

The topological insulator with strong correlation effects

Xi Dai Institute of Physics, CAS, Beijing

Collaborators: Feng Lu, Jian Zhou Zhao, HongMing Weng, Zhong Fang

Lu et al, PRL 110, 096401 (2013)

outline

- Band inversion and TI
- Mix valence compound: Band inversion between d and f bands; the important role of e-e interaction
- SmB6 and PuTe
- Conclusion

Topological classification of band insulators

- normal insulator: the electronic structure can be smoothly transformed to isolated atoms
- can not be smoothly transformed to isolated atoms without going through a phase transition,
 Z2 invariance defined for non-interacting TI
- TI with interaction can be defined by the Theta angle of of topological magneto-electric effect

Evolution of band structure from solid to isolated atoms

Topological Insulator

Z2 invariance for non-interacting TI with inversion symmetry

 Simple rules for TI with inversion symmetry: strong index and weak indices; K=-K high symmetry points

$$(-1)^{\nu_0} = \prod_{i=1}^8 \delta_i.$$

$$\delta_i = \prod_{m=1}^N \, \xi_{2m}(\Gamma_i) \, .$$

L. Fu and C. Kane, PRB 76,045302

TI and surface states

Introduction: Band Inversion and TI

The different types of band inversion

- Band inversion between s and p bands: HgTe
- Band inversion between bonding and anti-bonding pbands: Bi2Se3, Sb
- Band inversion generated by valence fluctuation of 4f/5f bands
- Very strong correlation effects in f-electron materials:
- Does these materials topologically non-trivial?

4f/5f compounds with intermediate valence

- golden phase of SmS
- SmB6
- PuTe and PuSe
- Yb
- Are these materials topological Kondo insulator? M. Dzero et al, Phys. Rev. Lett. 104, 119901,2010

Intermediate Valence and band inversion: from the band theory point of view

Rare earth compounds with divalence (not very stable), Sm, Eu, Yb.....

intermediate valence state band theory point of view

Is the band description correct for these compounds?

- from non-interacting band insulator to strong coupling "Kondo insulator"
- how to capture the correct electronic structure?
- how to describe its topological nature?

How to compute the Z2 invariance for interacting system?

Formula derived from the topological field theory:

PRL.105,256803 (2010)

$$P_{3} = \frac{\pi}{6} \int_{0}^{1} du \int \frac{d^{4}k}{(2\pi)^{4}} \operatorname{Tr} e^{\mu\nu\rho\sigma} [G\partial_{\mu}G^{-1}G\partial_{\nu}G^{-1} \times G\partial_{\rho}G^{-1}G\partial_{\sigma}G^{-1}G\partial_{u}G^{-1}]$$
(1)

- Pole expansion of the self energy without k dependence PRB 85, 235135 (2012); EPL98 (2012) 57001
- Using the eigenstate of H0+ Σ (0), condition: there is no singularity along the imaginary axis of self energy, PRB 85, 165126 (2012)

Our method: LDA+Gutzwiller

- Gutzwiller type of ground state wave function
- Combined with first principle code
- Suitable for the study of f-electrons
- Has been applied to many correlated system:
 LaOFeAs; NaxCoO2; Ce; Pu....PHYSICAL REVIEW B 79, 075114, 2009

Main difficulties for the electronic structure calculation for f-electron systems

- Strong interactions among f-electrons, which can be expressed in terms of Slater integrals:F0,F2,F4,F6
- for SmB6 F0=5.8eV, F2=9.9eV, F4=7.09eV, F6=4.99eV
- Typical interaction strength is one order bigger than the f-band width
- Multiplet state VS the band state

The Gutzwiller Trial wave function used in this study

Rotational Invariant Gutzwiller Approximation

Gutzwiller variational wavefunction:

$$|\Psi_G\rangle = \mathcal{P}|\Psi_0\rangle = \prod_{\mathbf{R}} \mathcal{P}_{\mathbf{R}} |\Psi_0\rangle$$

$$\mathcal{P}_{\mathbf{R}} = \sum_{\Gamma\Gamma'} \lambda(\mathbf{R})_{\Gamma\Gamma'} |\Gamma, \mathbf{R}\rangle \langle \Gamma', \mathbf{R}|$$

 $|\Gamma\rangle$: eigenstates of atomic hamiltonian H_U

 Ψ_0 : uncorrelated wave function (Wick's Theorem holds)

 $\mathcal{P}_{\mathbf{R}}$: projector operator modify weight of local configuration

Gutzwiller Constraints:

$$\langle \Psi_0 | \mathcal{P}^\dagger \mathcal{P} | \Psi_0 \rangle = 1$$

$$\langle \Psi_0 | P^{\dagger} P n_{i\alpha} | \Psi_0 \rangle = \langle \Psi_0 | n_{i\alpha} | \Psi_0 \rangle$$

We only apply truncation respect to the occupation number, for SmB6, we keep all the atomic states with nf=5,6,7, about 8000 variational parameters!

