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What are the SU(N) symmetric Heisenberg 
models that we are interested in?

H =
�

i,j

Pi,j Pi,j is the transposition operator

i j i j
Pi,j | 〉→ | 〉 N species on each site 

that are treated equally. 

simplest example: 
SU(2) S=1/2 (fundamental representation) 
[but not the S=1 !]

Pij |βiαj� = |αiβj�
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Why do we care about SU(N) Heisenberg 
models?

(i) Spin models

(ii) Spin-orbital models

(iii) f-electron systems

(iv) Cold alkaline-earth atoms in optical lattices
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Ni3+ (3d7) in a 
cubic crystal 

field: S=1/2, with 2 
orbital degrees of 

freedom3d 
t2g

eg

SU(4) highest symmetry of spin-orbital model 
(e.g. LiNiO2 and NaNiO2)

filled shell

T pseudospin operators:
:  Tz=+1/2

:  Tz=−1/2

Orbital degeneracy as a source of frustration in LiNiO2

F. Vernay,1 K. Penc,2 P. Fazekas,2 and F. Mila1
1Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

2Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary

(Received 24 December 2003; revised manuscript received 6 April 2004; published 27 July 2004)

Motivated by the absence of cooperative Jahn-Teller effect and of magnetic ordering in LiNiO2, a layered

oxide with triangular planes, we study a general spin-orbital model on the triangular lattice. A mean-field

approach reveals the presence of several singlet phases between the SU!4" symmetric point and a ferromag-
netic phase, a conclusion supported by exact diagonalizations of finite clusters. We argue that one of the

phases, characterized by a large number of low-lying singlets associated to dimer coverings of the triangular

lattice, could explain the properties of LiNiO2, while a ferro-orbital phase that lies nearby in parameter space

leads to a new prediction for the magnetic properties of NaNiO2.

DOI: 10.1103/PhysRevB.70.014428 PACS number(s): 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

The Mott insulators LiNiO2 and NaNiO2 are isostructural
and isoelectronic, but they have completely different phase
diagrams. The complicated nature of these systems arises
from an interplay of the dynamical frustration of spin–orbital
models with the geometrical frustration of the triangular lat-
tice, which is the essential structural unit. We will show that
by a modest change of parameters, a great variety of phases
can be derived.
The crystal structure can be envisaged as a sequence of

slabs of edge-sharing octahedra of oxygen O2! ions. Metal
ions sit at the centers of octahedra. There are two kinds of
slabs: in A slabs, at every center of octahedra there is a Ni3+,
whereas in the B slabs, one finds either Li+ or Na+ ions. A
and B slabs alternate (see Fig. 1). The Ni ions form well-
separated triangular planes.
It is useful to start with the idealized geometry of a cubic

system. Neglecting the inequivalence of Ni and Li sites, and
assuming perfect oxygen octahedra, the octahedral centers
would form a simple cubic lattice. The slabs of the original
structure would be perpendicular to the 111 direction. Within
a slab the Ni-O-Ni bond angles would be 90°, resulting in
important consequences for the effective exchange.1

There are two sources of deviation from cubic symmetry:
(a) Ni and Li/Na sites are inequivalent, which leaves us with
one (instead of four) C3 axis. Even if the octahedra were
undistorted, Ni ions would see a wider environment with
trigonal symmetry only. (b) actually, oxygen octahedra are
distorted,2,3 and the Ni!O!Ni bond angle is #96.4° in the
case of Na, and #94° in case of the Li compound.
If there is a Jahn–Teller phase transition (as in NaNiO2), it

lowers the crystal symmetry further and makes the orbital
ground state unique. An alternative would be to ascribe or-
bital polarization to an electronic phase transition due to or-
bital exchange and to regard the lattice distortion as an in-
duced secondary effect. In what follows, we assume trigonal
point group symmetry, which is valid for NaNiO2 at high
temperatures and for LiNiO2 at all temperatures. Breaking
the local trigonal symmetry, whenever it happens, is ascribed
to orbital ordering. We consider electronic degrees of free-
dom only, but we assume that the lattice would follow the
changing orbital occupation.

The Ni3+ ions are in the S=1/2 low-spin state. In terms of
the dominant cubic component of the crystal field 3d7

= t2g
6 eg

1. Since the actual point group symmetry is trigonal, t2g
gets split into two levels (t2g→A2+E, where standard nota-
tions for the irreducible representations (irreps) of the point
group D3d were introduced), but this does not affect the fact
that six electrons are taken up by closed subshells, and only
the seventh electron is in an open subshell. The trigonal crys-
tal field component changes the detailed nature of the
d-states, but still allows for twofold orbital degeneracy:
eg
cubic→E. In what follows, E is understood to denote the
two-dimensional (2D) irrep of the trigonal point group.4
The ground state of an isolated Ni3+ ion is fourfold de-

generate: it has twofold orbital and twofold spin degeneracy.
A standard scenario would be that the non-Kramers degen-
eracy is resolved by a (cooperative) Jahn–Teller effect, while
the Kramers degeneracy is lifted by magnetic ordering. Let
us note that, as far as the E-electrons are concerned, the
cooperative Jahn–Teller effect is synonymous with orbital
ordering, thus it can be explained with a purely electronic
model, without the consideration of electron–lattice cou-
pling.

FIG. 1. ANiO2 structure. Ni ions are located in the middle of the

O octahedra.
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Spin-orbital models : Microscopic theory

 taa=t

 tab=0

 tbb=t’

intersite hopping: On-site interaction:

!F6" =
1

#2 $ca,↑
†
ca,↓
† + cb,↑

†
cb,↓
† %!0" . $6%

Their transformation scheme under C3

!F4!" = !
1

2
!F4" +

#3
2

!F5"

!F5!" = !
#3
2

!F4" !
1

2
!F5"

follows from (2). The most general on-site two-body Hami-
tonian describing the E!E set of levels is

HCoul =
Ũ

2
n2 ! JH&SaSb + 3

4
nanb' + Jp$ca,↑† ca,↓

† + cb,↑
†
cb,↓
† %

!$ca,↓ca,↑ + cb,↓cb,↑% $7%

where the Ũ is the familiar on-site repulsion of the Hubbard

model, JH is the Hund’s coupling and Jp is the pair hopping

amplitude. The spectrum of HCoul consists of a triplet level at

Ũ!JH (!F1", !F2", and !F3"), a twofold degenerate singlet at
Ũ (!F4" and !F5"), and a nondegenerate singlet at Ũ+2Jp
$!F6"%.
Since each of the single-site terms is invariant under ro-

tations in the orbital space, HCoul written in (7) is quite gen-
eral, and its two independent parameters JH / Ũ and Jp / Ũ

could be chosen arbitrarily. We may think of these as effec-

tive interaction parameters, which encompass all allowed

processes affecting the E level under consideration. Accord-

ing to the usual evaluation of the simple Coulomb interaction

we get Jp=JH /2. This physically motivated assumption was

used by Castellani, Natoli, and Ranninger in their pioneering

work 17 on V2O3. See Ref. 9 for further discussions of this

point.

C. The effective Hamiltonian from symmetry considerations

The 4D Hilbert space of E1 states supports 15 local-order

parameters.23 Their standard choice is Sx, Sy, Sz for the spins,

Tx, Ty, Tz for the orbitals, and further nine operators SxTx,

SxTy , . . . of mixed spin-orbital character.24 Here we intro-

duced the T=1/2 pseudospin operators

Ti
x =
1

2
(
"

$ci,a,"
†

ci,b," + ci,b,"
†

ci,a,"% ,

Ti
y =

1

2i
(
"

$ci,a,"
†

ci,b," ! ci,b,"
†

ci,a,"% ,

Ti
z =
1

2
(
"

$ci,a,"
†

ci,a," ! ci,b,"
†

ci,b,"% . $8%

For the present, we exploit the separation of spin and

orbital Hilbert spaces and do not discuss the mixed-order

parameters, though they are certain to be as relevant as S and

T in high-symmetry situations. The symmetry classification

of the orbital-order parameters is obtained by representing

the point group D3d on the basis of the order parameters. In

fact, since Tx, Ty, and Tz are composed as c#
†c$, the represen-

tation we seek is the product of the representation (1) and (2)
with its adjoint, and the decomposition E!E=A1+A2+E

can be used again. It turns out that Tx and Tz form the basis

of the irrep E (a quadrupolar doublet), while Ty transforms
according to A2. We quote the transformation of the quadru-

pole operators under the C3 rotation

T!x = !
1

2
Tx +

#3
2
Tz

T!z = !
#3
2
Tx !

1

2
Tz. $9%

From (1) it is clear that

C2Tx = ! Tx, C2Ty = ! Ty, and C2Tz = Tz. $10%

Finally, let us mention that Tx and Tz are time-reversal

invariant. The fact that under the time-reversal transforma-

tion T, TTx=Tx and TTz=Tz, shows that these are

quadrupolar-order parameters. On the other hand, for the

pure imaginary operator Ty, TTy=!Ty. In the usual treatment
of a cubic eg doublet, T

y would be an octupolar-order param-

eter. However, under trigonal symmetry, A2 is also assigned

to the dipolar-order parameter L111 (orbital angular momen-
tum along the 111 direction). Thus our Ty must be a mixed
dipolar-octupolar-order parameter, but we will not analyze its

nature in detail.

The form of the effective pair interaction is restricted by

the geometrical symmetries of the pair, and the nature of the

order parameters (8). We consider a pair of sites 1 and 2
connected by the C2 axis, which figured in our previous con-
siderations. The other symmetry element is the perpendicular

mirror plane "h bisecting $1,2%.
The orbital component of the lowest order effective

Hamiltonian consists of terms T1
#T2

$ $# ,$=x ,y ,z%, and also
of single-site terms like T1

#+T2
# (reflecting that the choice of

the basis is tied to this particular C2 axis). The pair energy
expression must be invariant under C2, T, and also "h. "h acts

like

"hT1
x = ! T2

x, "hT1
y = ! T2

y, and "hT1
z = T2

z . $11%

Time-reversal invariance excludes terms like T1
xT2

y, and

also T1
y+T2

y, and either (10) or (11) exclude T1
x+T2

x. In addi-

tion, (10) excludes also T1
xT2

z . Thus we are left with

H12! = AxT1
xT2

x + ÃyT1
yT2

y + ÃzT1
zT2

z + Az!$T1
z + T2

z% , $12%

where Ax, Ãy, Ãz, and Az! are some real coefficients. Let us
emphasize that, in general, the coupling term T1

yT2
y may ap-

pear in the Hamiltonian. Once we introduce spins in the

problem, the same arguments hold as above, with or without

spin exchange, so the Hamiltonian becomes

H12 = AT1
xT2

x + ÃyT1
yT2

y + ÃzT1
zT2

z + Az!$T1
z + T2

z% + )B! + BT1
xT2

x

+ B̃yT1
yT2

y + B̃zT1
zT2

z + + Bz!$T1
z + T2

z%*S1S2. $13%
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Ũ

2
n2 ! JH&SaSb + 3

4
nanb' + Jp$ca,↑† ca,↓

† + cb,↑
†
cb,↓
† %

!$ca,↓ca,↑ + cb,↓cb,↑% $7%
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Ũ!JH (!F1", !F2", and !F3"), a twofold degenerate singlet at
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$!F6"%.
Since each of the single-site terms is invariant under ro-

tations in the orbital space, HCoul written in (7) is quite gen-
eral, and its two independent parameters JH / Ũ and Jp / Ũ
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"
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Ti
y =

1
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"
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†
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†

ci,a," ! ci,b,"
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From (1) it is clear that
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where Ax, Ãy, Ãz, and Az! are some real coefficients. Let us
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+ the standard perturbation theory to get 
the effective Hamiltonian.
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Spin-orbital models: Kugel-Khomskii Hamiltonian

t=t’  and Jp=JH=0 
SU(4) symmetric

Hij = !
2

Ũ + 2Jp
!2tt!TiT j ! 4tt!TiyTjy + "t ! t!#2"nij

zTi#"nij
zT j#

+
1

2
"t2 ! t!2#"nij

zTi + nij
zT j# +

1

4
"t2 + t!2#$Pij

S=0

!
2

Ũ
!4tt!TiyTjy + 1

2
"t2 + t!2# +

1

2
"t2 ! t!2#

!"nij
zTi + nij

zT j#$Pij
S=0
!

