Phase diagram of the Kane-Mele Hubbard model

Fakher F. Assaad (Emergent Quantum Phases in Condensed Matter, ISSP 13/6/2013)

- Model and method
- Quantum phases transitions

Topological insulator (TI) \rightarrow Antiferromagnetic Mott Semimetal (SM) \rightarrow Antiferromagnetic Mott

Methods to detect TIs in the presence of correlations

Topology and correlations: Kane-Mele Hubbard model

Kane and Mele Phys. Rev. Lett. 95, 146802 (2005)

Topology and correlations: Kane-Mele Hubbard model

Kane and Mele Phys. Rev. Lett. 95, 146802 (2005)

Questions.

Phases and quantum phase transitions? TI → Magnetic Insulator

M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A. Muramatsu, FFA PRB 85 012.

SM \rightarrow Magnetic insulator

FFA, I. Herbut arXiv1304.6340

How do we detect topological states in the presence of correlations?

FFA, M. Bercx, M. Hohenadler, Phys. Rev. X 3, 011015 (2013)

How do correlations affect the helical edge state?

M. Hohenadler & FFA Phys. Rev. B 85, 081106, 2012

Magnetic impurities?

F. Goth, D. J. Luitz, FFA arXiv:1302.0856

Numerical method(s)

At half-band filling particle-hole symmetry allows to carry out sign free QMC simulations. Blankenbecler, Sugar, Scalapino (BSS) auxiliary field algorithm, 1981

 \rightarrow Ground state and excitations.

$$\left\langle O \right\rangle_{0} = \lim_{\Theta \to \infty} \frac{\left\langle \Psi_{T} \middle| e^{-\Theta H/2} O e^{-\Theta H/2} \middle| \Psi_{T} \right\rangle}{\left\langle \Psi_{T} \middle| e^{-\Theta H} \middle| \Psi_{T} \right\rangle} \text{ provided that } \left\langle \Psi_{T} \middle| \Psi_{0} \right\rangle \neq 0$$

$$\left\langle \Psi_{T} \middle| e^{-\Theta H} \middle| \Psi_{T} \right\rangle \propto \int D \left\{ \Phi(i,\tau) \right\} e^{-S\left(\left\{ \Phi(i,\tau) \right\} \right)} \text{ One body problem in external field.}$$

$$\text{Trotter, Hubbard-Stratonovich } \text{ MC importance sampling } \text{ One body problem in external field.}$$

$$S\left(\left\{ \Phi(i,\tau) \right\} \right) = \int_{0}^{\Theta} d\tau \sum_{i} \frac{\Phi^{2}(i,\tau)}{2U} - \ln \left\langle \Psi_{T} \middle| T \exp\left(-\int_{0}^{\Theta} d\tau \ H_{KM} - i \sum_{i} \Phi(i,\tau) (c_{i}^{\dagger}c_{i} - 1) \right) \middle| \Psi_{T} \right\rangle$$

$$\text{The action is real! } \Rightarrow \text{ positive weights (U(1) spin symmetry, ph and time reversal symmetry)}$$

$$\text{CPU time: } V^{3}\Theta \rightarrow \Theta \text{ extrapolation is affordable.}$$

D. Zheng, C. Wu and G.-M. Zhang PRB 84, 2011.

At half-band filling particle-hole symmetry allows to carry out sign free QMC simulations. Blankenbecler, Sugar, Scalapino (BSS) auxiliary field algorithm, 1981

 \rightarrow Ground state and excitations.

Methods for Strongly Correlated Quantum Systems

http://for1807.physik.uni-wuerzburg.de

Würzburg Fall School

September 30th to October 4th (2013)

- P. Corboz
- M. Hohenadler
- F. Heidrich-Meisner
- A. Läuchli
- L. Pollet
- S. Trebst
- M. Troyer
- S. Wessel

Dynamical spin-spin correlations.

> U → U_c. Excitations of the disordered phase condense to form the order of the ordered phase.

M

► U(1) spin symmetry → 3D XY universality. Orientational disorder of spin.

$$S_{\sigma}^{x}(q,\omega) = \frac{1}{Z} \sum_{n,m} e^{-\beta E_{n}} \left| \left\langle m \left| S^{x}(q) \right| n \right\rangle \right|^{2} \delta(E_{m} - E_{n} - \omega)$$

$$L \rightarrow \infty, T = 0$$

Magnetic flux pumping

A tool to detect topological insulators in the presence of correlations.

Magnetic flux pumping:

a tool to detect Z2 topological insulators in the presence of correlations.

One spin sector (Haldane)

 $\Delta Q = \frac{e}{2}, \quad \left(\Delta Q = -\frac{e}{2}, \quad \frac{\Phi_0}{2} = -\frac{\Phi_0}{2}\right)$

A π -flux generates two mid-gap states with half an electronic charge

D. H. Lee, G-M Zhang, and T. Xiang. Phys. Rev. Lett. **99**, 196805 (2007) Jakiv, Rebbi, Phys. Rev. D 13, 3398 (1976) Su, Schrieffer, Heeger Phys. Rev. B 22, 2099 (1980)

Magnetic flux pumping:

a tool to detect Z2 topological insulators in the presence of correlations.