Effective Hamiltonian in Gutzwiller approximation

Under Gutzwiller approximation, we can define

$$E_G = <0|PH_{LDA}P|0> +E_{int} \approx <0|H_{eff}|0> +\sum_{\Gamma} \lambda_{\Gamma,\Gamma} E_{\Gamma}$$

It can be easily proved that Heff is equivalent to $H0+\Sigma(0)$ by comparing the Green's function in low frequency limit

$$G(i\omega) = \frac{z}{i\omega - H_{eff}} = \frac{1}{i\omega/z - H_{eff}/z}$$

$$H_0 + \Sigma(0) = -G^{-1}(0) = H_{eff}/z$$

The double counting problem

The total Hamiltonian treated in LDA+Gutzwiller

$$H_{total} = H_{LDA} + H_{U} + H_{DC}$$

$$H_{DC} = V_{DC} \sum_{k\sigma} f_{k\sigma}^{\dagger} f_{k\sigma}$$

A commonly used form for DC term:

$$V_{ab}^{\mathrm{DC}} = \delta_{ab} \left[\bar{U} \left(\bar{n}_c - \frac{1}{2} \right) - \bar{J} \left(\bar{n}_c^{\sigma} - \frac{1}{2} \right) \right].$$

Kotliar et al, RMP78, 865,2006

The structure of SmB6

from PHYSICAL REVIEW B 66, 165209, 2002

FIG. 3. Comparison of the calculated 4f DOS of SmB₆ using the LSDA+U approximation with the experimental XPS spectra from Ref. 18, taking into account the multiplet structure of the $4f^5$ and $4f^4$ final states (see explanations in the text).

compare to XPS
The valence determined by XPS is 2.54

band structure obtained by LDA and LDA+U

Assuming some kind of orbital ordering from Sm3+ phase

+ | +

Valence of Sm determined by exp

	paper	experiment	nf	Average valence
SmB6	PRB: 1976 14,4586	XPS	5.3	2.7
SmB6	JAP: 1970 41,898	Mossbauer effect	5.4	2.6
SmB6	Physica B: 1995 215, 99	neutron experiments	5.44	2.56
SmB6	JPCS: 2009 176, 012034	XAS	5.47	2.53

SmB6: Z, nf, Gap vs Parity

		Eg	Γ	3X	R	3M	Tol
SmB6	LDA	25mev	+	_	+	+	_
SmB6	LDA + G	10mev	+	-	+	+	-

Vdc	n_{f}	Z(R ² _{mat})			
vac	uc IIf	5/2	7/2		
	5.35				
26.4	5.45	0.18	0.59		

Band structure obtained by LDA and LDA+G

The probability of atomic eigenstates for SmB6

LDA

LDA+G

The unique surface states of SmB6 on (001) surface

Spin texture for surface states

001 surface

III surface

The results obtained by LDA+U

PHYSICAL REVIEW B 80, 161103, 2009

Clear multiplet structure in XPS

PHYSICAL REVIEW B 80, 161103(R) (2009)

PuTe: Z, nf, Gap vs Parity

Udc	n		Z(R ² _{mat})		
Ouc	Ouc IIf	Eg	5/2	7/2	
20.5eV	5.11	0.12ev	0.51	0.67	

		Eg	Γ	3X	4L	Tol
PuTe	LDA		-	+	-	-
PuTe	GW	0.12ev	-	+	-	-

Band structure: GW method

Fat Band structure: GW method

Fat Band structure: GW method

Electronic structure of PuTe at 5.5GPa gap=0.21eV

The probability of atomic eigenstates for PuTe

Surface state

Conclusions

- Mix valence Tls, SmB6 and PuTe
- The topological phase survives from the Strong e-e interaction among f electrons
- The Z2 invariance can be computed by the green's function in low frequency
- More similar materials!