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Topological phases:

- deconfined fractionalized 
quasiparticles

Symmetry breaking 
classification:

- Ginzburg-Landau-Wilson

- local order parameters

2d gapped



Fractionalized:

Laughlin quasiparticles spinons (not quite)

Deconfined:

deconfined spinon



Braiding statistics:

- more than fermions / bosons

- statistics can be a more 
general complex phase, or 
even matrix

- “anyons” (Wilczek)



-“anyon” is a bit of a misnomer: quasiparticle braiding 
structure is very rigid.

- consistency conditions, eg.:

Rigidity:

- structure encoded in numbers (or matrices): 

Rij and Fijk
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Figure 20: The hexagon equations.

Note that Rab
c is a unitary map, therefore N c

ab = N c
ba.

To express Eq. (206) in terms of Rab
c , we join the two lines at the bottom of each graph and

perform equivalence transformations. These include F -moves as well as R-moves — absorbing
a line crossing by a vertex. Thus we obtain the diagrams in Fig. 20; the bottommost arrow in
each of them combines an R-move with the first or the second equation in question. We may
now forget about the topological meaning of braiding and only keep track of the linear maps
involved:
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These commutative diagrams are known as hexagon equations. They actually look nicer in the
tensor category formalism, see Eqs. (274) and (275).
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- resulting structure:  “Unitary Modular Tensor Category” (UMTC):

- the solutions are discrete, so the particular solution is 
itself a discrete invariant of the gapped phase

- Hence, can classify bosonic “intrinsic topological order” 
by UMTCs. (Moore & Read, Wen, etc.)

- works for “bosonic” systems - i.e. spin systems (can be 
extended to fermions)



Symmetries:

- symmetry group G: [H,Ug] = 0

- “Symmetry Protected Topological Order”: no 
symmetry breaking, no deconfined anyons

- classified by group cohomology H
d+1(G,U(1))

(1d: AKLT; Chen, Gu, Wen; Fidkowski, Kitaev; Pollman, Berg, Turner, 
Oshikawa; Hatsugai et al.; 2d: Chen, Gu, Liu, Wen; Levin, Gu)



Remainder of talk:

- intrinsic topological order + symmetries = “symmetry 
enriched topological order”

- classification and physical picture

- Subtle obstructions: some seemingly OK states are 
physically inconsistent

Eg. G=SO(3)

-        gauge theory with spin-1/2 spinon OKZ2

- Chiral spin liquid (               bosonic 
FQH) with spin-1/2 semion.

ν = 1/2

(i.e. integral spins)

INCONSISTENT

(Essin, Hermele; Mesaros, Ran; Lu, Vishwanath, etc.)

- only gapped 2d bosonic (i.e. spin) systems



G=SO(3), Haldane chain:

spin-1 sites

effective spin 1/2’s at endpoints:  “fractionalization”

H = J

�

j

�Sj · �Sj+1

1 dimension:



Projective representations of G

f = gh
Uf = UgUh ordinary representation

projective representationUf = eiφ(g,h)UgUh

φ(g, h) : function of 2 group variables => 

H
2(G,U(1))



- anyons can carry fractional/projective 
quantum numbers of G:

UL
g UR

g

a ā

Ua
gh = eiφa(g,h)Ua

gU
a
h

2 dimensions:

φa(g, h) + φb(g, h) = φc(g, h)constraint:                                         =>  H2(G, abelian anyons)
a× b = c
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Local action of G via adiabatic process:

āa

g

g−1
āa

g−1 g

āa
g−1

g

1. nucleate defect / anti-defect pair: 2. take one defect around anyon:

3. Annihilate defects:

āa

3. Act with g on spins inside defect 
loop to remove branch cut
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Example: “deformed” toric code:

G = spatial translations = Z× Z

note plus sign

generators: Tx, Ty

(=       gauge theory)Z2



Ground state of “deformed” toric code:

- ordinary toric code: 

|Ψ� =
�

loop configs L

|L�

- “deformed” toric code: 

|Ψ� =
�

loop configs L

(−1)|L||L�

area of loops in L (well defined with periodic 
boundary conditions and even # of sites)



e

e

string operator 

string operator Su,l

Sl,u
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Electric charge is projective under Z× Z

defect path



Example 2:

                          : fractional chargesG = Zn

a has charge q

[k] means (k mod n)
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phase mismatch when q is 
fractional



Gauge G:

G-fluxes, G-charges become deconfined excitations:

quasiparticles = {original anyons, G-fluxes, G-charges}

Then the projective character of the anyons and defects is 
reflected in the fusion/braiding structure of this enlarged theory.

1) projective/fractional anyons => defect fusion rules

g

h ghfuse
+

b(g, h)

(see also Levin & Gu, arXiv:1202:3120)



2) projective/fractional defects => defect braiding rules

g−1 g

h h−1

Any consistent theory for fusion/braiding in enlarged theory 
must come from some some choice of these two invariants

(Etingof et al., Kirillov, Mueger)

(can also handle case when G changes anyon superselection 
sectors)



Connection to 3D SPT’s:

Is every choice of                 and                     realized in 
some 2d theory?   

H
2(G,A) H

3(G,U(1))

No: sometimes there is an obstruction to a consistent 
choice of braiding and fusion rules in the enlarged theory

Example:

anyons = {1,a}  (a=semion)

abelian theory, K=(2)

ν = 1/2              bosonic FQHE

G =              , a is projective under GZ2 × Z2

G = SO(3) works too



Although this theory cannot be realized in 2d, we have an 
exactly solvable model which realizes it at the surface of a 
3d SPT.

(with F. Burnell, X. Chen, A. Vishwanath)

In general, the obstruction is in                    , which classifies 
3d SPT’s. 

H
4(G,U(1))



Conclusions:

- Classified symmetry enriched topological phases (SETs), 
given data of UMTC and symmetry group G

- Resulting SETs are in one to one correspondence with 
fusion/braiding structures for anyons + G-defects

- These SETs are parametrized by data that describes 
fractional/projective character of anyons and defects

- Not all choices of this data lead to consistent SETs: 
interpretation as “anomalous” realization of G at the surface 
of 3d SPT.


