} \tilde{a}_{A}^{\dagger}, \tilde{a}_{A} &\to \sqrt{M - \tilde{a}_{B}^{\dagger} \tilde{a}_{B} - \tilde{a}_{C}^{\dagger} \tilde{a}_{C}} \\ &\to \sqrt{M} - \frac{1}{2\sqrt{M}} \begin{pmatrix} \tilde{a}_{B}^{\dagger} \tilde{a}_{B} + \tilde{a}_{C}^{\dagger} \tilde{a}_{C} \end{pmatrix} + \dots \\ & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet \\ \end{split}$$
Holstein-Primakoff $\mathcal{H} = (a^{\dagger} + b)(a + b^{\dagger})$

quadratic in operators: we know how to diagonalize it (spin wave)

$$\mathcal{H} = -MJL + M\sum_{\nu}\sum_{\mathbf{k}}\omega_{\nu}(\mathbf{k})\left(\alpha_{\nu}^{\dagger}(\mathbf{k})\alpha_{\nu}(\mathbf{k}) + \frac{1}{2}\right)$$

The fate of SU(3) on triangular lattice

SU(2) frustrated!

crystal of singlets?

"classical" solution? SU(3) classical state is perfectly happy on the triangular lattice - the 3 mutually perpendicular **d**'s form a 3 sublattice structure.

H. Tsunetsugu and M. Arikawa, J. Phys. Soc. Jpn. **75**, 083701 (2006) [NiGa2S4, Nakatsuji]

A. M. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205/1-4 (2006)

SU(3) on triangular lattice - exact diagonalization

Signature of SU(3) breaking in the excitation spectrum: Anderson towers compatible with 3 sublattice order

C2 - Casimir operator, analog of the total spin S^2

K. Penc, A. M. Läuchli, in <u>Introduction to Frustrated</u> <u>Magnetism', p. 331-362</u>, Springer Series in Solid-State Sciences, Vol. **164**, eds. C. Lacroix, F. Mila, and P. Mendels (Springer, 2011)

SU(3) square lattice, classical solutions: macroscopically degenerate

SU(3) square lattice, classical solutions: macroscopically degenerate

All bonds happy at the mean field level, frustration due to abundance of choices

SU(3) square lattice, classical solutions: macroscopically degenerate

All bonds happy at the mean field level, frustration due to abundance of choices

Order by disorder: the zero point energy of the quantum fluctuations over a mean field solution selects the ground state

$$E_{ZP} = \frac{M}{2} \sum_{\nu} \sum_{\mathbf{k}} \omega_{\nu}(\mathbf{k})$$

structure of the flavor wave Hamiltonian

$$\begin{aligned} \mathcal{H} &= & \qquad \mathbf{a} \\ &+ (a^{\dagger} + b)(b^{\dagger} + a) \\ &+ (b^{\dagger} + c)(c^{\dagger} + b) \end{aligned} \qquad \begin{array}{c} \mathbf{b} \\ \mathbf{c} \end{aligned}$$

each term separately $E_{ZP} = 0$

the 3-site term gives $E_{ZP} > 0$

energy minimal if next nearest neighbor spins are also of different color

SU(4) irreps on 4 sites

Addition of four SU(4) spins (256 states):

SU(4) irreps on 4 sites

Addition of four SU(4) spins (256 states):

SU(4) on 2D-square lattice

SU(4) on 2D-square lattice: iPEPS

D = 12 and a unit cell 4×2

dimerization and Neel-like state: both spatial and the SU(4) symmetry is broken

the 6 dimensional irreducible representation is realized on the dimers, can Neel order

2-step scenario:

(i) Dimerization: 6-dimensional irreps are formed(ii) the 6-imensional irreps can

possibly Néel order

P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, F. Mila, PRL **107**, 215301 (2011).

SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory

Basic building blocks: nearest (mean field) and next nearest (fluctuations) neighbor colors different.

Order by disorder does not work!

SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory

Basic building blocks: nearest (mean field) and next nearest (fluctuations) neighbor colors different.

Order by disorder does not work!

SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory

Basic building blocks: nearest (mean field) and next nearest (fluctuations) neighbor colors different.

Order by disorder does not work!

P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, F. Mila: Phys. Rev. X **2**, 041013/1-11 (2012).

