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Symmetry breaking
classification:

Topological phases:

2d gapped

- Ginzburg-Landau-Wilson - deconfined fractionalized

- local order parameters quasiparticles



Fractionalized:

Laughlin quasiparticles spinons (not quite)

Deconfined:

deconfined spinon



Braiding statistics:
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Rigidity:

-“anyon” is a bit of a misnomer: quasiparticle braiding
structure is very rigid.

- consistency conditions, eg.: </
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- structure encoded in numbers (or matrices):

Rz’j and Fijk



- resulting structure: “Unitary Modular Tensor Category” (UMTC):
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- the solutions are discrete, so the particular solution is
itself a discrete invariant of the gapped phase

- works for “bosonic” systems - i.e. spin systems (can be
extended to fermions)

- Hence, can classify bosonic “intrinsic topological order”
b)’ UMTCs. (Moore & Read,Wen, etc.)



Symmetries:
- symmetry group G: |H,U,| =0

- “Symmetry Protected Topological Order’: no
symmetry breaking, no deconfined anyons

- classified by group cohomology H? (G, U(1))

(1d: AKLT; Chen, Gu, Wen; Fidkowski, Kitaev; Pollman, Berg, Turner,
Oshikawa; Hatsugai et al.; 2d: Chen, Gu, Liu,VWen; Levin, Gu)



Remainder of talk:

- only gapped 2d bosonic (i.e. spin) systems

- intrinsic topological order + symmetries = “symmetry
enriched topological order”

- classification and physical picture
(Essin, Hermele; Mesaros, Ran; Lu,Vishwanath, etc.)

- Subtle obstructions: some seemingly OK states are
physically inconsistent

Eg. G=SO(3) (i.e.integral spins)

- Zso gauge theory with spin-1/2 spinon (K

- Chiral spin liquid (¥ = 1/2 bosonic
FQH) with spin-1/2 semion/. INCONSISTENT



| dimension:

G=SO(3), Haldane chain: # =J) S, S;1
J

X
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effective spin |/2’s at endpoints: “fractionalization”



Projective representations of G

_r Uf = Ug Uh <— ordinary representation

f=gh
~ Uf _ 6i¢(9,h) UgUh <«— projective representation

¢(g, h): function of 2 group variables =>

H*(G,U(1))



2 dimensions:

- anyons can carry fractional/projective
quantum numbers of G:

a, = oi®a(g;h) UsUy

constraint: ¢a(g,h) + éu(g, h) = ¢.(9,h) => H?*(G,abelian anyons)
aXb=c



G-defects:

Ufh — ei(bg(fah) U}g) U}(LQ)




Local action of G via adiabatic process:

|. nucleate defect / anti-defect pair: 2. take one defect around anyon:
g —1 f\t g
g—l @-=-=-=---- o g s ®---=---0

3.Act with g on spins inside defect

3.Annihilate defects:
loop to remove branch cut



Example:“deformed” toric code:

(= 75 gauge theory)
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note plus sign

G = spatial translations = Z X Z

generators: 1, T,



Ground state of “deformed’ toric code:

- ordinary toric code:

vy = > |

loop configs L

- “deformed’ toric code:
wy= > (-
loop configs L

area of loops in L (well defined with periodic
boundary conditions and even # of sites)



Electric charge is projective under Z x Z

string operator Sy, |
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Example 2:

G = Z,,: fractional charges
(%]
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Gauge G:

G-fluxes, G-charges become deconfined excitations:
quasiparticles = {original anyons, G-fluxes, G-charges}

Then the projective character of the anyons and defects is
reflected in the fusion/braiding structure of this enlarged theory.

(see also Levin & Gu, arXiv:1202:3120)

|) projective/fractional anyons => defect fusion rules




2) projective/fractional defects => defect braiding rules

Any consistent theory for fusion/braiding in enlarged theory
must come from some some choice of these two invariants

(Etingof et al., Kirillov, Mueger)

(can also handle case when G changes anyon superselection
sectors)



Connection to 3D SPT'’s:

Is every choice of H*(G, A) and H3(G, U(1)) realized in
some 2d theory!?

No: sometimes there is an obstruction to a consistent
choice of braiding and fusion rules in the enlarged theory

Example:
anyons = {l,a} (a=semion)
abelian theory, K=(2)
v = 1/2 bosonic FQHE
G =745 X Zs,a is projective under G

G = SO(3) works too



Although this theory cannot be realized in 2d, we have an

exactly solvable model which realizes it at the surface of a
3d SPT.

(with F. Burnell, X. Chen, A.Vishwanath)

In general, the obstruction is in H*(G, U(1)), which classifies
3d SPT's.



Conclusions:

- Classified symmetry enriched topological phases (SETs),
given data of UMTC and symmetry group G

- Resulting SETs are in one to one correspondence with
fusion/braiding structures for anyons + G-defects

- These SETs are parametrized by data that describes
fractional/projective character of anyons and defects

- Not all choices of this data lead to consistent SETs:
interpretation as “anomalous” realization of G at the surface

of 3d SPT.



