7th ISSP International Workshop and Symposium

Emergent Quantum Phases in Condensed Matter -from topological to first principles approaches

Workshop June 3-21, 2013, Symposium June 12-14, 2013 Kashiwa Chiba, Japan Institute for Solid State Physics, University of Tokyo

Effects of electron correlation on topological materials June 13, 2013

Youhei Yamaji Moyuru Kurita

M. Imada

\Rightarrow P14, P24

Outline

- 1. Introduciton
- 2. Topological insulator indued by electron correlation = topological Mott insulator
- 3. Transitions between zero-gap semiconductors (semimetals) and topological-insulators unusual universality
- 4. In case of pyrochlore pyrochlore iridates; R₂Ir₂O₇ role of magnetic domain wall fate of Weyl semimetal

Introduction

- topological insulator: bulk insulator, while robust surface (edge) gapless state
- How does a gapless state emerge?

When different topological gapful states are connected, a gapless state emerges

cf. edge of the Haldane gap state (202

quantum (spin) Hall / topological insulator

Topological insulator on pyrochlore lattice

Kurita, Yamaji, Imada, J. Phys. Soc. Jpn. 80 (2011) 044708

cf. Guo & Franz (2009) for n.n.n hopping

Electron correlation effects:

Topological insulators even without an explicit spin-orbit interaction?

Spontaneous symmetry breaking

 $V\sum_{\langle i,j \rangle} n_{i}n_{j} \rightarrow$ $V[-g\sum_{i\sigma} c_{i\sigma}^{\dagger}c_{j\sigma} + \text{H.c.}$ intersite Coulomb V: Fock decoupling induces SOI Raghu, Qi, Honerkamp, Zhang (2008)

 $g = \left\langle c_{i\sigma}^{\dagger} c_{j\sigma} \right\rangle$ $\varsigma_{s} = \frac{i}{2\sqrt{2}} \sum_{\alpha\beta} \left\langle c_{i\alpha}^{\dagger} c_{j\beta} \right\rangle \frac{b_{ij} \times d_{ij}}{|b_{ij} \times d_{ij}|} \cdot \sigma_{\alpha\beta}$

 $+ \sqrt{2i} \varsigma_{s} \sum_{\alpha\beta ij} c_{i\alpha}^{\dagger} c_{j\beta} \frac{b_{ij} \times d_{ij}}{|b_{ij} \times d_{ij}|} \cdot \sigma_{\alpha\beta} + \text{H.c.}$ Raghu, Qi, Honerkamp, Zhang (2008) Kurita, Yamaji, Imada (2011) $+ \sqrt{2i} \varsigma_{s} \sum_{\alpha\beta ij} c_{i\alpha}^{\dagger} c_{j\beta} \frac{b_{ij} \times d_{ij}}{|b_{ij} \times d_{ij}|} \cdot \sigma_{\alpha\beta} + \text{H.c.}$

order parameter

 $+(24g^{2}+48\zeta_{c}^{2})L^{3}]$

Phase diagram of pyrochlore

Kurita, Yamaji, Imada JPSJ 80 (2011) 044708 Kurita, poster P24

Hubbard model with *U* and *V* stabilizes a "topological Mott insulator" (TMI) without SO int.

Electron correlation (intersite Coulomb) enhances the topological insulator

Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator

Yamaji, MI;

arXiv:1306.2022 poster 14

Question

Does the all-in/all-out ordered state becomes a trivial good insulator at low *T* after the pair annhilations of Weyl points ?

example: R₂Ir₂O₇

Experimental indications of pyrochlore iridates

Experimental indications II

large negative magnetoresistance & hysteresis for Gd/Nd

Matsuhira et al. JPSJ 82 (2013) 023706

M. IMADA

Domain wall

Yamaji, Imada, arXiv:1306.2022

54. 154.2(1).2(

Around each Weyl point, extract two degenerate zero modes out of

8-component spin-orbit +Hubbard J=1/2 manifold

 \Rightarrow Dirac equation

simplified model

$$\left[\left[\alpha(1-\cos\kappa)-m(X)\right]\hat{\sigma}_z+vi\hat{\sigma}_y\partial_X\right]\vec{\psi}(\vec{X})=E\vec{\psi}(\vec{X})$$

 \Rightarrow Weyl point and Fermi arc if |m| is small

Arcs of domain wall and surface simplified model $\{ [\alpha(1 - \cos \kappa) - m(X)] \hat{\sigma}_z + vi\hat{\sigma}_y \partial_X \} \vec{\psi}(\vec{X}) = E\vec{\psi}(\vec{X})$ $+\pi/2$ **c**domain wall $\left|\vec{\psi}(X)\right|^2$ **d** surface a $\left| \vec{\psi}(\mathsf{X}) \right|^2$ 0.8 κ $\mathsf{v}=\alpha=\mathsf{1}$ $\pm \pi$ $0 \frac{\kappa}{\pi}$ $-\pi/2$ m(X)m(X)m(X) = |m| = +1m(X) = |M| = +10m(X) = |m| = +1 $+\pi/2$ m(X) = -1b 1.4 Surface arcs disappear ĸ 0 $\pm \pi$ $0\frac{\kappa}{\pi}$ with pair annihilation of **Weyl points** $-\pi/2$ m(X)m(X) = |M| = +3domain-wall arcs extend and are protected m(X) = -3

Arcs of domain wall and surface: full solution

$$H = -t \sum_{\langle i,j \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.} + i \sqrt{2\lambda} \sum_{\langle i,j \rangle \alpha\beta} v_{ij} \cdot \sigma_{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta} + \text{H.c.}$$

+Hubbard U

21

Closed Fermi surface on domain walls at low *T*

\bigstar metallicity on the domain walls survives

Magnetization

★constant uniform magnetization per area ⇒ cancellation of magnetization ⇒ incomplete cancellation by impurities/doping

うメッコウト・タレコレコレ

Consistency with experiments

 \bigstar "bad insulator" \Leftrightarrow conduction at domain wall with Anderson localization \bigstar magnetization under field cool, strong sample dependence \Leftrightarrow domain wall magnetization adjusted by impurities/disorder/self-doping domain size ~ 10^3 unit cells $\Leftrightarrow 10^{-3}\mu_{\rm B}$ /unit cell smaller magnetization for polycrystals \Leftrightarrow domain walls are wiped out \bigstar large negative magnetoresistance for Nd/Gd ⇔ fluctuating Nd/Gd moment at zero field \Rightarrow "double exchange" under the field

Summary and outlook

Unconventional quantum criticality of topological Mott transition from semimetal to topological insulator

Weyl points are easily annihilated at low *T* of all-in/all-out order, leading to a "trivial insulator" in bulk and surface.

However, ingap states are protected at domain walls generating Fermi surface/metallicity and weak ferromagnetism.

It explains "bad insulators" and weak ferromagnetism, together with negative MR for Nd/Gd compounds.

Future issue Magnetic control of conduction at domain walls