2

Ũ ! JH

!! 2tt!TiT j
! "t ! t!#2"nij

zTi#"nij
zT j# +

1

4
"t2 + t!2#$Pij

S=1. "22#

We found it convenient to express the Hamiltonian using the

Pij
S=0 and Pij

S=1 projection operators onto the singlet and trip-

let spin combination on the bond

Pij
S=0 =

1

4
! SiS j and Pij

S=1 = SiS j +
3

4
. "23#

First, some general remarks about the parameter range.

Equation (7) shows a two-parameter manifold of on-site
Coulomb Hamiltonians. However, we do not change Jp /JH
continuously, but investigate two special cases only: (a) ne-
glecting pair hopping Jp=0 (a frequent, though not clearly
motivated, simplification), and (b) the physically motivated
choice Jp=JH /2. Most of our results will be about the latter

case, using the notation J=2Jp=JH.

Redefining the basis states "a↔"b interchanges the defi-

nitions of t and t!, thus it is sufficient to consider the %t%# %t!%
case. It is, however, worth noting that the orbital part of (22)
becomes SU"2# invariant for t= t! and Jp=0:

Hij =
4t2

Ũ
&TiT j + 3

4
'&SiS j ! 1

4
' + 4t2

Ũ ! JH

&TiT j ! 1
4
'

!&SiS j + 3
4
' . "24#

The lattice Hamiltonian has now global SU"2# symmetry for
the spins and global SU"2# symmetry for the pseudospins
[global SU"2# ! SU"2#, with the six conserved quantities
( j Sj

$, ( j Tj
%, for $ ,%=x ,y ,z].

A still higher symmetry is obtained for JH=Jp=0 when

the pair Hamiltonian simplifies to the SU"4# symmetrical23

Hij =
8t2

Ũ
&TiT j + 1

4
'&SiS j + 1

4
' . "25#

The corresponding lattice Hamiltonian possesses global

SU"4# symmetry (there are 15 conserved quantities: ( j Sj
$,

( j Tj
%, and ( j Sj

$Tj
% for $ ,%=x ,y ,z).

III. GROUND STATES OF THE PAIR AND TETRAHEDRON

PROBLEMS

In what follows, we seek to find the possible different

types of ground state of (21) on the triangular lattice. For a

first orientation, we describe the results for small systems,

then go over to larger ones. Whenever possible, we use

preconception-free numerical methods and then try to rein-

terpret the results with approximate theories that can, in prin-

ciple, be generalized to infinite-system size. It is a general

trend that with increasing system size, complicated states are

found whose existence could not have been guessed by

simple-minded extrapolation from small systems. Therefore

we will have to be cautious in drawing conclusions about the

thermodynamic limit.

Before we turn to the physically motivated Jp=JH /2 case,

we examine the case when the pair hopping amplitude is

absent.

A. Two-site problem

For simple spin models, the correlations found for a pair

of sites allow us to infer the character of the ordered phase in

the thermodynamic limit.26 Our first aim is to map the pair

solutions and try to deduce how spin and orbital order may

complement each other.

The most notable consequence of setting Jp=0 is that the

4tt!Ti
yTj

y term cancels from the first and second row of the

effective Hamiltonian (22). Naturally, there is still a Ti
yTj

y

interaction included in the isotropic term TiT j. On this basis,

one may not expect a preference for Ty-polarized (complex)
orbital ground states. However, one should not overlook the

possibility that the system may choose Ty-polarization as a

compromise when interaction terms preferring real orbital

order mutually frustrate each other.27

Let us note that the Hamiltonian of the ij=12 bond

H12 = !
2

Ũ
!2tt!"T1xT2x + T1yT2y# + "t2 + t!2#T1

zT2
z + "t2 ! t!2#

!"T1
z + T2

z# +
3

4
"t2 + t!2#$P12

S=0
!

2

Ũ ! JH

!! "t2 + t!2#

!T1
zT2

z
! 2tt!"T1

xT2
x + T1

yT2
y# +

1

4
"t2 + t!2#$P12

S=1 "26#

has two additional symmetries characteristic of the two-site

problem. One of them is axial symmetry about Tz in pseu-

dospin space,28 which allows us to classify the eigenstates as

T1
z +T2

z eigenstates. The other is the t!↔!t! symmetry: a
&-rotation about Tz in pseudospin space for site 2 is a ca-
nonical transformation that leaves the energy unchanged, but

it amounts to t!→!t!. This symmetry can be restated for
larger clusters with bipartite structure, but it cannot be ex-

tended to N#2 clusters of the triangular lattice.
For t= t! SU"2# ! SU"2# symmetry follows as in (24).

Taken in conjunction with the previous remarks, the t=!t!
model must have the same symmetry. Similarly, the degen-

eracies must be the same for the SU"4# point t= t!, JH=0, and
its mirror image t=!t!, JH=0.
The Hilbert space of two electrons on two sites is 16

dimensional, and the energies and orbital eigenstates for the

ij=12 bond are:
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Ũ ! JH

!! "t2 + t!2#

!T1
zT2

z
! 2tt!"T1

xT2
x + T1

yT2
y# +

1

4
"t2 + t!2#$P12

S=1 "26#

has two additional symmetries characteristic of the two-site

problem. One of them is axial symmetry about Tz in pseu-

dospin space,28 which allows us to classify the eigenstates as

T1
z +T2

z eigenstates. The other is the t!↔!t! symmetry: a
&-rotation about Tz in pseudospin space for site 2 is a ca-
nonical transformation that leaves the energy unchanged, but

it amounts to t!→!t!. This symmetry can be restated for
larger clusters with bipartite structure, but it cannot be ex-

tended to N#2 clusters of the triangular lattice.
For t= t! SU"2# ! SU"2# symmetry follows as in (24).

Taken in conjunction with the previous remarks, the t=!t!
model must have the same symmetry. Similarly, the degen-

eracies must be the same for the SU"4# point t= t!, JH=0, and
its mirror image t=!t!, JH=0.
The Hilbert space of two electrons on two sites is 16

dimensional, and the energies and orbital eigenstates for the

ij=12 bond are:

VERNAY et al. PHYSICAL REVIEW B 70, 014428 (2004)

014428-6

∼ Pij
permutation 

operator

Hij = !
2
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has two additional symmetries characteristic of the two-site

problem. One of them is axial symmetry about Tz in pseu-

dospin space,28 which allows us to classify the eigenstates as

T1
z +T2

z eigenstates. The other is the t!↔!t! symmetry: a
&-rotation about Tz in pseudospin space for site 2 is a ca-
nonical transformation that leaves the energy unchanged, but

it amounts to t!→!t!. This symmetry can be restated for
larger clusters with bipartite structure, but it cannot be ex-

tended to N#2 clusters of the triangular lattice.
For t= t! SU"2# ! SU"2# symmetry follows as in (24).

Taken in conjunction with the previous remarks, the t=!t!
model must have the same symmetry. Similarly, the degen-

eracies must be the same for the SU"4# point t= t!, JH=0, and
its mirror image t=!t!, JH=0.
The Hilbert space of two electrons on two sites is 16

dimensional, and the energies and orbital eigenstates for the

ij=12 bond are:
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We found it convenient to express the Hamiltonian using the
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First, some general remarks about the parameter range.

Equation (7) shows a two-parameter manifold of on-site
Coulomb Hamiltonians. However, we do not change Jp /JH
continuously, but investigate two special cases only: (a) ne-
glecting pair hopping Jp=0 (a frequent, though not clearly
motivated, simplification), and (b) the physically motivated
choice Jp=JH /2. Most of our results will be about the latter

case, using the notation J=2Jp=JH.

Redefining the basis states "a↔"b interchanges the defi-
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The lattice Hamiltonian has now global SU"2# symmetry for
the spins and global SU"2# symmetry for the pseudospins
[global SU"2# ! SU"2#, with the six conserved quantities
( j Sj
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A still higher symmetry is obtained for JH=Jp=0 when

the pair Hamiltonian simplifies to the SU"4# symmetrical23
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III. GROUND STATES OF THE PAIR AND TETRAHEDRON
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In what follows, we seek to find the possible different

types of ground state of (21) on the triangular lattice. For a

first orientation, we describe the results for small systems,

then go over to larger ones. Whenever possible, we use

preconception-free numerical methods and then try to rein-

terpret the results with approximate theories that can, in prin-

ciple, be generalized to infinite-system size. It is a general

trend that with increasing system size, complicated states are

found whose existence could not have been guessed by

simple-minded extrapolation from small systems. Therefore

we will have to be cautious in drawing conclusions about the

thermodynamic limit.

Before we turn to the physically motivated Jp=JH /2 case,

we examine the case when the pair hopping amplitude is

absent.
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triangular d1 system whose local Hilbert space is the trig-
onal doublet E. The structure of BaVS3 can be envis-
aged as the sequence of triangular planes of V4+ = 3d1

ions. It has been argued that even the minimal model of
BaVS3 should include the orbital degrees of freedom25.
If one assumes that the lowest-lying crystal field level is
the E doublet derived from the trigonal splitting of t2g,
our present considerations become relevant for BaVS3 as
well.

D. The effective hamiltonian from microscopic
model

Symmetry considerations do not allow to obtain rela-
tionships between the A and B coefficients; they may be
derived from the model (3) and (7) by second-order large-
U perturbation theory, as usual for Kugel–Khomskii
hamiltonians16. As a result, we get

Hij = −
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Ũ+2Jp

[

2tt′TiTj − 4tt′T y
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z
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1

4
(t2 + t′2)

]

PS=1
ij (22)

We found it convenient to express the Hamiltonian using
the PS=0

ij and PS=1
ij projection operators onto the singlet

and triplet spin combination on the bond:

PS=0
ij =

1

4
− SiSj and PS=1

ij = SiSj +
3

4
(23)

First, some general remarks about the parameter range.
(7) shows a two-parameter manifold of on-site Coulomb
hamiltonians. However, we do not change Jp/JH con-
tinuously, but investigate two special cases only: (a) ne-
glecting pair hopping Jp = 0 (a frequent, though not
clearly motivated, simplification), and (b) the physically
motivated choice Jp = JH/2. Most of our results will be
about the latter case, using the notation J = 2Jp = JH .

Redefining the basis states φa ↔ φb interchanges the
definitions of t and t′, thus it is sufficient to consider the
|t| > |t′| case.

It is, however, worth noting that the orbital part of
(22) becomes SU(2) invariant for t = t′ and Jp = 0:

Hij =
4t2

Ũ

(

TiTj +
3

4

) (

SiSj −
1

4

)

+
4t2

Ũ−JH

(

TiTj −
1

4

) (
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3

4

)

. (24)

The lattice hamiltonian has now global SU(2) symme-
try for the spins and global SU(2) symmetry for the
pseudospins (global SU(2)⊗SU(2), with the six conserved
quantities

∑

j Sα
j ,

∑

j T β
j , for α, β = x, y, z).

A still higher symmetry is obtained for JH = Jp =
0 when the pair Hamiltonian simplifies to the SU(4)

symmetrical23

Hij =
8t2

Ũ

(

TiTj +
1

4

) (

SiSj +
1

4

)

. (25)

The corresponding lattice hamiltonian possesses global
SU(4) symmetry (there are fifteen conserved quantities:
∑

j Sα
j ,

∑

j T β
j , and

∑

j Sα
j T β

j for α, β = x, y, z).

III. GROUND STATES OF THE PAIR AND THE
TETRAHEDRON PROBLEM

In what follows, we seek to find the possible different
types of ground state of (21) on the triangular lattice.
For a first orientation, we describe the results for small
systems, then go over to larger ones. Whenever possible,
we use preconception-free numerical methods, and then
try to re-interpret the results with approximate theories
which can, in principle, be generalized to infinite system
size. It is a general trend that with increasing system size,
complicated states are found whose existence could not
have been guessed by simple-minded extrapolation from
small systems. Therefore we will have to be cautious in
drawing conclusions about the thermodynamic limit.

Before we turn to the physically motivated Jp = JH/2
case, we examine the case when the pair hopping ampli-
tude is absent.

