

Topological Quantum Phenomena in Condensed Matter with Broken Symmetries

http://www.topological-qp.jp/english/index.html

Theory of superconducting topological insulator

A UL 07.1

Yukio Tanaka (Nagoya University)

ISSP June 13 (2013)

Main collaborators

A. Yamakage (Nagoya)

K. Yada (Nagoya / Twente)

M. Sato (Nagoya)

T. Hashimoto (Nagoya)

Main collaborators

N. Nagaosa (Univ. Tokyo / Riken)

Y. Ando (Osaka)

S. Nakosai (Univ. Tokyo)

K. Segawa (Osaka)

Contents of our talk

- (1)What is superconducting topological insulator
- (2)Andreev bound state and quasi particle tunneling
- (3)Josephson current
- (4)Spin susceptibility
- (5)Relevant Rashba superconductor system

Topological insulator Bi₂Se₃

•Nonzero topological number Z₂

- Helical Dirac Cone as a surface state
- •Strong spin-orbit coupling

Crystal structure Bi₂Se₃

Electronic band structure of Bi₂Se₃ measured by ARPES Y. L. Chen *et al.* Science 329, 659 (2010)

Electronic states of Bi₂Se₃

energy levels of the atomic orbitals in Bi_2Se_3

Zhang et al, Nature 09

Superconducting topological insulator $Cu_xBi_2Se_3$

Cu doped topological insulator

Y.S.Hor et al, PRL 104, 057001 (2010)

Specific heat

M. Kriener et al., PRL 106, 127001 (2011)

Tc 3.8K

Candidate of pair potentials

Liang Fu, Erez Berg, PRL,105, 097001 (2010)

	Energy gap	irreducible representation	spin	Orbital	Inversion symmetry
Δ_1	full gap	A_{1g}	singlet	intra	even
Δ_2	full gap	A_{1u}	triplet	inter	odd
Δ_3	point node	A_{2u}	singlet	intra	odd
Δ_4	point node	E_u	triplet	inter	odd

 $Cu_{x}Bi_{2}Se_{3}$ Effective orbital p_{z} orbital

(No momentum dependence)

Tunneling spectroscopy

Ando's group (Osaka)

S. Sasaki et al PRL 107 217001 (2011)

Contents of our talk

- (1)What is superconducting topological insulator
- (2)Andreev bound state and quasi particle tunneling
- (3)Josephson current
- (4)Spin susceptibility
- (5)Relevant Rashba superconductor system

Andreev bound state (non-topological and topological)

Andreev bound state with non zero energy (de Gennes, Saint James)

Not edge state

Non topological

Surface

Mid gap (zero energy) Andreev bound state Surface Andreev bound state Edge state Topological

L. Buchholtz & G. Zwicknagl (81):, J. Hara & K. Nagai : Prog. Theor. Phys. 74 (86) C.R. Hu : (94) Tanaka Kashiwaya (95),

Tunneling spectrum in two-dimensional topological superconductors

Andreev bound state (topological edge state) and topological invariant

Andreev bound state	Topological invariant	Time reversal symmetry	Materials	Theory of tunneling	Insulator (semi-metal)
Flat	1d winding Number Z for fixed k _y Alll (BDI)class	Ο	Cuprate p _x -wave	PRL (1995) JPSJ(1998)	Graphene (zigzag edge)
Chiral	2d winding Number Z D class	×	Sr ₂ RuO ₄ ³ He A	PRB (1997)	QHS QAHS
Helical	Z ₂ DIII class	Ο	<i>s+p</i> -wave (NCS)	PRB (2007)	QSHS (2D Topological insulator)
Cone	3d winding	Ο	³ He B	PRB (2003)	Topological insulator

Sato, Kashiwaya, Maeno (Kotai Butsuri 2011) Tanaka, Sato, Nagaosa (JPSJ Review)

ABS in B-phase of superfluid ³He

Cone type ABS

Salomaa Volovik (1988) Schnyder (2008) Roy (2008) Nagai (2009) Qi (2009) Kitaev(2009) Chung, S.C. Zhang (2009) Volovik (2009)

perpendicular injection ZES: Buchholtz and Zwicknagle (1981)

S. Sasaki et al PRL 107 217001 (2011)

If $Cu_x Bi_2 Se_3$ is a 3D topological superconductor with odd-parity, Tunneling spectroscopy can not be explained by pair potential realized in B-phase in ³He, which is a typical example of 3d full gap superconductor.