Summary of iPEPS results [SU(4) honeycomb]

- dimerization vanishes

 (actually no point group symmetry breaking)
- local magnetization vanishes (no SU(4) symmetry breaking)

spin-orbital liquid

How to characterize it?

fermionic representation:

 $\mathcal{P}_{ij} = \sum f_{\alpha,i}^{\dagger} f_{\beta,i} f_{\beta,i}^{\dagger} f_{\alpha,i}$ $\mu,\nu\in$ colors

$$\begin{split} \mathcal{P}_{ij}^{\mathrm{MF}} &= \sum_{\alpha,\beta\in\mathrm{colors}} \langle f_{\beta,i} f_{\beta,j}^{\dagger} \rangle f_{\alpha,i}^{\dagger} f_{\alpha,j} \\ &= -\sum_{\alpha\in\mathrm{colors}} t_{ij}^{\alpha} f_{\alpha,i}^{\dagger} f_{\alpha,j} \end{split}$$

Mean-field decoupling of the fermionic Hamiltonian gives a hopping Hamiltonian and a variational wave function

$$|\Psi_{\rm vari}\rangle = P_{\rm Gutzwiller}|\Psi_{\rm FS}\rangle$$

Using different Ansätze for the hoppings, we evaluate the expectation value of the Hamiltonian

$$E_{\rm vari} = \frac{\langle \Psi_{\rm vari} | \mathcal{H} | \Psi_{\rm vari} \rangle}{\langle \Psi_{\rm vari} | \Psi_{\rm vari} \rangle}$$

The fermionic wave function of the pi-flux state

two-fold degenerate bands

96-site cluster - real space correlations from Gutzwiller projected wavefunction

$$\langle S_{\bullet}S_{\delta}\rangle\propto \langle P_{\bullet,\delta}
angle-rac{1}{4}$$

Majoranna fermions for square lattice: F. Wang and A. Vishwanath, Phys. Rev. B **80**, 064413 (2009).

96-site cluster - real space correlations from Gutzwiller projected wavefunction

$$\langle S_{\bullet}S_{\delta}\rangle\propto \langle P_{\bullet,\delta}
angle-rac{1}{4}$$

marked differences in 3rd neighbor correlations

Majoranna fermions for square lattice: F. Wang and A. Vishwanath, Phys. Rev. B 80, 064413 (2009).

Ground state energy from different methods

24-site cluster - real space correlations

Dimension of the Hilbert space is $24!/(6!)^4 = 2308743493056$ using symmetries makes it tractable

comparison to 1D chains

comparison to 1D chains

Y. Yamashita, N. Shibata, K. Ueda Phys. Rev. B **58**, 9114-9118 (1998) Beat Frischmuth, Frederic Mila, Matthias Troyer Phys. Rev. Lett. **82**, 000835 (1999)

SU(4) honeycomb: Tetramerization

J_1-J_2 SU(4) honeycomb: Tetramerization

SU(3) honeycomb lattice: flavor wave

Lee and Yang,

Phys. Rev. B 85, 100402 (2012)

SU(3) honeycomb lattice: tensor network

S=1 bilinear-biquadratic model

H.H.Zhao,C.Xu,Q.N.Chen,Z.C.Wei, M.P.Qin,G.M. Zhang, and T. Xiang, Phys. Rev. B **85**, 134416 (2012).

SU(3) honeycomb lattice: projected fermions

Friday, June 14, 2013

π

SU(3) honeycomb lattice: cartoon picture

Resonance of SU(3) singlets

SU(N) on honeycomb

SU(2) is a Néel state

SU(3) is a plaquette state

[Y.-W. Lee and M.-F. Yang, Phys. Rev. B **85**, 100402 (2012). H.H.Zhao,C.Xu,Q.N.Chen,Z.C.Wei,M.P.Qin,G.M. Zhang, and T. Xiang, Phys. Rev. B **85**, 134416 (2012).]

SU(4) is most probably an algebraic flavor liquid [P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, F. Mila, <u>arXiv:1207.6029</u>]

SU(6) is possibly a chiral flavor liquid [G. Szirmai E. Szirmai, A. Zamora, and M. Lewenstein, Phys. Rev. A **84**, 011611 (2011)], similarly, SU(N) is also a chiral liquid [extending the results of M. Hermele, V. Gurarie, & A. M. Rey, Phys. Rev. Lett. **103**, 135301 (2009)]

honeycomb optical lattices can be realized

the end thank you for your attention