A. Two site problem

For simple spin models, the correlations found for a
pair of sites allow to infer the character of the ordered
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Spin-Orbital Short-Range Order on a
Honeycomb-Based Lattice
S. Nakatsuji,1* K. Kuga,1 K. Kimura,1 R. Satake,2 N. Katayama,2 E. Nishibori,2 H. Sawa,2 R. Ishii,3

M. Hagiwara,3 F. Bridges,4 T. U. Ito,5 W. Higemoto,5 Y. Karaki,6 M. Halim,7 A. A. Nugroho,7

J. A. Rodriguez-Rivera,8,9 M. A. Green,8,9 C. Broholm8,10

Frustrated magnetic materials, in which local conditions for energy minimization are incompatible
because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case
for Ba3CuSb2O9, which is magnetically anisotropic at the atomic scale but curiously isotropic
on mesoscopic length and time scales. We find that the frustration of Wannier’s Ising model on
the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu2+ ions that resists
a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2
system on the honeycomb lattice has a broad spectrum of spin-dimer–like excitations and low-energy
spin degrees of freedom that retain overall hexagonal symmetry.

The realization of quantum-correlated mat-
ter beyond one dimension has been vig-
orously pursued in geometrically frustrated

spin systems for decades (1, 2). However, very
few of a rich variety of theoretically predicted
phases (3–6) have so far been experimentally
observed (7–10). A persistent challenge is sym-
metry breaking of orbital and chemical origin lead-
ing to semiclassical spin freezing. We present the

case of Ba3CuSb2O9 where, by contrast, chemical
and orbital nanostructure conspire to produce a
unique quantum-correlated state of matter.

Our comprehensive experimental analysis re-
veals that the geometrical frustration of Wannier’s
Ising antiferromagnet (11) on a triangular lattice
can be exploited to build a nanostructured bipar-
tite honeycomb lattice from electric dipolar spin-1/2
molecules. Despite a strong local Jahn-Teller (JT)

distortion about the Cu2+ ion, the resulting spin-
orbital, random-bond lattice not only retains hex-
agonal symmetry averaged over time and space,
but it supports a gapless excitation spectrum
without spin freezing down to ultralow temper-
atures.

Figure 1A shows the structure of Ba3CuSb2O9

at room temperature (T) as determined by synchro-
tron x-ray and neutron diffraction from single crys-
tals and powder samples; the refinement yields a
centrosymmetric (P63/mmc) structure in which
the two central sites of the face-sharing octahedra
are symmetrically equivalent and equally occupied
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Fig. 1. (A) Centrosymmetric P63/mmc high-T structure of Ba3CuSb2O9 indicating nanoscale Cu-Sb dumbbell
ordering. Ba ions are omitted for clarity. See fig. S1 for the complete structure. Oxygen 2p orbitals (shaded
blue and red) associated with superexchange interactions J(1) to J(3) are indicated. J(1) and J(2) have a nearly
equivalent superexchange path consisting of O 2p−2p transfer of ∼(−pps + ppp)/

ffiffiffi
2

p
; J(3) is much weaker

because it is associated with O 2p−2p transfer of ∼−ppp/
ffiffiffi
2

p
. (B) A characteristic vertex with spin-orbital

degrees of freedom for the Cu-honeycomb lattice of Ba3CuSb2O9. A trigonal coverage of a Cu-hexagon by
spin singlets (pair of blue or green arrows) based on a dx2−y2 ferro-orbital (green) state at two Cu sites (blue
shaded) is shown. There are two different sites for oxygen in the CuO6 octahedra, O1 (purple) and O2 (light
purple), with different heights, z (fig. S1). Coupling through the Cu-O1-O1-Cu superexchange path allows
resonance between singlets and is absent in the uniform dx2−y2 order of the orthorhombic phase. (C)
Superstructure peaks found in an (h k 10) slice extracted from a 3D volume of synchrotron x-ray diffraction
data at 20 K for an orthorhombic single-crystalline sample (12). (D) Intensity profiles at 20 and 300 K along
the (4−h, 2h, 3) direction for an orthorhombic single-crystalline sample indicating temperature-independent
broad superlattice peaks between integer Miller index resolution-limited Bragg peaks (12). Error bars indicate
SE; r.l.u., reciprocal lattice unit.
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Ba3CuSb2O9

We consider the Kugel-Khomskii model for the S=1/2 and two Cu orbitals at 
the symmetric SU(4) point.

SU(4) on honeycomb lattice
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Anisotropic SU(4) spin wave 
treatment sufficient. 

(R. Shiina et al, 
J. Phys. Soc. Jpn. 66, 1741 (1997)
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SU(6) Mott physics in cold atoms

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS2430

Orbital entropy 

(density fluctuation)

Spin entropyEntropy

Mott insulator

In(2): ↑ or ↓

Small

Large

In(     = 6): ¬5/2, ..., +5/2s ∼ π2k
B
T/T

F
 (per atom)

Weakly interacting Fermi gas

Figure 3 | Schematic of enhanced Pomeranchuk cooling in an SU(N)
Fermi gas.When the system evolves from a weakly interacting degenerate
Fermi gas into a Mott insulator, spin degrees of freedom arise. Larger
entropy can be absorbed by isolated spins of an SU(N > 2) Mott insulator,
resulting in a reduction of the density fluctuation, which has a dominant
contribution in determining the temperature. In real experiments, the
behaviour of the absolute temperature strongly depends on the harmonic
confinement: the system can even be heated if strong compression occurs
during loading into the lattice. However, the general trend that a larger N
leads to a lower temperature remains unchanged.

where (T/TF)init is measured in a harmonic trap before loading
into the lattices. This implies a significant reduction of the required
initial temperature in the unit of TF for the N = 6 system. In other
words, large spin can effectively cool down the system by absorbing
the entropy from motional degrees of freedom, which is the same
mechanism as Pomeranchuk cooling observed in solid 3He (ref. 39).
The cooling effect in an SU(6) Fermi gas has been predicted9,29,
including the case of a fixed initial temperature.

Although this mechanism was responsible for achieving new
quantum phases in a mixed gas of bosons and fermions in a recent
report28, no systematic study was done on the detailed behaviours
of enhanced Pomeranchuk cooling; in particular, no comparison
was made between the SU(2) and SU(6) cases, which is clearly
demonstrated in this work.

Double occupancymeasurement of SU(6) fermions
Although the DPR measurement presented above, done with the
lattice modulation technique, is a good probe for the low-density
case n ≤ 1, double occupancy itself, measurable without lattice
modulation, is also a good probe for fermionic lattice systems1,2,40,
to obtain information on the compressibility, and is especially
suitable for characterizing states with a high filling, 1 ≤ n ≤ 2.
Figure 4a shows the measured double occupancy for various mean
trap frequencies ω = (ωxωyωz)1/3, at the lattice depth of 9.0ER.
The corresponding Hubbard parameters are given as t/h= 101Hz
and U/h= 3.3 kHz. The data are taken for two initial preparations
of N = 2.6(1)× 104 and sinit = 1.7(1), and N = 1.3(1)× 104 and
sinit = 1.9(3). For the first case, the double occupancy increases
with tighter confinement and the filling of the trap centre exceeds
unity. On the other hand, for the second case, the data show that
the double occupancy is essentially zero for the low-compression
regime, indicating the formation of an n= 1 Mott plateau. We fit
the data to a theoretical curve based on the HTSE by taking the
entropy per particle in the lattice s as the only fitting parameter.
We then obtain s = 2.2 and 2.5 for the first and second cases,
respectively, which are slightly higher than sinit. As they still lie
between sinit and the entropies measured after reversed loading into
the harmonic trap, which range from 2.8 to 3.4, the deduced values
of entropy s are reasonable and consistent with the existence of some
constant heating or non-adiabatic effects during the loading and
reverse-loading processes.

The incompressibility due to the repulsive interaction, which
characterizes a Mott insulator, can be deduced from the obtained
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Figure 4 |Double occupancy and compressibility. a, Measured double
occupancy. Two data series with different atom numbers, N= 2.6(1)× 104

(red circles) and 1.3(1)× 104 (open blue circles), are shown. The solid lines
are the best-fitting theoretical curves according to the second-order
high-temperature expansion, corresponding to s= 2.2 and 2.5 for the first
and second cases, respectively. The error bars denote the standard error for
typically 15 independent measurements. b, Calculated central
compressibility κc (solid) as a function of the characteristic filling ρ,
together with the central density nc (dashed) with the parameters for the
data from the second case in a. Fixed entropy s= 2.5 obtained by the fit in a
is used. The experimentally relevant range of ρ is indicated by the shaded
region, and the arrows indicate the corresponding y axis for each curve.

entropy in the lattice. Figure 4b shows the calculated density n0 and
compressibility at the trap centre κc = ∂n0/∂µ as a function of the
characteristic filling defined as ρ =N (12t/mω2d2)−3/2. Introducing
the characteristic filling enables us to unify the data with different
total atom numbers and the harmonic confinement, within the
LDA formalism30,41. It can be seen that the trap centre exhibits a
crossover from an n = 1 Mott insulator to a 1 < n < 2 metallic
state. For the lowest measured ρ ∼ 25, n0 is almost unity and
κc is as low as 0.03/6t , which means that the system is deep in
the strongly incompressible Mott insulating regime. We note that
this value of κ0 is a factor of ∼ 3 smaller than that expected in
the case of the SU(2) Hubbard model with the same parameters
(s, ρ and U/t ), as a consequence of the large-spin Pomeranchuk
cooling mentioned above.

Prospects for SU(N ) quantummagnetism
This work clearly shows the realization of an SU(6) Mott insulator
with unit filling and demonstrates the existence of enhanced
Pomeranchuk cooling for large-spin systems. Note that a small
SU(6) breaking perturbation does not change the qualitative
behaviour of the high-temperature Mott phase studied here. The
cooling effect is, however, maximized for a system with SU(6)
symmetric interactions and equal population over all spin states.
Belowwe briefly discuss the possibility of realizing SU(N ) quantum
magnetism. To reach the quantum regime, we must remove ln(N )
spin entropy. The Pomeranchuk effect itself is an adiabatic process
that cannot reduce the entropy and the initial entropy is crucial
in this problem. The present evaporative cooling method seems to
bring an advantage to large-N systems: as mentioned above, at least
in the case of SU(6), the entropy per atom is almost the same as
that of SU(2) systems. On the other hand, the maximum entropy
of SU(N ) spin Hamiltonian smax = ln(N ) increases with N . For
example, if perfect adiabaticity is assumed, the lowest temperature
T/TF = 0.14 reported for 173Yb (ref. 38) already gives a lower
entropy than smax, whereas this value of T/TF is still insufficient for
achieving the quantum magnetism for SU(2) systems. Therefore,
we believe that the SU(6) system is closer to the onset of the
spin–spin correlation that is expected at s< smax. Recent theoretical
works support this argument:magnetic correlations start to develop
at higher entropy with increasing N (ref. 42) and the large-N
cooling effect still exists down to the low-temperature regime
kBT ∼ t 2/U (refs 43,44).

The possibility of various fillings provides richer physics to
SU(N ) systems. Whereas Pomeranchuk cooling is most effective
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SU(3) in S=1 spin model 
(how to find higher symmetry points)
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SU(2) vs. SU(3) - two sites

H = P12

P12(|αβ〉 − |βα〉) = −(|αβ〉 − |βα〉)

P12(|αβ〉 + |βα〉) = +(|αβ〉 + |βα〉) E=+1, even wave function

E=−1 , odd wave function
1 2
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SU(2) vs. SU(3) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ or ↓ spin

|↑↓〉−|↓↑〉 singlet, odd 
(anti-symmetrical)

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical)

H = P12

P12(|αβ〉 − |βα〉) = −(|αβ〉 − |βα〉)

P12(|αβ〉 + |βα〉) = +(|αβ〉 + |βα〉) E=+1, even wave function

E=−1 , odd wave function
1 2
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SU(2) vs. SU(3) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ or ↓ spin

|↑↓〉−|↓↑〉 singlet, odd 
(anti-symmetrical)

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical)

⊗ = ⊕
33 3 6× = +

Addition of two SU(3) spins:

|aa〉, |bb〉, |cc〉, |ab〉+|ba〉, 
|ac〉+|ca〉, and |bc〉+|cb〉.
even (symmetrical)

|ab〉−|ba〉, |ac〉−|ca〉, 
|bc〉−|cb〉: odd (anti-
symmetrical).

|a〉, |b〉, and |c〉. 