Model Hamiltonian (Normal state) H.Zhang *et al*, Nature Phys. 5, 438 (2009)

$$H_0(k) = m\sigma_x + v(k_x\sigma_z s_y - k_y\sigma_z s_x) + v_z k_z\sigma_y$$

Model Hamiltonian (superconducting state) BdG Hamiltonian $H(k) = [H_0(k) - \mu]\tau_z + \hat{\Delta}\tau_x$ 8 × 8 matrix

Pauli matrix σ : orbital, s: spin, τ : particle hole

Possible pairings

Fu and Berg, Phys. Rev. Lett. 105 097001(2010)

Energy Gap function

Full Gap

spin-triplet inter-orbital spatial inversion odd

Point Node

spatial inversion odd

Fu and Berg, Phys. Rev. Lett. 105 097001(2010) Yamakage et al., PRB Rapid (2011)

Bulk local density of state

Surface state generated at z=0

STI

z-axis

vacuum

STI (Superconducting topological insulator)

Dispersions of Andreev bound state

spin-triplet inter-orbital spatial inversion odd-parity

Hsieh and Fu PRL 108 107005(2012); arXiv: 1109.3464

A. Yamakage, PRB, **85**, 180509(R) (2012)

Charge transport in normal metal / STI junctions

Normal metal

STI (Superconducting topological insulator)

Tunneling conductance between normal metal / superconducting topological insulator iunction Δ_{1} 5.0 2.2 $\mu_{\rm N}/\mu = 0.6$ 2.0(b) Δ_{1b} (a) ∆_{1a} 60 1.8 4.012001.61.4 3.0 G/G_N 1.2Similar to conventional 1.02.0spin-singlet s-wave 0.80.6superconductor 1.00.40.20.0 0.0 1 -1.5 -1 -0.5 0 0.5-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 1.52 4.52.5(d) Δ_2 caldera 4.0(c) Δ_2 cone 3.52.03.0(b) Δ_2 E/Δ 1.52.5G/GN (a) Δ_2 E/Δ 0.06 2.00.030 -0.2 -0.4 -0.6 -0.8 -0.03 -0.06 -0.09 -0.12 0.01.00 -0.2 -0.4 1.5-0.03 -0.06-0.6 1.0-0.090.5-0.8-1.0 0.50.0 -20^{-20} 0.01.5 2 -2 -1.5 -1 -0.50 0.51 -2 -1.5 -1 -0.50 0.51 1.5 2 eV/Δ

Zero bias conductance peak is possible even for Δ_2 case with full gap

Hsieh and Fu PRL 108 107005(2012); arXiv: 1109.3464

A. Yamakage, PRB, 85, 180509(R) (2012)

Tunneling conductance strongly depends on the direction of nodes.

A. Yamakage, PRB, 85, 180509(R) (2012)

Tunneling conductance with ABS

Andreev bound state (Majorana Fermion) spin-triplet inter-orbital spatial inversion odd-parity

25

A. Yamakage, PRB, **85**, 180509(R) (2012)

Structural transition of the energy dispersion of Andreev bound state

Yamakage

A. Yamakage, PRB, **85**, 180509(R) (2012) ²⁶

Structural transition of the dispersion of ABS

L. Hao and T. K. Lee, PRB '11 T. H. Hsieh and L. Fu, PRL '12 A. Yamakage, K. Yada, M. Sato, and Y. Tanaka, PRB 2012

Summary (1) Theory of tunneling spectroscopy of superconducting topological insulators

1. Δ_2 and Δ_4 are consistent with point-contact experiment by Ando's group.

2. Zero-bias conductance peak is possible even in full-gap topological 3d superconductors, differently from the case of BW states.

