Recent progress on the firstprinciples analysis in heavyelectron systems

Hiroaki Ikeda (Kyoto University)

1. Hidden order in URu₂Si₂

2. Unconventioncal superconductivity in CeCu₂Si₂

Hidden order in URu₂Si₂

JAEA

2

Collaborators

Michi-To Suzuki (CCSE JAEA) Ryotaro Arita (University of Tokyo) Testuya Takimoto (APCTP Pohang) Takasada Shibauchi (Kyoto University) Yuji Matsuda (Kyoto University)

URu₂Si₂ (Hidden Order)

Anti-ferromagnetic state?

Nematic Electronic State

The magnetic-torque measurement indicates that the in-plane four-fold symmetry is broken.

R.Okazaki et al. Science 331, 439 (2011)

Cyclotron resonance

S.Tonegawa et al. PRL 109, 036401(2012)

Possible candidates are restricted.

Thalmeier & Takimoto PRB 83. 165110(2011)

Proposed theoretical models

- Double- or triple-spin correlator
- Quadrupole (Rank 2)
- Octupole (Rank 3)
- Hexadecapole (Rank 4)
- Dotriacontapole (Rank 5)
- Spin Density Wave
- Unconventional SDW
- d-density wave
- Orbital antiferromagnetism
- Helicity order
- Dual model
- Spin Nematic
- Hybridization wave
- Modulated spin liquid
- Hastatic order

V.Barzykin and L.P.Gor'kov, PRL (93) P.Santini and G.Amoretti, PRL (94) H.Harima, K.Miyake, and J.Flouquet, JPSJ (10) A.Kiss and P.Fazekas, PRB (05) K.Haule and G.Kotliar, Nature Phys. (09) H.Kusunose and H.Harima JPSJ(11) F.Cricchio et al. PRL (09) V.P.Mineev and M.E Zitomirsky, PRB (01) H.I and Y.Ohashi, PRL (98) A.Virosztek, et al. Int. J. Mod. Phys. (02) P.Chandra et al. Nature (02) C.M. Varma and L.Zhu, PRL (06) A.E.Sikkema, et al. PRB (96) Y.Okuno and K.Miyake, JPSJ (98) S.Fujimoto PRL (10) Y.Dubi and A.V.Balatzky PRL (11) C.Pepin et al. PRL (11) P.Chandra, P.Coleman, R.Flint, arXiv (12)

Importance of quantitative analysis

6/27

Itinerant f electrons

ARPES in paramagnetic phase

Kawasaki et al. PRB (2011)

Importance of study based on the firstprinciples approach

Application to iron-based superconductors

WIEN2k+wien2wannier+wannier90

P.Blaha *et al. WIEN2k* (01) J.Kunes, *et al.* Comput. Phys. Commun. (10) N.Marzari and D.Vanderbilt, PRB (97), *ibid.* (01)

LaFeAsO

The obtained model Hamiltonian gives us a good starting point, and can describe material dependence of physical properties nature physics

PUBLISHED ONLINE: 3 JUNE 2012 | DOI: 10.1038/NPHYS2330

Nature Physics 8, 528 (2012) Emergent rank-5 nematic order in URu₂Si₂

Hiroaki Ikeda¹*, Michi-To Suzuki², Ryotaro Arita³, Tetsuya Takimoto⁴, Takasada Shibauchi¹ and Yuji Matsuda¹

- Construction of realistic itinerant model in URu2Si2 based on the first-principles calculations
- The first report of a complete set of multipole density wave correlations
- Hidden Order parameter : AF Rank-5 (dotriacontapole) state with E⁻ irreducible representation (breaking fourfold symmetry and time-reveral symmetry)

Model Hamiltonian in URu₂Si₂

Band structure

$H=H_0+H'$

H is 56 band Anderson lattice model including spinorbit coupling.

H' is the on-site Coulomb repulsions in the LS basis.

 $H' = \frac{U}{2} \sum_{i\ell} \sum_{\sigma} f^{\dagger}_{i\ell\sigma} f^{\dagger}_{i\ell\bar{\sigma}} f_{i\ell\bar{\sigma}} f_{i\ell\bar{\sigma}} f_{i\ell\sigma}$ $+ \frac{U'}{2} \sum_{i\ell\neq m} \sum_{\sigma\sigma'} f^{\dagger}_{i\ell\sigma} f^{\dagger}_{im\sigma'} f_{im\sigma'} f_{i\ell\sigma}$ $+ \frac{J}{2} \sum_{i\ell\neq m} \sum_{\sigma\sigma'} f^{\dagger}_{i\ell\sigma} f^{\dagger}_{im\sigma'} f_{i\ell\sigma'} f_{im\sigma}$ $+ \frac{J'}{2} \sum_{i\ell\neq m} \sum_{\sigma} f^{\dagger}_{i\ell\sigma} f^{\dagger}_{i\ell\bar{\sigma}} f_{im\bar{\sigma}} f_{im\sigma},$

We unveil the missing link beyond simple consideration of band structure in URu₂Si₂, based on RPA analysis in the itinerant picture and beyond.

Possible order parameters

 $\hat{Q} = f_{i\ell}^{\dagger} Q_{\ell m} f_{im}$

m=5/2,3/2,1/2,-1/2,-3/2,-5/2 Multipole degrees of freedom 6x6=36 components

Group theory \rightarrow 36=1+3+5+7+9+11 (rank 0 - 5)

Jx --- dipole (rank 1) JxJy --- quadrupole (rank 2) JxJyJz --- octupole (rank 3)

Multipolar correlations

•Peak-hump structure at Q_c and Q_{Ic}

•Some peaks except for Rank 1 correspond to candidates for the HO parameter

Phase Diagrams

The hidden order parameter is the *rank-5 E-*, which is compatible with the *nematicity*.

What is Rank-5 E⁻?

Crucially impotant is the nesting of $\pm 5/2$ components ! Consider $\pm 5/2$ as pseudospins (\uparrow , \downarrow)

 $\frac{5}{2}$

Concluding Remarks

- Near-degenerate T_{HO} and T_N?
 Yes!
- Ising anisotropy ?
 Yes!
- Inelastic magnetic excitations at Q₀=(100) and Q₁=(1.400)?
 Yes!
- No evidence of drastic change in the Fermi surface ?

Yes!

- No evidence of low-rank multipole order ? Yes! Rank 5
- Nematic behavior in in-plane magnetic susceptibility?
 Yes! E-

Unconventional superconductivity in CeCu₂Si₂

JAEA

Collaborators

Michi-To Suzuki (CCSE JAEA) Ryotaro Arita (University of Tokyo)

Conclusions

- The Fermi surface in A-type materials is consistent with that in LDA+U or the renormalized band by Zwicknagl
- Incommensurate spin fluctuations can be explained by the nesting between the heavy-electron sheets
- The dominant octupole fluctuations can drive $d_{x^2-y^2}$ -wave or loop-nodal s-wave superconductivity

Multipoles in J=5/2 space

36 multipoles up to rank 5.