H = P12

P12(|αβ〉 − |βα〉) = −(|αβ〉 − |βα〉)

P12(|αβ〉 + |βα〉) = +(|αβ〉 + |βα〉) E=+1, even wave function

E=−1 , odd wave function
1 2
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SU(3) singlet

in the SU(3) singlet the spins are fully entangled:
 we cannot write it in a product form

= |ABC〉 + |CAB〉 + |BCA〉 − |BAC〉 − |ACB〉 − |BCA〉
spins fully antisymmetrized

SU(3) irreps on 3 sites

1 2 × 83 = +

Addition of three SU(3) spins (27 states):

⊕⊕ 2×=⊗ ⊗

+ 10× ×3 3
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What methods do we use?

(i) Variational - site factorized wave function
(ii) Flavor wave calculations 
(iii) Exact diagonalization of small clusters
(iv) iPEPS: infinite project entangled pair states(variational 

approach based on tensor ansatz)
(v) Variational - Gutzwiller projected fermionic wave 

functions
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Variational (classical) approach
a site-product wave function for e.g. SU(3):

minimal, when the di and dj on the bond are orthogonal 

two different colors on a bond

Evar =
�Ψ|H|Ψ�
�Ψ|Ψ� = J

�

�i,j�

��di · d̄j

��2

|ψi� = dA,i|A�i + dB,i|B�i + dC,i|C�i

|Ψ� =
�

i

|ψi�
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a b

H = (a† + b)(a+ b†)

quadratic in operators: we know how to diagonalize it (spin wave)

H = −MJL+M
�

ν

�

k

ων(k)

�
α†
ν(k)αν(k) +

1

2

�

SU(3) flavour-wave theory 

1/M expansion:

Holstein-Primakoff
 bosons

ã†A, ãA →
�
M − ã†B ãB − ã†C ãC

→
√
M − 1

2
√
M

�
ã†B ãB + ã†C ãC

�
+ . . .

Pij =
�

µ,ν∈{A,B,C}

a†µ,ia
†
ν,jaν,iaµ,j
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The fate of SU(3) on triangular lattice

“classical” solution?crystal of singlets?
SU(3) classical state is perfectly 

happy on the triangular lattice - the 
3 mutually perpendicular dʼs form a 

3 sublattice structure. 

SU(2) frustrated!

A. M. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205/1-4 (2006)

H. Tsunetsugu and M. Arikawa, J. Phys. Soc. Jpn. 75, 083701 (2006) 
[NiGa2S4, Nakatsuji]
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SU(3) on triangular lattice - exact diagonalization

Signature of SU(3) breaking in the 
excitation spectrum:

Anderson towers compatible 
with 3 sublattice order

C2 - Casimir operator, analog of the 
total spin S^2
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K. Penc, A. M. Läuchli, in `Introduction to Frustrated 
Magnetism', p. 331-362, Springer Series in Solid-State 
Sciences, Vol. 164, eds. C. Lacroix, F. Mila, and P. Mendels 
(Springer, 2011)
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SU(3) square lattice, classical solutions: 
macroscopically degenerate
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SU(3) square lattice, classical solutions: 
macroscopically degenerate

All bonds happy at the mean field level, 
frustration due to abundance of choices
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SU(3) square lattice, classical solutions: 
macroscopically degenerate

Order by disorder: 
the zero point energy of the quantum 
fluctuations over a mean field solution 

selects the ground state

EZP =
M

2

�

ν

�

k

ων(k)

All bonds happy at the mean field level, 
frustration due to abundance of choices
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structure of the flavor wave Hamiltonian

each term separately EZP = 0 the 3-site term gives EZP > 0

a

b

c

a

b

c

energy minimal 
if next nearest neighbor spins 

are also of different color

H =

+ (a† + b)(b† + a)

+ (b† + c)(c† + b)

H =

+ (a† + b)(b† + a)

+ (b† + c)(c† + b)
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Unbiased calculation: 
iPEPS, DMRG
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B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, 
K. Penc, M. Troyer, F. Mila:
Phys. Rev. B 85, 125116/1-11 (2012)
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SU(4) irreps on 4 sites

1 3× 15 35

⊗ ⊕ 2×

4 × = +

Addition of four SU(4) spins (256 states):

⊕⊕ 3× ⊕ 3×=⊗ ⊗

+ + +2× 20 3× 45× ×4 4 4
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multiplets
SU(4) singlet

SU(4) singlet plaquette
entangled spins and orbitals

= −
spin singlet bond:

= |↑↓〉−|↓↑〉

orbital singlet bond:

= |        〉−|        〉

= |abcd〉−|bacd〉+|badc〉−|bdac〉−...
spins fully antisymmetrized

SU(4) irreps on 4 sites

1 3× 15 35

⊗ ⊕ 2×

4 × = +

Addition of four SU(4) spins (256 states):

⊕⊕ 3× ⊕ 3×=⊗ ⊗

+ + +2× 20 3× 45× ×4 4 4
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SU(4) on 2D-square lattice
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Ground state 4-fold degenerate?

Z2 liquid ? 
Wang & Viswanath (PRB 2009)

using Majorana fermions

SU(4) isomorphic to SO(6) 
6 Majorana fermions

minimal energy for a plaquette bond, but 
not so good energy between plaquettes 
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SU(4) on 2D-square lattice: iPEPS

V V V V

A

B

B

A

H

H

D = 12 and a unit cell 4 × 2

dimerization and Neel-like state: 
both spatial and the SU(4) 

symmetry is broken

⊗ = ⊕
44 6 10× = +

the 6 dimensional irreducible 
representation is realized on the 

dimers, can Neel order

2-step scenario:
(i) Dimerization: 6-dimensional 

irreps are formed
(ii) the 6-imensional irreps can 

possibly Néel order

P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, F. Mila, 
PRL 107, 215301 (2011). 
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SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory 

Basic building blocks:
nearest (mean field) and next nearest 
(fluctuations) neighbor colors different. 

Order by disorder does not work!

Friday, June 14, 2013



SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory 

Basic building blocks:
nearest (mean field) and next nearest 
(fluctuations) neighbor colors different. 

A linear defect

Order by disorder does not work!
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SU(4) honeycomb: Lifting of the degeneracy in flavor wave theory 

Basic building blocks:
nearest (mean field) and next nearest 
(fluctuations) neighbor colors different. 

Order by disorder does not work!
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iPEPS - local magnetization vanishes

4x4 unit cell, 
D=6

2x2 unit cell,
D=6

P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, F. Mila:
Phys. Rev. X 2, 041013/1-11 (2012).
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iPEPS - dimerization vanishes

2x2 unit cell,
D=6P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, F. Mila:

Phys. Rev. X 2, 041013/1-11 (2012).
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Summary of iPEPS results [SU(4) honeycomb]

- dimerization vanishes 
  (actually no point group symmetry breaking)

- local magnetization vanishes
 (no SU(4) symmetry breaking)

spin-orbital liquid

How to characterize it?
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fermionic 
representation:

Pij =
�

µ,ν∈colors

f†
α,ifβ,if

†
β,jfα,j

PMF
ij =

�

α,β∈colors

�fβ,if
†
β,j�f

†
α,ifα,j

= −
�

α∈colors

tαijf
†
α,ifα,j

Using different Ansätze for the 
hoppings, we evaluate the 
expectation value of the 
Hamiltonian

Mean-field decoupling of the 
fermionic Hamiltonian gives a 
hopping Hamiltonian and a 
variational wave function

|Ψvari� = PGutzwiller|ΨFS�

Evari =
�Ψvari|H|Ψvari�
�Ψvari|Ψvari�
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The fermionic wave function of the pi-flux state

Dirac points
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96-site cluster - real space correlations from Gutzwiller projected 
wavefunction
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square lattice: F. Wang and 
A. Vishwanath, Phys. Rev. B 
80, 064413 (2009).
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96-site cluster - real space correlations from Gutzwiller projected 
wavefunction
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marked differences in 
3rd neighbor correlations
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Ground state energy from different methods
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24-site cluster - real space correlations

Pi-flux

Dimension of the Hilbert space is 24!/(6!)4 =  2 308 743 493 056
using symmetries makes it tractable
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around q = π/2, when 1 < α < 3. If α is greater than
2, Eq. (8) does not show any cusp structure at q = π/2.
So α must be less than 2, since we clearly see the cusp
structure of Sz(q) which becomes sharper as the system
size is increased.

By the SU(4) conformal field theory, the critical expo-
nent of the SU(4) spin correlation functions with q = π/2
oscillations is obtained to be 3/2 [10], which is consistent
with the present numerical result. Although the corre-
lation functions discussed in this paper are the S-spin
correlation functions but not the SU(4) spin correlation
functions, we can show that the exponent is the same for
the two correlation functions.
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FIG. 5. Fourier transformation of the correlation function
for the systems with N = 60 (!) and N = 48 (×).

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the quantum critical
state for the coupled spin-orbit system. The quantum
numbers of the ground state and the lowest branch of the
excitations are determined. Furthermore, the spin-spin
correlation functions are obtained explicitly for the first
time by the DMRG method. It shows a power-law decay
with a period of four, which originate from the interfer-
ence between the spin and orbital degrees of freedom.
The exponent of the asymptotic behavior is consistent
with the prediction by the conformal field theory.

In this paper we have investigated only the most sym-
metric model, but it is more realistic to consider a model
with lower symmetry corresponding to a finite J . In such
a case the effective Hamiltonian is given by the S-spin
isotropic and T -spin Ising-type Hamiltonian (2), whose
properties are not yet fully understood.

Related to the SU(4) model, several models with lower
symmetries have been studied [11–13]. Kawano and
Takahashi [12] discussed S-spin isotropic and T -spin XY -
type Hamiltonians to study the three-leg antiferromag-
netic Heisenberg ladder and showed that such a model

is gapfull and has exponentially decaying correlation
functions. Kolezhuk and Mikeska [13] studied a spe-
cial SU(2)×SU(2) symmetric Hamiltonian

∑

i(
#Si · #Si+1 +

3/4)(#Ti · #Ti+1 + 3/4) and showed that this model is also
gapfull.

It may be possible to study the properties of these
models in a unified way by introducing different type of
anisotropies from the SU(4) symmetric point. For this
purpose, it is highly desirable to develop an analytic the-
ory around this symmetric point.
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IV. CORRELATION FUNCTIONS

Now we move on to the behaviors of the correlation
functions, 〈Sz

i ·Sz
i+j〉g.s., where 〈· · ·〉g.s. denotes expecta-

tion values for the ground state. Since Hamiltonian (3)
has rotational symmetry with respect to both S and T
spins, we consider only z components of spins.

We use the OBC to get better accuracy in the DMRG
calculations, but in this case we must keep in mind
that the data contain the effects from boundaries. 〈Sz

i ·
Sz

i+j〉g.s. shows an oscillatory behavior with a period of
four as a function of j. But the correlation functions also
vary with a period of four with respect to i. That is,
〈Sz

i · Sz
i+j〉g.s. is equal to 〈Sz

i+4 · S
z
i+4+j〉g.s. for any i, j.

This behavior is caused by the standing wave with
a period of four originating from the open boundaries.
To remove such an artifact due to the OBC, we average
〈Sz

i · Sz
i+j〉g.s. for one period with respect to i. Thus we

define an approximate bulk correlation function as fol-
lows:

〈Sz
i · Sz

i+j〉bulk ≡
1

4

3
∑

k=0

〈Sz
i+k · Sz

i+k+j〉g.s. . (5)

After this averaging procedure, we get the natural be-
havior of the correlation functions as shown in Fig. 4 .