One spin sector (Haldane)

$$\mathbf{B}(\mathbf{x},t) = t \frac{\Phi_0}{2} \ \delta(\mathbf{x}) \ \mathbf{e}_z \qquad t \in [0,1]$$
$$\mathbf{E}(\mathbf{x},t) = \frac{\Phi_0}{4\pi} \ \frac{(-y,x)}{r^2}$$
$$\sigma_{xy} = \frac{e^2}{h}, \quad \sigma_{xx} = 0$$

$$J(\mathbf{x},t) = \frac{e^2}{h} \frac{\Phi_0}{4\pi} \frac{(x,y)}{r^2}$$

$$\Delta Q = \frac{e}{2}, \quad \left(\Delta Q = -\frac{e}{2}, \quad \frac{\Phi_0}{2} = -\frac{\Phi_0}{2}\right)$$

Xiao-Liang Qi and Shou-Cheng Zhang Phys. Rev. Lett. 101, 086802 (2008)

Ying Ran, Ashvin Vishwanath, and Dung-Hai Lee Phys. Rev. Lett. 101, 086801 (2008).

Both spin sectors.

Semimetal to insulator transition

Why is it so tricky?

$$S_{AF} / N = m^2 \propto \left(U - U_c \right)^{2\beta}$$

$$\lambda = 0.2, \ 3D \ XY, \ \beta = 0.3486(1) \rightarrow S_{AF} / N = m^2 \propto (U - U_c)^{0.7}$$

Semimetal to insulator transition

Why is it so tricky?

$$S_{AF} / N = m^2 \propto \left(U - U_c \right)^{2\beta}$$

$$\lambda = 0.2, \ 3D \ XY, \ \beta = 0.3486(1) \rightarrow S_{AF} / N = m^2 \propto (U - U_c)^{0.7}$$

 $\lambda = 0$? Gross-Neveu universality, ε-expansion around d=3, $\beta \approx 0.8$ I. Herbut, V. Juričić, O. Vafek PRB 80, 075432, (2009)

$$\Rightarrow S_{AF} / N = m^2 \propto \left(U - U_c \right)^{1.6}$$

→ Big lattices L=36, high precision S. Sorella, Y.Otsuka, S. Yunoki. Scientific Reports 2, 992 (2012)

<u>Alternative</u>

Introduce pinning fields and measure m instead of m²

FFA & I. Herbut arXiv1304.6340

Steven R. White and A. L. Chernyshev Phys. Rev. Lett. 99, 127004

$$H = H_{tU} + h_0(n_{0,\uparrow} - n_{0,\downarrow})$$

$$m = \lim_{R \to \infty} \lim_{L \to \infty} \left\langle S^{z}(R) \right\rangle e^{i\mathbf{Q} \cdot \mathbf{R}}$$
$$m = \lim_{L \to \infty} \frac{1}{L^{2}} \sum_{i} e^{i\mathbf{Q} \cdot \mathbf{i}} \left\langle S^{z}(i) \right\rangle$$

The ordered case @ U/t=5

$$H = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} (n_{i,\uparrow} - 1/2) (n_{i,\downarrow} - 1/2) + h_0(n_{0,\uparrow} - n_{0,\downarrow})$$

$$m = \lim_{L \to \infty} \frac{1}{L^2} \sum_{i} e^{i\mathbf{Q} \cdot \mathbf{i}} \left\langle S^z(i) \right\rangle$$

Large values of projection parameter. $\Theta t = 320$

Small values of h₀ lead to bigger finite size effects.

U/t=5

Gross-Neveu Yukawa.

I. Herbut, V. Juričić, O. Vafek PRB 80, 075432, (2009)

 $L_{0} = \overline{\psi}(\mathbf{x},\tau)\partial_{\mu}\gamma_{\mu}\psi(\mathbf{x},\tau) \qquad \text{Dirac fermions}$ $L_{b} = \overline{\psi}_{t}(\mathbf{x},\tau)\cdot\left[-\partial_{\tau}^{2} - v^{2}\vec{\nabla}^{2} + t\right]\vec{\psi}_{t}(\mathbf{x},\tau) + \lambda\left(\vec{\psi}_{t}(\mathbf{x},\tau)\cdot\vec{\psi}_{t}(\mathbf{x},\tau)\right)^{2} \qquad \text{Order parameter}$ $L_{y} = g \ \vec{\psi}_{t}(\mathbf{x},\tau)\cdot\vec{\psi} \ \vec{\sigma} \ \psi \qquad \text{Yukawa coupling} \qquad \left|\Delta_{sp} \propto g\left|\left\langle\vec{\psi}_{t}\right\rangle\right|\right|$

Upper critical dimension d=3 \rightarrow ϵ -expansion

$$\frac{\beta}{v} = 1 - \frac{\varepsilon}{10} + O(\varepsilon^2)$$
$$v = \frac{1}{2} + \frac{21}{55}\varepsilon + O(\varepsilon^2)$$

Summary

 $U_c = 4.96(4), \ z = 1, \ v = 0.6717(1),$ $\eta = 0.0381(2), \ \beta = 0.3486(1)$

 π -fluxes are a good tool detect correlated topological insulators.