3. This originates from the structural transition of energy dispersion of ABS.

Yamakage, Yada, Sato, and Tanaka, Physical Review B 85 180509(R) 2012

Summary of the Topological natures of four pairings

Pair potential	Irreducible representation	spin	orbital Gap structure		Parity (spatial inversion)	Topological
$\Delta_1 = \Delta$	A_{Ig}	Singlet	intra	isotropic full gap	even	No
$\Delta_2 = \Delta \sigma_y s_z$	A_{Iu}	triplet	inter	anisotropic full gap	odd	DIII Z
$\Delta_3 = \Delta \sigma_z$	A_{2u}	singlet	intra	Point node (z-direction)	odd	DIII Z ₂
$\Delta_4 = \Delta \sigma_y s_x$	E_u	triplet	inter	Point node (z-direction)	odd	DIII Z ₂

Supplementary materials in S. Sasaki et al PRL 107 217001 (2011)

Current status of tunneling experiments

Consistent with Ando's group with ZBCP

- G. Koren, et al, Phys. Rev. B 84, 224521 (2011).
- T. Kirzhner, et. al, Phys. Rev. B 86, 064517 (2012).
- G. Koren and T. Kirzhner, Phys. Rev. B 86, 144508 (2012).

Contradict with Ando's group with full gap (STM)

• N. Levy, et al, Phys. Rev. Lett. 110 117001 (2013)

Composition and crystal structures of the actual samples have not fully clarified yet.

We must need further experimental research. Theoretical works in bulk properties become important.

Contents of our talk

- (1)What is superconducting topological insulator
- (2)Andreev bound state and quasi particle tunneling
- (3)Josephson current
- (4)Spin susceptibility and specific heat
- (5)Relevant Rashba superconductor system

Temperature dependence of specific heat

Temperature dependence of spin-susceptibility

Standard case

In the actual $Cu_x Bi_2 Se_3$, the situation becomes complex due to strong spin-orbit coupling.

Spin susceptibility of superconducting topological insulator $Cu_xBi_2Se_3$

$$\chi_{i} = -\mu_{\rm B}^{2} \lim_{\boldsymbol{q} \to 0} \frac{1}{V} \sum_{\boldsymbol{k} \alpha \beta \mu} \frac{f(E_{\alpha}(\boldsymbol{k})) - f(E_{\beta}(\boldsymbol{k} + \boldsymbol{q}))}{E_{\alpha}(\boldsymbol{k}) - E_{\beta}(\boldsymbol{k} + \boldsymbol{q}) + i0} \\ \times \langle \alpha | s_{i} | \beta \rangle \langle \beta | \frac{g_{i\mu}}{2} s_{i} \sigma_{\mu} | \alpha \rangle.$$

We calculate spin susceptibility for four possible pairing states.

With spin-orbit (SO) Coupling

$$H_0(\mathbf{k}) = m\sigma_x + v(k_x\sigma_z s_y - k_y\sigma_z s_x) + v_z k_z\sigma_y$$

Without spin-orbit (SO) coupling

Calculated spin-susceptibility (1)

Spin-singlet intra-orbital spatial inversion even

Calculated spin-susceptibility (2)

Spin-triplet inter-orbital spatial inversion odd ------ without SO

Susceptibility decreases when the magnetic field is along the z-direction.

$$\boldsymbol{d} = \Delta(0, 0, \sigma_y) \quad \text{(orbital basis)}$$

$$\boldsymbol{\tilde{d}}(\boldsymbol{k}) = \Delta\left(\frac{vk_x}{m_0}, \frac{vk_y}{m_0}, \frac{v_zk_z}{|m_0|}\tilde{\sigma}_z - \operatorname{sgn}(m_0)\tilde{\sigma}_y\right) \quad \text{band basis}$$

Calculated spin-susceptibility (3)

- with SO

Spin-singlet intra-orbital spatial inversion odd ------ without SO

Susceptibility decreases when the magnetic field is along the xy-plane consistent with the direction of d-vector in the band basis.

spin-singlet (orbital basis)
band basis
$$\tilde{d}(\mathbf{k}) = \Delta \tilde{\sigma}_z \left(-\frac{vk_y}{|m_0|}, \frac{vk_x}{|m_0|}, 0 \right)$$

Calculated spin-susceptibility (4)

– with SO

Spin-triplet inter-orbital spatial inversion odd ------ without SO

Susceptibility decreases seriously when the magnetic field is along the x-direction.

orbital basis
$$\boldsymbol{d} = \Delta \left(\sigma_y, 0, 0 \right)$$

band basis $\tilde{\boldsymbol{d}}(\boldsymbol{k}) = \Delta \left(\frac{v_z k_z}{|m_0|} \tilde{\sigma}_z - \tilde{\sigma}_y, 0, -\frac{v k_x}{m_0} \right)$