Because the results discussed in the previous section
show that this model is gapless, we try to fit the enve-
lope of 〈Sz

i · Sz
i+j〉bulk data with a power-law function (

j−α) by the least mean square method and get critical
exponent α equal to 1.80 or 1.55 depending on using ei-
ther the upper (j = 12, 16, and 20) or the lower (j = 14,
18, and 22) data. We did not use the data of j = 24, 26
and 28, because these sites are too close to the bound-
ary. Due to finite size effects, the value of α depends on

how to fit, but α is always between 1.5 and 2.0. From
these results, we conclude that the asymptotic form of
the correlation function is given by

〈Sz
i · Sz

i+j〉bulk ∼
cos (π

2 j)

jα
; α = 1.5 − 2.0, (6)

in the bulk limit.
Of course, 〈Sz

i · Sz
i+j〉bulk is equal to 〈T z

i · T z
i+j〉bulk,

because of the symmetry of Hamiltonian (3) concern-
ing the exchange between "S and "T . Furthermore, 〈Sz

i ·
T z

i+j〉bulk always equals zero as is easily shown by the
Wigner-Eckart theorem. In fact, the calculated values of
〈Sz

i · T z
i+j〉bulk are almost zero, and the numerical errors

for the values of 〈Sz
i · Sz

i+j〉bulk may be estimated from
these values, which are less than 1% even at the farthest
site from i.
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FIG. 4. Correlation functions (〈Sz
i · Sz

i+j〉bulk) for the sys-
tems with N = 48 (+) and 60 ("). Broken and dotted lines
are 0.144/j1.80 and −0.108/j1.55 , which are the results of the
least mean square fitting using the upper and lower data, re-
spectively. Numerical errors, which are estimated from the
values of 〈Sz

i · T z
i+j〉bulk, are less than 1%. The inset shows

the entire form of the correlation functions. The symbols ×
and ! represent data for N = 48 and 60, respectively, but
they overlap nearly perfectly.

Next we study the structure factor defined by

Sz(q) ≡

N/2−2
∑

j=−N/2+3

〈Sz
i · Sz

i+j〉bulk · e−iqj . (7)

As is seen in Fig. 5, Sz(q) has a characteristic cusp struc-
ture at q = π/2. This result is consistent with the soft-
ening at q = π/2 in the dispersion relation. By Fourier
transformation of Eq. (6), the analytic form of Sz(q) is
given by

Sz(q) ∼ Sz(q =
π

2
) −

π

2

|q − π
2 |

α−1

Γ (α) sin α−1
2 π

+ O
(

q −
π

2

)

(8)

4

!τ -variable, the second one is a special property of the
SU(4) symmetric model. All the QMC results have been
checked for the symmetry relation Eq. (2) and perfect
agreement within the statistical error has been found.
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FIG. 1. (a) QMC results for the correlation function
wij ≡ 〈Sz

i Sz
j 〉 (solid points) as a function of |i − j| for a

chain of length L = 100 with PBC which is predominantly
in the ground state (for details see text). The correlations
for |i − j| = 1, 2 and 4 (which are out of the plot range)
are -0.07168(1), -0.04011(1) and 0.008261(4), respectively.
Fig. (b) shows the correlations wij at large distances |i − j|
and the fit (for details see text) to the QMC data (open di-
amonds). The statistical error bars of the QMC calculations
are much smaller than the symbols. (c) and (d) show the
Fourier transform Sz(k) of wij on two different scales.

The correlation function wij shows a clear four-site pe-
riodicity (see Fig. 1). Its sign is positive if |i−j| = 4N , N
integer and negative otherwise. The reason for the latter
is the tendency for every four neighboring sites to form a
SU(4) singlet [5]. Furthermore, from Fig. 1, it can be seen
that the correlations for distances |i−j| = 4N and 4N +2
decay much slower than for |i− j| = 4N + 1 and 4N + 3.
The explanation of this fact is simple: The system con-
sidered here has low lying excitations at k = 0, π/2 and
π (see Fig. 3 of [4]) each of them leading to a mode with
wave vector k in the long distance correlations. The am-
plitudes of this modes are expected all to decay according
to a power law, but with different critical exponents αk.
From the results for wij (Fig. 1), it can be concluded that
the two dominant modes are those with k = π/2 (positive
prefactor) and k = 0 (negative prefactor). This is also
reflected in the Fourier transform Sz(k) of the correla-
tion function wij , having a characteristic cusp structure
at k = 0, π/2 and π (see Fig. 1cd). While the cusps at
k = 0 and π/2 are quite sharp, the one at k = π, how-

ever, is not so pronounced, indicating that the k = π
mode is of all the three the least dominant mode in the
correlation function.

The two critical exponents απ/2 and α0 can be deter-
mined from the QMC data of the real space correlation
function w(r) ≡ wij, |i−j|=r . Fitting w(r) to the form
bπ/2(r

−απ/2+(L−r)−απ/2) cos(π
2 r)+b0(r−α0+(L−r)−α0)

for the range 20 <
∼ r <

∼ 50 (making explicit use that our
system has PBC), we find

απ/2 = 1.50 ± 0.01, α0 = 1.85 ± 0.16. (3)

The best fit is obtained for bπ/2 = 0.091, απ/2 =
1.499, b0 = −0.035, α0 = 1.85 and is shown in Fig. 1. A
precise estimate of α0 is not simple since the k = 0 mode
is only a relative small superposition on the top of the
much stronger k = π/2 mode. The exponent απ/2, how-
ever, can be determined to high precision. These results
are in very good agreement with the prediction of Affleck,
who calculated the critical behavior of the SU(4) correla-
tion function in an arbitrary SU(4) symmetric model us-
ing conformal field theory [7]. This correlation function
is proportional to wij , as a consequence of the symme-
try relation Eq. (2) and the exact results are απ/2 = 3

2
and α0 = 2. The exponent απ/2 has also been estimated,
using DMRG (απ/2 $ 1.5 ∼ 2) [6]. The DMRG results
are in principle more precise than the QMC results, but
finite size effects in DMRG studies are much bigger due
to the use of open boundary conditions. Thus it is not
surprising that our estimate Eq. (3) is much more precise.

At finite temperatures, the dominant components in
the correlation function, wij(T ) ≡ 〈Sz

i Sz
j 〉(T ) (note that

Eq. (2) holds also at finite T ) which result from the
soft modes at k = 0 and π/2, no longer decay according
to a power law, but exponentially. The corresponding
correlation lengths ξ0(T ) and ξπ/2(T ) may be different.

The correlation function 〈Sz
i Sz

j 〉(T ) is shown as a func-
tion of |i − j| in Fig. 2 for a system of length L = 200
with PBC at a temperature T = 0.05J . To find the cor-
rect low-temperature form, describing the long distance
behavior (|i − j| ' ξ0, ξπ/2) of the correlations wij(T ),
one has to consider not only a phase shift δ(T ) in the
k = π/2 mode, but also an incommensuration effect of
this component, i.e. that the period is shifted away from
k = π/2 by an amount φk(T ). This is due to the asymme-
try of the excitation spectrum at the point k = π/2 which
manifests itself at finite T , where also excited states con-
tribute to wij(T ). This asymmetry can be seen in Fig. 2
of [6], where the degeneracy of the lowest “spin wave”
branch is indicated. As the degeneracy for k > π/2 is
larger than for k < π/2, we expect the weight of the π/2
mode to be shifted to a higher k value. This effect can
also be observed in the Fourier transform Sz(k, T ) of the
correlation function, where the maximum at k = π/2 at
T = 0 moves to higher k-values when T increases.

Finally, we propose the following low temperature form
for the correlations wij(T ) with |i − j| ' ξ0, ξπ/2:

2
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around q = π/2, when 1 < α < 3. If α is greater than
2, Eq. (8) does not show any cusp structure at q = π/2.
So α must be less than 2, since we clearly see the cusp
structure of Sz(q) which becomes sharper as the system
size is increased.

By the SU(4) conformal field theory, the critical expo-
nent of the SU(4) spin correlation functions with q = π/2
oscillations is obtained to be 3/2 [10], which is consistent
with the present numerical result. Although the corre-
lation functions discussed in this paper are the S-spin
correlation functions but not the SU(4) spin correlation
functions, we can show that the exponent is the same for
the two correlation functions.
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V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the quantum critical
state for the coupled spin-orbit system. The quantum
numbers of the ground state and the lowest branch of the
excitations are determined. Furthermore, the spin-spin
correlation functions are obtained explicitly for the first
time by the DMRG method. It shows a power-law decay
with a period of four, which originate from the interfer-
ence between the spin and orbital degrees of freedom.
The exponent of the asymptotic behavior is consistent
with the prediction by the conformal field theory.

In this paper we have investigated only the most sym-
metric model, but it is more realistic to consider a model
with lower symmetry corresponding to a finite J . In such
a case the effective Hamiltonian is given by the S-spin
isotropic and T -spin Ising-type Hamiltonian (2), whose
properties are not yet fully understood.

Related to the SU(4) model, several models with lower
symmetries have been studied [11–13]. Kawano and
Takahashi [12] discussed S-spin isotropic and T -spin XY -
type Hamiltonians to study the three-leg antiferromag-
netic Heisenberg ladder and showed that such a model

is gapfull and has exponentially decaying correlation
functions. Kolezhuk and Mikeska [13] studied a spe-
cial SU(2)×SU(2) symmetric Hamiltonian

∑

i(
#Si · #Si+1 +

3/4)(#Ti · #Ti+1 + 3/4) and showed that this model is also
gapfull.

It may be possible to study the properties of these
models in a unified way by introducing different type of
anisotropies from the SU(4) symmetric point. For this
purpose, it is highly desirable to develop an analytic the-
ory around this symmetric point.

ACKNOWLEDGMENTS

We would like to thank Norio Kawakami for pointing
out the exact results of the SU(4) model and many help-
ful comments. Thanks are also due to Manfred Sigrist
for valuable discussions. We are grateful to Fu Chun
Zhang who sent us his related work prior to publication
[14]. The numerical exact diagonalization calculations
of this work were done by using TITPACK ver. 2 devel-
oped by H. Nishimori. This work is financially supported
by a Grant-in-Aid for Scientific Research on Priority Ar-
eas from the Ministry of Education, Science, Sports and
Culture. N.S. is supported by the Japan Society for the
Promotion of Science.

∗ Present address: Institute of Applied Physics, University
of Tsukuba, Tsukuba 305, Japan.

[1] K. I. Kugel and D. I. Khomskii, Sov. Phys. JETP 37,
725 (1973) [Zh. Eksp. Teor. Fiz. 64, 1429 (1973)].

[2] S. Inagaki, J. Phys. Soc. Jpn. 39, 596 (1975).
[3] R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn.

66, 1741 (1997).
[4] J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131

(1962).
[5] E. H. Lieb, T. Schultz, and D. J. Mattis, Ann. Phys.

(N.Y.) 16, 407 (1961).
[6] I. Affleck and E. H. Lieb, Lett. Math. Phys. 12, 57 (1986).
[7] B. Sutherland, Phys. Rev. B 12, 3795 (1975).
[8] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[9] X. Hamermesh, Group Theory, (Addison-Wesley, Read-

ing, MA, 1962).
[10] I. Affleck, Nucl. Phys. B 265, 409 (1986).
[11] N. Shibata, M. Sigrist, and E. Heeb, Phys. Rev. B 56,

11084 (1997).
[12] K. Kawano and M. Takahashi, J. Phys. Soc. Jpn. 66,

4001 (1997).
[13] A. K. Kolezhuk and H.-J. Mikeska, Phys. Rev. Lett. 80,

2709 (1998).
[14] Y. Q. Li, Michael Ma, D. N. Shi, and F. C. Zhang, cond-

mat/9804157 .

5

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0  4  8  12  16

 P
0r

 -1
/4

 

r

×0.2

honeycomb
chain

 0

 0.5

 1

 1.5

0 /2 3 /2 2

 P
k 

k

Beat Frischmuth, Frederic Mila, Matthias Troyer
Phys. Rev. Lett. 82, 000835 (1999)

comparison to 1D chains
variational MC (Gutzwiller 

projected Fermi sea)
0 !

Momentum(  )q

!
8
!
6

!
4

!
3
3!
8

!
2

5!
8

2!
3

3!
4

5!
6
7!
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

En
erg

y

[1 ]:14 [2 ]:202

[3 1 ]:45x21  1[2 1 ]:15x21  2> >> < <<

FIG. 3. Dispersion relations. The symbols !, !, and "

represent data for N = 8, 12, and 16, respectively. Young’s
diagrams (YD) show the irreducible representations. The
numbers accompanied by YD show the degeneracy and ×2
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IV. CORRELATION FUNCTIONS

Now we move on to the behaviors of the correlation
functions, 〈Sz

i ·Sz
i+j〉g.s., where 〈· · ·〉g.s. denotes expecta-

tion values for the ground state. Since Hamiltonian (3)
has rotational symmetry with respect to both S and T
spins, we consider only z components of spins.