Summary (2)

	Rep.	Gap structure	Specific heat	Andreev bound state (xy-plane)	Spin χ _x	Spin susceptibility χ _x χ _y χ _z		
Δ_1	A_{1g}	Isotropic full gap	Yes	No	\checkmark	4	K	
Δ_2	A _{1u}	Anisotropic full gap	Yes	Yes	Ι	-	K	
Δ_3	A _{2u}	Point nodes at pole	No	No	4	4	—	
Δ_4	E _u	Point nodes on equator	Yes	Yes	Z	_	_	

- We find that the temperature dependence of specific heat and the susceptibility are different in each pairing symmetry.
- It is possible to determine pairing symmetry only from bulk quantities.
- We think Δ_2 and Δ_4 are most probable candidates consistent with specific heat and point contact experiments by Ando's group.

Direction of d-vector in the band basis

Contents of our talk

- (1)What is superconducting topological insulator
- (2)Andreev bound state and quasi particle tunneling
- (3)Josephson current
- (4)Spin susceptibility and specific heat
- (5)Relevant Rashba superconductor system

DIII superconductor from conventional systems

Using Interface superconductivity

Interface of transition metal oxides

- 2d electron gas
- superconductivity
- tunable Rashba SOI
- Ohtomo & Hwang Nature 2004
- Reyren et al. Science 2007
- Caviglia *et al.* PRL 2010

One-dimensional Majorana (Helical)

$$\Delta_1 = -\Delta_2$$

Intra-layer pairing with different sign

Nakosai, Tanaka Nagaosa, PRL(2012)

electron density-density interaction

$$\mathcal{H}_{\text{int}}(\boldsymbol{x}) = -U(n_1^2(\boldsymbol{x}) + n_2^2(\boldsymbol{x})) - 2Vn_1(\boldsymbol{x}) n_2(\boldsymbol{x})$$

intra-layer inter-layer

Bogoliubov de-Gennes Hamiltonian

$$\mathcal{H}_{BdG} = \begin{pmatrix} \mathcal{H}_0 - \mu & \Delta \\ \Delta & -\mathcal{H}_0 + \mu \end{pmatrix}$$

cf. Fu and Berg PRL 2010

S. Nakosai, Y. Tanaka and N. Nagaosa PRL(2012)

Pair potentials

As compared to 3-d superconducting topological insulator $Cu_xBi_2Se_3$, the orbital index changes into layer index.

parity under an inversion operation

	irreps	matrix	spin	orbital	j	inversi	on	gap	topological
$\hat{\Delta}_1$	A_{1g}	$I \\ \sigma_x$	singlet	inter		+		full	no
$\hat{\Delta}_2$	A_{1u}	$S_z \sigma_y$	triplet	inter		—		full	DIII Z ₂
$\hat{\Delta}_3$	A_{2u}	σ_z	singlet	intra		-		full	DIII Z ₂
$\hat{\Delta}_4$	E_u	$\begin{pmatrix} s_x \sigma_y \\ s_y \sigma_y \end{pmatrix}$	triplet	inter		_		point node	DIII Z ₂

S. Nakosai, Y. Tanaka and N. Nagaosa PRL(2012)

Topological superconducting state with Δ_3 pairing (intra-site inversion symmetry odd) is realized by choosing chemical potential.

Summary (3) Topological superconductivity from Rashba system

1. We have proposed a new way to design DIII superconductor in 2D systems.

(Bilayer Rashba system realized at the interface of transition metal oxides.)

2. Andreev bound state appears as a helical edge modes without anisotropic pairing.

Yamakage, Yada, Sato, and Tanaka, Physical Review B 85 180509(R) 2012

Topological SC ?

We set the Fermi energy within the hybridization gap. 1. [Fermi level] OK

2. [odd parity pairing potential] <u>OK</u> NOTE: Pairing amplitudes for Δ_2 and Δ_3 are proportional to α .

SOI-induced SC phases

Unconventional SC phase appears in a feasible parameter region. intra-layer : attractive (phonon mechanism) inter-layer : repulsive (Coulomb interaction)