We use the OBC to get better accuracy in the DMRG
calculations, but in this case we must keep in mind
that the data contain the effects from boundaries. 〈Sz

i ·
Sz

i+j〉g.s. shows an oscillatory behavior with a period of
four as a function of j. But the correlation functions also
vary with a period of four with respect to i. That is,
〈Sz

i · Sz
i+j〉g.s. is equal to 〈Sz

i+4 · S
z
i+4+j〉g.s. for any i, j.

This behavior is caused by the standing wave with
a period of four originating from the open boundaries.
To remove such an artifact due to the OBC, we average
〈Sz

i · Sz
i+j〉g.s. for one period with respect to i. Thus we

define an approximate bulk correlation function as fol-
lows:

〈Sz
i · Sz

i+j〉bulk ≡
1

4

3
∑

k=0

〈Sz
i+k · Sz

i+k+j〉g.s. . (5)

After this averaging procedure, we get the natural be-
havior of the correlation functions as shown in Fig. 4 .

Because the results discussed in the previous section
show that this model is gapless, we try to fit the enve-
lope of 〈Sz

i · Sz
i+j〉bulk data with a power-law function (

j−α) by the least mean square method and get critical
exponent α equal to 1.80 or 1.55 depending on using ei-
ther the upper (j = 12, 16, and 20) or the lower (j = 14,
18, and 22) data. We did not use the data of j = 24, 26
and 28, because these sites are too close to the bound-
ary. Due to finite size effects, the value of α depends on

how to fit, but α is always between 1.5 and 2.0. From
these results, we conclude that the asymptotic form of
the correlation function is given by

〈Sz
i · Sz

i+j〉bulk ∼
cos (π

2 j)

jα
; α = 1.5 − 2.0, (6)

in the bulk limit.
Of course, 〈Sz

i · Sz
i+j〉bulk is equal to 〈T z

i · T z
i+j〉bulk,

because of the symmetry of Hamiltonian (3) concern-
ing the exchange between "S and "T . Furthermore, 〈Sz

i ·
T z

i+j〉bulk always equals zero as is easily shown by the
Wigner-Eckart theorem. In fact, the calculated values of
〈Sz

i · T z
i+j〉bulk are almost zero, and the numerical errors

for the values of 〈Sz
i · Sz

i+j〉bulk may be estimated from
these values, which are less than 1% even at the farthest
site from i.
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FIG. 4. Correlation functions (〈Sz
i · Sz

i+j〉bulk) for the sys-
tems with N = 48 (+) and 60 ("). Broken and dotted lines
are 0.144/j1.80 and −0.108/j1.55 , which are the results of the
least mean square fitting using the upper and lower data, re-
spectively. Numerical errors, which are estimated from the
values of 〈Sz

i · T z
i+j〉bulk, are less than 1%. The inset shows

the entire form of the correlation functions. The symbols ×
and ! represent data for N = 48 and 60, respectively, but
they overlap nearly perfectly.

Next we study the structure factor defined by

Sz(q) ≡

N/2−2
∑

j=−N/2+3

〈Sz
i · Sz

i+j〉bulk · e−iqj . (7)

As is seen in Fig. 5, Sz(q) has a characteristic cusp struc-
ture at q = π/2. This result is consistent with the soft-
ening at q = π/2 in the dispersion relation. By Fourier
transformation of Eq. (6), the analytic form of Sz(q) is
given by

Sz(q) ∼ Sz(q =
π

2
) −

π

2

|q − π
2 |

α−1

Γ (α) sin α−1
2 π

+ O
(

q −
π

2

)

(8)

4

!τ -variable, the second one is a special property of the
SU(4) symmetric model. All the QMC results have been
checked for the symmetry relation Eq. (2) and perfect
agreement within the statistical error has been found.
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FIG. 1. (a) QMC results for the correlation function
wij ≡ 〈Sz

i Sz
j 〉 (solid points) as a function of |i − j| for a

chain of length L = 100 with PBC which is predominantly
in the ground state (for details see text). The correlations
for |i − j| = 1, 2 and 4 (which are out of the plot range)
are -0.07168(1), -0.04011(1) and 0.008261(4), respectively.
Fig. (b) shows the correlations wij at large distances |i − j|
and the fit (for details see text) to the QMC data (open di-
amonds). The statistical error bars of the QMC calculations
are much smaller than the symbols. (c) and (d) show the
Fourier transform Sz(k) of wij on two different scales.

The correlation function wij shows a clear four-site pe-
riodicity (see Fig. 1). Its sign is positive if |i−j| = 4N , N
integer and negative otherwise. The reason for the latter
is the tendency for every four neighboring sites to form a
SU(4) singlet [5]. Furthermore, from Fig. 1, it can be seen
that the correlations for distances |i−j| = 4N and 4N +2
decay much slower than for |i− j| = 4N + 1 and 4N + 3.
The explanation of this fact is simple: The system con-
sidered here has low lying excitations at k = 0, π/2 and
π (see Fig. 3 of [4]) each of them leading to a mode with
wave vector k in the long distance correlations. The am-
plitudes of this modes are expected all to decay according
to a power law, but with different critical exponents αk.
From the results for wij (Fig. 1), it can be concluded that
the two dominant modes are those with k = π/2 (positive
prefactor) and k = 0 (negative prefactor). This is also
reflected in the Fourier transform Sz(k) of the correla-
tion function wij , having a characteristic cusp structure
at k = 0, π/2 and π (see Fig. 1cd). While the cusps at
k = 0 and π/2 are quite sharp, the one at k = π, how-

ever, is not so pronounced, indicating that the k = π
mode is of all the three the least dominant mode in the
correlation function.

The two critical exponents απ/2 and α0 can be deter-
mined from the QMC data of the real space correlation
function w(r) ≡ wij, |i−j|=r . Fitting w(r) to the form
bπ/2(r

−απ/2+(L−r)−απ/2) cos(π
2 r)+b0(r−α0+(L−r)−α0)

for the range 20 <
∼ r <

∼ 50 (making explicit use that our
system has PBC), we find

απ/2 = 1.50 ± 0.01, α0 = 1.85 ± 0.16. (3)

The best fit is obtained for bπ/2 = 0.091, απ/2 =
1.499, b0 = −0.035, α0 = 1.85 and is shown in Fig. 1. A
precise estimate of α0 is not simple since the k = 0 mode
is only a relative small superposition on the top of the
much stronger k = π/2 mode. The exponent απ/2, how-
ever, can be determined to high precision. These results
are in very good agreement with the prediction of Affleck,
who calculated the critical behavior of the SU(4) correla-
tion function in an arbitrary SU(4) symmetric model us-
ing conformal field theory [7]. This correlation function
is proportional to wij , as a consequence of the symme-
try relation Eq. (2) and the exact results are απ/2 = 3

2
and α0 = 2. The exponent απ/2 has also been estimated,
using DMRG (απ/2 $ 1.5 ∼ 2) [6]. The DMRG results
are in principle more precise than the QMC results, but
finite size effects in DMRG studies are much bigger due
to the use of open boundary conditions. Thus it is not
surprising that our estimate Eq. (3) is much more precise.

At finite temperatures, the dominant components in
the correlation function, wij(T ) ≡ 〈Sz

i Sz
j 〉(T ) (note that

Eq. (2) holds also at finite T ) which result from the
soft modes at k = 0 and π/2, no longer decay according
to a power law, but exponentially. The corresponding
correlation lengths ξ0(T ) and ξπ/2(T ) may be different.

The correlation function 〈Sz
i Sz

j 〉(T ) is shown as a func-
tion of |i − j| in Fig. 2 for a system of length L = 200
with PBC at a temperature T = 0.05J . To find the cor-
rect low-temperature form, describing the long distance
behavior (|i − j| ' ξ0, ξπ/2) of the correlations wij(T ),
one has to consider not only a phase shift δ(T ) in the
k = π/2 mode, but also an incommensuration effect of
this component, i.e. that the period is shifted away from
k = π/2 by an amount φk(T ). This is due to the asymme-
try of the excitation spectrum at the point k = π/2 which
manifests itself at finite T , where also excited states con-
tribute to wij(T ). This asymmetry can be seen in Fig. 2
of [6], where the degeneracy of the lowest “spin wave”
branch is indicated. As the degeneracy for k > π/2 is
larger than for k < π/2, we expect the weight of the π/2
mode to be shifted to a higher k value. This effect can
also be observed in the Fourier transform Sz(k, T ) of the
correlation function, where the maximum at k = π/2 at
T = 0 moves to higher k-values when T increases.

Finally, we propose the following low temperature form
for the correlations wij(T ) with |i − j| ' ξ0, ξπ/2:

2
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SU(4) honeycomb: Tetramerization
Q(ij),(kl) =

1

4
(1 + Pij)(1 + Pkl)

Chapter 6. SU(4) Algebraic spin-orbital liquid on the honeycomb lattice 78

Hamiltonian constructed as the sum of the operators,

HQ =
�

(i j),(kl)

Q(i j),(kl), (6.14)

is a sum of projection operators, therefore the ground state energy must be non-negative. The

tetramerized state introduced in the previous section is a ground state of this model, since it

gives 0 with all Q(i j),(kl).

Figure 6.20: (a) Q(i j),(kl) with nearest neighbor parallel (ij) and (kj) bonds in the tetramer-

ized state, (b)-(e) illustrates that this kind of covering is the only ground state of HQ in Eq.

(6.14) (b) To satisfy Q(12)(34) (12) is antisymmetrized (purple bond), next to satisfy Q(15)(23) we

antisymmetrize (23). (c) To satisfy Q(17)(26) we can’t make an antisymmetrization in (17), since

then we will be unable to satisfy Q(15)(78) (d), so the only option we have is an SU(4) singlet

located on site 2 and its three neighbors (e).

We can also prove that no other SU(4) singlet covering state satisfies all Q projections. Here we

follow the site numbering shown in Fig 6.20b-e. To make Q(12)(34) satisfied, we can choose

to antisymmetrize the spins on bond (12). Next, to make Q(15),(23) satisfied we can either

antisymmetrize the spins on bond (15) or (23). Without loss of generality we can choose to

antisymmetrize on (23). Now, consider Q(17),(26). If we make an antisymmetrization on (17),

then we created an SU(4) singlet on sites 1,2,3 and 7. At this point, the Q(15),(78) term can not

be satisfied, since 1 and 7 already belong to a singlet, so we cannot make an antisymmetrization

neither on (15) nor (78). Therefore, instead of (17) we must make an antisymetrization on bond

(26), which then results a singlet on sites 1,2,3 and 6. This shows that a ground state ofHQ must

be built of singlets occupying a site and its three neighbors, which can be done only as shown

in Fig 6.20a. This type of SU(4) singlet covering is fourfold degenerate depending on where the

centers of the singlet tetramers are located.

exact ground state for a Hamiltonian 
that is a sum of Q operators
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SU(4) honeycomb: Tetramerization
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J1-J2 SU(4) honeycomb: Tetramerization

Chapter 6. SU(4) Algebraic spin-orbital liquid on the honeycomb lattice 78

Hamiltonian constructed as the sum of the operators,

HQ =
�

(i j),(kl)

Q(i j),(kl), (6.14)

is a sum of projection operators, therefore the ground state energy must be non-negative. The

tetramerized state introduced in the previous section is a ground state of this model, since it

gives 0 with all Q(i j),(kl).

Figure 6.20: (a) Q(i j),(kl) with nearest neighbor parallel (ij) and (kj) bonds in the tetramer-

ized state, (b)-(e) illustrates that this kind of covering is the only ground state of HQ in Eq.

(6.14) (b) To satisfy Q(12)(34) (12) is antisymmetrized (purple bond), next to satisfy Q(15)(23) we

antisymmetrize (23). (c) To satisfy Q(17)(26) we can’t make an antisymmetrization in (17), since

then we will be unable to satisfy Q(15)(78) (d), so the only option we have is an SU(4) singlet

located on site 2 and its three neighbors (e).

We can also prove that no other SU(4) singlet covering state satisfies all Q projections. Here we

follow the site numbering shown in Fig 6.20b-e. To make Q(12)(34) satisfied, we can choose

to antisymmetrize the spins on bond (12). Next, to make Q(15),(23) satisfied we can either

antisymmetrize the spins on bond (15) or (23). Without loss of generality we can choose to

antisymmetrize on (23). Now, consider Q(17),(26). If we make an antisymmetrization on (17),

then we created an SU(4) singlet on sites 1,2,3 and 7. At this point, the Q(15),(78) term can not

be satisfied, since 1 and 7 already belong to a singlet, so we cannot make an antisymmetrization

neither on (15) nor (78). Therefore, instead of (17) we must make an antisymetrization on bond

(26), which then results a singlet on sites 1,2,3 and 6. This shows that a ground state ofHQ must

be built of singlets occupying a site and its three neighbors, which can be done only as shown

in Fig 6.20a. This type of SU(4) singlet covering is fourfold degenerate depending on where the

centers of the singlet tetramers are located.
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SU(3) honeycomb lattice: flavor wave

Lee and Yang, 
Phys. Rev. B 85, 100402 (2012)
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present systems are found to be localized, and the low-lying
modes form several flat bands separated by nonzero energy
gaps. This observation is rather different from the usual cases
with spontaneous SU(2) symmetry breaking. Moreover, it is
found that the gapful ground state with columnar dimer order
remains even in the limit of J = K (or θ = π/4), at which
a direct transition to the nearby antiferromagnetic phase for
J > K is anticipated.6,7 This suggests that the quantum phase
transition at J = K , which separates these two phases with
distinct types of long-range order, may be of first order. The
implication of our results on generalized models is discussed
at the end of this Rapid Communication.

The LFW theory starts from representing the model in
Eq. (1) in terms of three-flavor Schwinger bosons ai,α under
the local constraint

∑
α a

†
i,αai,α = 1,

H =
∑

〈i,j〉
[Jχ

†
ijχij + (K − J )%†

ij%ij + (K − J )]. (2)

Here we define two bond operators, χij =
∑

α a
†
i,αai,α and

%ij =
∑

α ai,αaj,α . The Schwinger bosons a
†
i,α (with α =

x, y, z) create three time-reversal-invariant local basis
states, |x〉 = 1√

2
(|sz = 1〉 − |sz = −1〉), |y〉 = i√

2
(|sz = 1〉 +

|sz = −1〉), and |z〉 = |sz = 0〉. In terms of these bosons, the
spin operators become Si,α = −i

∑
β,γ εαβγ a

†
i,βai,γ . The first

step is the mean-field analysis based on a site-factorized
variational wave function. At this mean-field level, the
Schwinger-boson operators ai ≡ (ai,x , ai,y , ai,z) are replaced
by a (complex) three-component vector di , and the energy
of the nearest-neighbor bond 〈i,j 〉 is minimal when the two
vectors di and dj are mutually orthogonal.6,7 The mean-field
ground state configuration is highly degenerate on a honey-
comb lattice, and as can be seen from Eq. (2), the associated
mean-field energy per bond is (K − J ). This macroscopic
degeneracy can be lifted when quantum fluctuations above
each mean-field state are included. Within the LFW analysis,
the leading quantum corrections to the mean-field energy of the
considered variational state come from the zero-point energy
of the LFW Hamiltonian. Therefore, the configuration with the
lowest zero-point energy will be picked out as the true ground
state. This is in essence a quantum order-by-disorder selection
mechanism.

The derivation of the LFW Hamiltonian proceeds as
follows. For a given configuration of the variational state,
when the two classical vectors on a nearest-neighbor bond
〈i,j 〉 are, say, di = x̂ and dj = ŷ (named as the XY bond in the
following), we approximate semiclassically their Schwinger-
boson operators by ai & (1, ai,y , ai,z) and aj & (aj,x , 1, aj,z).
The operators ai,y and ai,z on site i (aj,x and aj,z on site j )
describe the quantum fluctuations around the classical vectors,
and they play the role of the Holstein-Primakoff bosons in the
usual spin-wave theory. Therefore, up to the linear order in
these operators, the bond operators become

χij & a
†
i,y + aj,x, %ij & ai,y + aj,x . (3)

Substituting them into the Hamiltonian in Eq. (2), we obtain
the desired quadratic LFW Hamiltonian.

We note that the LFW Hamiltonian in general consists
of a sum of independent parts that describe the motion of

FIG. 1. (Color online) Schematic representation of three pos-
sible candidates for the ground state: (a) two-sublattice state and
(b) staggered dimer state, both of which have higher LFW energies;
(c) columnar dimer state selected by quantum fluctuations within
the LFW theory. Here the three mutually orthogonal vectors di in
the mean-field analysis are denoted by the unit vectors along the x,
y, and z directions, and are associated with different colors. Strong
bonds with the lowest zero-point energy are denoted by thick lines.
The remaining weak bonds are depicted by thin lines.

bosons on certain connected clusters. For example, for a given
nearest-neighbor bond (say, the XY bond), when all of the d
vectors of its surrounding sites are orthogonal (say, di = ẑ) to
both d vectors on that bond, the 2 bosons (say, the x and y
components of the Schwinger bosons) within that bond cannot
move to neighboring sites. That is, the motion of these bosons
becomes decoupled from the surrounding of that bond, and it
can be described by a 2-site Hamiltonian. In the following, such
2-site clusters are dubbed as strong bonds and denoted by thick
lines in Figs. 1(b) and 1(c). On the other hand, the remaining
bonds depicted by thin lines can be linked to from larger cluster
and they are termed as weak bonds. As discussed below, we
find that the zero-point energy (and therefore the ground-state
energy) is minimized for those strong bonds. Therefore, we
expect that the states with the lowest zero-point energy should
be the ones that contain as many strong bonds as possible.
Such a “maximum strong bond rule,” which has been noted in
other context,16 forms our main guiding principle in searching
for possible candidates of the ground state. Based on this
observation, in addition to the two-sublattice state [Fig. 1(a)],
which is the naive ground-state configuration on the present
bipartite lattice, we consider two more configurations. They
are the staggered dimer state and the columnar dimer state
[Figs. 1(b) and 1(c), respectively], both of which contain the
maximum number of strong bonds per elementary hexagon.
Nevertheless, as discussed in the paragraph below Eq. (6),
the zero-point energy for weak bonds in the columnar dimer
state is lower than that in the staggered dimer state. Thus the
columnar dimer state in Fig. 1(c) with a more complicated
structure is selected by the zero-point quantum fluctuations
within the LFW theory.

Now we begin to derive the explicit expressions of the
zero-point energies for the three configurations shown in
Fig. 1. For the case of the two-sublattice state formed by XY
bonds only, the z components of the Schwinger bosons play

100402-2
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SU(3) honeycomb lattice: tensor network

H.H.Zhao,C.Xu,Q.N.Chen,Z.C.Wei,
M.P.Qin,G.M. Zhang, and T. Xiang, 
Phys. Rev. B 85, 134416 (2012). 
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FIG. 6. (Color online) Uniform (red) line and staggered (blue)
line represent magnetization per site as a function of θ .

corresponds to a ferroquadrupolar phase, in agreement with
both the semiclassical29,30 and quantum Monte Carlo31 results.

In the staggered magnetization curve a sharp jump
shows at θc = −π/2. This feature was also observed in the
quantum Monte Carlo calculation on a square lattice.31 But the
quadrupolar moment is finite and changes continuously at this
point. So a first order phase transition occurs, in consistence
with the conclusion drawn from the first derivative of the
ground state energy.

As expected, the staggered quadrupolar moment Qzz
s

vanishes in the FM, AF, and ferroquadrupolar phases. A
surprising result is that this moment also vanishes in the
classical staggered quadrupolar phase π/4 < θ < π/2, i.e.,
the quantum fluctuation suppresses completely the staggered
quadrupolar order, which is different from the previous studies
on the triangular or square lattices.32 More interestingly, the
critical point has been shifted by the quantum fluctuation from
π/4 to about 0.19π , which excludes the SU(3) AF Heisenberg
spin-1 model from any long-range magnetic order.

To further characterize the phase for θd < θ < π/2, we
have performed a thorough exploration of three possible VBS

FIG. 7. (Color online) Uniform (red) line and staggered (blue)
line represent spin quadruple moment per site as a function of θ .

FIG. 8. (Color online) Pictorial representation of three possible
VBS patterns considered in the calculation: (a) plaquette, (b)
columnar, and (c) staggered. The red thicker bonds represent
stronger correlation while the black thinner bonds represent weaker
correlation.

patterns (Fig. 8) on the honeycomb lattice. It has been checked
that whatever VBS patterns we start with, it always converges
into the plaquette order phase [Fig. 8(a)] under renormalization
group flow. Hence the ground state energy of the plaquette
VBS phase is the lowest. This plaquette order phase explicitly
breaks the lattice translation symmetry, but not the spin SU(2)
symmetry. A naive picture of this plaquette order is that,
in order to minimize the ground state energy, the spins on
one-third of the minimal hexagons of the honeycomb lattice
form the VBS phase, like the Haldane gapped phase in one
dimension.

In order to detect the plaquette order, we calculate the
plaquette order parameter defined as

P =
∑

〈i,j〉∈red〈Si · Sj 〉
2
∑

〈i,j〉∈black〈Si · Sj 〉
− 1, (10)

where 〈i,j 〉 ∈ red (black) means the two nearest neighbor
spins connected by red (black) bonds of Fig. 8(a). Figure 9
shows the θ dependence of the plaquette order parameters.
Both the plaquette and AF orders vanish simultaneously and
continuously at the critical point θd . This observation suggests
that this plaquette-AF transition is in fact a second order
transition, in consistence with the conclusion drawn from the
first and second derivatives of the ground state energy with
respect to θ in Fig. 5. But we are still unable to rule out the

FIG. 9. (Color online) The plaquette order parameter as a function
of θ .

134416-4

ZHAO, XU, CHEN, WEI, QIN, ZHANG, AND XIANG PHYSICAL REVIEW B 85, 134416 (2012)

Hamiltonian. However, the staggered quadruple operator,
Qs =

∑
i(−)iQi , does not commute with the Hamiltonian.

The two terms in Eq. (1) introduce competition between
different kinds of magnetic orders. The first term favors
the conventional ferromagnetic or antiferromagnetic order,
while the second term favors a ferro- or antiferroquadrupolar
order. This competition causes a strong quantum fluctuation,
especially in the regime sin θ > 0, where the Marshall sign
rule is not applicable to the ground state wave function and the
quantum Monte Carlo suffers the minus-sign problem.

Aspects of the spin-1 bilinear-biquadratic model have been
explored previously in the literature. In one dimension, the
ground state phase diagram has been characterized by a
numerical density matrix renormalization group method. For
−π/4 < θ < π/4, the model gives rise to the Haldane spin
gapped phase, while the ground state for π/4 < θ < π/2
corresponds to a quantum critical phase with power-law spin
and quadrupolar correlations.27,28

In two dimensions, the ground state phase diagram has
not been firmly established. In the classical limit, this model
possesses four phases,29,30 as depicted by the inner circle of
Fig. 1. In the lower half plane of θ , the quantum Monte Carlo
simulation31 and other calculations15 confirmed the classical
phase diagram on square or triangular lattices. In the upper
half plane of θ , there is no quantum Monte Carlo study on
this model due to the minus-sign problem. Other calculations
based on mean field theory and exact diagonalization showed
that the phase π/4 < θ < π/2 is antiferroquadrupolar ordered
on the triangular or square lattice.32

II. METHODS

The tensor renormalization group method recently devel-
oped is an accurate numerical method for studying the ground

FIG. 1. (Color online) The ground state phase diagram of the spin-
1 bilinear-biquadratic Heisenberg model on the honeycomb lattice.
The inner circle is the phase diagram in the classical limit, while
the outer circle is for the corresponding quantum spin model. FM,
AF, FQ, AFQ, and PVBS stand for ferromagnetic, antiferromagnetic,
ferroquadrupolar, antiferroquadrupolar, and plaquette valence bond
solid phases, respectively. θd ≈ 0.19π .

state of quantum lattice models in two dimensions.24–26 It does
not have the minus-sign problem encountered in the quantum
Monte Carlo simulation and can be used to study the phase
diagram in the whole parameter space. We assume that the
ground state is described by the following tensor-product wave
function

|#〉 = Tr
∏

{i}
Ai

xiyizi
[mi]|mi〉, (4)

where mi is the eigenvalue of spin operator Sz
i . Ai

xiyizi
[mi] are

the third-order tensors defined on the six sublattices, as shown
in Fig. 2. The trace is to sum over all spin configurations and
all virtual bond variables. This wave function satisfies the area
law of entanglement entropy. It is an accurate representation
of the ground state wave function. Its accuracy is determined
by the bond dimension D. It approaches the exact result in the
limit D → ∞.

The ground state wave function, or the local tensors Ai , is
determined by applying the projection operator exp (−τH ) to
an arbitrary initial state |#〉 iteratively until it is converged.
Since this model only contains nearest neighbor interactions,
exp (−τH ) can be divided into a sequence of local two-site
operators approximately by the Trotter-Suzuki decomposition
for a sufficiently small τ . We apply the first order Trotter-
Suzuki decomposition here. In our calculation, we start the
projection with a relatively large τ = 0.2 and then reduce it
gradually to 10−4 until the wave function is converged. In order
to find the true ground state and not being trapped in a local
minimum, we start the projection from a variety of possible
magnetically ordered states or valence bond solid states. We
choose the converged state which has the lowest energy as
the ground state wave function. A detailed introduction to this
method can be found from Refs. 24,25. This method is a fast
and accurate way to get the ground state wave function.

After obtaining the ground state wave function |#〉, we can
evaluate the expectation value of physical variable O:

〈O〉 = 〈#|O|#〉
〈#|#〉

. (5)

FIG. 2. (Color online) Diagrammatic representation of the tensor-
network wave function on the honeycomb lattice. Tensor Ai defined
on each lattice site contains three virtual bond indices and one physical
index.
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Figure 7.2: (a) The 000–flux and (b) the 0ππ–flux states, with 6 sites and 3 hexagons in the

unit cell. (c) The πππ–flux and (d) the π00–flux states have 12 sites in the primitive unit cell

(shown by dashed rectangle) or 24 sites in the hexagonal unit cell. These 4 configurations are

characterized by two different absolute values of hopping amplitudes, td and th. The hopping

amplitudes on the thin black and grey bonds are td and −td, while on the thick dark and light

purple bonds the hopping amplitudes are th and −th, respectively. (e) The chiralΦΦΦ–flux state

with Φ = 2π/3. The red bonds with arrows denote hoppings with complex the
i2π/3

amplitudes.

Here one can also introduce a modulation for the hoppings by changing the sign on the bonds

crossing the boundaries of the unit cell (td bonds), resulting in a ΦΦ�Φ� flux configuration,

with Φ� = 5π/3. Also Φ�Φ�Φ� and Φ�ΦΦ flux configurations can be created by introducing

complex hoppings to the πππ and π00 case. (f) Brillouin zone of the honeycomb lattice (black

hexagon) with the high symmetry points Γ = (0, 0), K = (2π/3
√

3, 2π/3), and M = (0, 2π/3).

The Brillouin-zone of the 6-site unit cell flux states ( 000, 0ππ, ΦΦΦ, and ΦΦ�Φ�) shown by

the dark red hexagon, with the high symmetry points K0 = (0, 4π/9) and M0 = (2π/3
√

3, 2π/6).

The dark green hexagon stands for the Brillouin-zone of the 24-site unit cell of the πππ, π00,

Φ�Φ�Φ�, and Φ�ΦΦ–flux configurations with Kπ = (0, 2π/9) and Mπ = (π/3
√

3, π/6). The

index in M and K refers to the flux of the central hexagon realized by real hopping amplitudes.

The nearest-neighbor distance is chosen to be unity.

motivated by the results of the SU(4) case on the honeycomb lattice [81], where a uniform

π-flux configuration gave a variational state energetically comparable to the iPEPS results.

3. A uniform chiral ΦΦΦ–flux state with Φ = 2π/3 per hexagon (Fig. 7.2e), following the

mean–field results for the SU(6) Heisenberg model on the honeycomb lattice [82], as well

as the uniform Φ�Φ�Φ�–flux state, where Φ� = 5π/3. Both uniform flux states can be

modulated to achieve a ΦΦ�Φ� and a Φ�ΦΦ flux configuration. The states with Φ flux

in the central hexagon can be realized in the 6-site unit cell, while the states with Φ�

flux require a 24 site hexagonal unit cell. We note that, these constructions can be only

achieved by complex hoppings, while the other four flux-states can be realized with real

hopping parameters.
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Figure 7.3: (a) Nearest-neighbor bond energy as
a function of td/th in the 72 site cluster. As we
change the sign of td/th from negative to posi-
tive, we shift between the 0ππ–flux and 000–flux
states (green squares), or between the π00–flux
and πππ–flux states (purple circles). The energy
of the chiral ΦΦΦ–flux state with Φ = 2π/3
(E(ΦΦΦ) = −0.662) is compared to the td = th

case, while the energy of the chiral ΦΦ�Φ�–flux
state E(ΦΦ�Φ�) = −0.671 is compared to the
td = −th case. The Φ�Φ�Φ�–flux and Φ�ΦΦ–
flux states have a higher energy (E(Φ�Φ�Φ�) =
−0.604, E(Φ�ΦΦ) = −0.629). The inset of (a)
shows the energies around td/th = −1 for the 72
and 288 site clusters. The free fermion Fermi-sea
state is degenerate for the πππ–flux state at the
Fermi level when td/th > 1, and this is the origin
of the scattered energy values of the projected
state. (b) The energies of the d and h bonds
versus td/th. The hexamerization (�Ph� < �Pd�)
is more extended for the π00–flux state than for
for the 0ππ–flux state. (c) Schematic drawing of
the extension of the hexamerized (plaquette) and
dimerized phases that can be read off from the
bond energies given in (b). The arrows denote

the minima of the energies shown in (a).

For the 000-0ππ and πππ-π00 cases we made calculations for different values of td/th, with fixed

th > 0. If td changes sign, the flux of the central hexagon remains the same, while the flux of the

other hexagons around change by π.

7.3 VMC results

For the Gutzwiller-projected calculations we chose finite clusters that have the full symmetry

of the honeycomb lattice and are compatible with both the 6 and 18-site unit cell of the iPEPS

calculations, and with the 24-site unit cell of the πππ and π00 flux-configurations. The bulk

of the calculations were made on clusters with 72 sites, and around the minimal energies we

made calculations on systems Ns =288. The number of elementary Monte Carlo steps was

1010(2 · 1010) for Ns =72 (288), and the sampling distance was chosen to be 1000(10000) which

is around 5 times the correlation length.

SU(3) honeycomb lattice: projected fermions 
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FIG. 9. (Color online) (a) The band structures of the free-fermion Hamiltonian for the hexamerized π00-flux state (td = −th) along the
path Mπ"Kπ Mπ in the Brillouin zone shown in Fig. 7(f). The occupied (dark purple) and unoccupied (light purple) bands are separated by a
gap. (b)–(d) The bands of the dimerized 0ππ -flux state for different values of td along the path M0"K0M0. For td > 1 the Fermi surface is a
Dirac point at K0—the minimal variational energy corresponds to the case when the Fermi sea touches the ε/|th| = −1, " point for td = −th
[(c)]. The green dashed line shows the Fermi energy.

Next, let us investigate some additional properties of the
ground state, the hexamerized π00-flux state, and of its
main competitor, the dimerized 0ππ -flux state. It is quite
interesting that the minimum of the energy is around td = −th
in both cases. We have no explanation why this is so for the
hexamerized π00-flux state since there is nothing particular
happening at that point in the free-fermion band structure
[Fig. 9(a)], the occupied bands being well separated from
the unoccupied bands. By contrast, the Fermi level for the
dimerized 0ππ -flux state is inside the bands [Figs. 9(b)–9(d)],
and the td = −th point is a special one where the Fermi energy
is both at a band edge and at a Dirac point: it separates a
fermionic state with a finite Fermi surface from a state where
the Fermi surface reduces to a high-symmetry point K0, at
which there is a Dirac cone.

The differences between the bond energies on the dimers
and hexamers for the minimal-energy π00-flux state in the
VMC calculation is 〈Pd〉 − 〈Ph〉 ≈ 0.6–0.7, i.e., larger than
the iPEPS result of ≈0.3–0.45. For the 0ππ -flux dimerized
case the VMC result is ≈−0.35(5), while iPEPS provides
≈−0.26(2).

The color-color correlations proportional to 〈Pij 〉 − 1/3
decay rapidly with the distance, as shown in Fig. 10. Since there
is a Dirac cone in the free-fermion spectrum of the dimerized
0ππ -flux state for td/th < −1, the question of whether the
correlations decay algebraically, and not exponentially as
expected for a gapped state, is legitimate. Unfortunately, we
cannot determine unambiguously the nature of the color-color
correlations in real space, even when using the results from
the 648-site cluster, the largest we considered.

Next, we look for the signature of the Dirac point in the
structure factor

S(k) = 1
4

Ns∑

j=1

(
〈P0,j 〉 − 1

3

)
cos k · (rj − r0), (7)

where the summation is over the Ns sites of the cluster, and
ri is the position of site i. The prefactor is chosen so that
the

∑
k∈BZ! S(k) = Ns sum rule is satisfied, where the sum is

over the 3Ns/2 k vectors of the Brillouin zone (with the high-

symmetry points M! and K!) of the underlying triangular
lattice which, in addition to the sites of the honeycomb lattice,
also includes the centers of the hexagons. We find that the
behavior of the structure factor S(k) is remarkably different
for the 0ππ and π00 cases (Fig. 11) close to the M! point: in
the former S(k) is peaked in the second Brillouin zone, while
the latter is smooth. The position of the peak, when folded
back to the Brillouin zone of the six-site unit cell, is at K0,
the wave vector that corresponds to the scattering between the
Dirac points.

D. Check of the stability towards a color-ordered state

Following the iPEPS results, which point to a possible
SU(N)-symmetry breaking in the dimerized state, we further
investigate the possibility of the formation of long-range order

-1
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 1  2  3  4

〈P
(r

)〉

r

(a)  0ππ

72
288
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FIG. 10. (Color online) The expectation value of the 〈P (r)〉 =
〈Pij 〉 operator, where r is the distance between the sites i and j , for
the (a) dimerized 0ππ - and (b) hexamerized π00-flux phases, for
the 72- and 288-site clusters with td = −th. The size of the symbols
is proportional to the number of bonds having that value of 〈P (r)〉.
For r → ∞ the value of 〈P (r)〉 tends to 1/3 (denoted by the thin
black line), corresponding to the expectation value for the exchange
between independent spins, which shows the absence of long-range
order. Note the negligible size dependence.
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SU(3) honeycomb lattice: cartoon picture

Resonance of SU(3) singlets
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SU(N) on honeycomb

SU(4) is most probably an 
algebraic flavor liquid
[P. Corboz, M. Lajkó, A. M. Läuchli, K. 
Penc, F. Mila, arXiv:1207.6029] 

SU(6) is possibly a chiral flavor liquid 
[G. Szirmai  E. Szirmai, A. Zamora, and M. 
Lewenstein, Phys. Rev. A 84, 011611 (2011)],

similarly, SU(N) is also a chiral liquid 
[extending the results of M. Hermele, V. Gurarie, & A. 
M. Rey, Phys. Rev. Lett. 103, 135301 (2009)]

honeycomb optical lattices can be realized

SU(2) is a Néel state 

SU(3) is a plaquette state
[Y.-W. Lee and M.-F. Yang, Phys. Rev. B 85, 100402 (2012). 
H.H.Zhao,C.Xu,Q.N.Chen,Z.C.Wei,M.P.Qin,G.M. Zhang, and T. Xiang, 
Phys. Rev. B 85, 134416 (2012).]

P. Corboz, unpublished
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the end

thank you for your attention 
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