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Topological insulator/superconductor

characterized by topological
 invariant in k-space (BZ)

Quantum Hall effect 
in 2D DEG 

Electromagnetic properties
Transport properties

e.g.

σxy =
e2

h
nc

first Chern number    Z2 invariant

M = − e2

2πh
θE P = − e2

2πh
θB

θ = 0
θ = π

(trivial insulator)
(topological 
    insulator)

or

LEM =
θe2

2πh
E ·B

3D time-reversal invariant 
topological insulator

(Kane, Zhang, Qi et al.)(Thouless, Kohmoto et al.)
(only two values)

Jx =
e2

2πh
θEy

Z invariant (any integer)

TI

QHE



• For most classes of TI and TSC, relations between topological 
invariants characterizing bulk topological features and physically 
observable quantities have been well clarified.

• In this case, the topological invariant takes any integer values N. 
However, it has not yet been well clarified in what physical quantities 
this topological invariant can be detected !

• However, case of Z topological insulators/superconductors 
in odd spatial dimensions has not yet been well understood !

e.g. ✦ 3D TRI topological SC 3He (B phase) 

Li2Pt3B ? (NCS P+s-wave SC)  
✦ 1D or 3D topological insulators with chiral symmetry

(sub-lattice symmetry)

(class DIII)

(class AIII)

✦  Kitaev’s Majorana chain (1D spinless p-wave SC)　
(class BDI)

CuxBi2Se3 ? 

also, modified Su-Schrieffer-Heeger model 

(Fu-Berg, 
Sasaki et al.)  



Z Topological insulator/superconductor in odd dimensions
8

Symmetry d

AZ Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-

conductors. The 10 symmetry classes are labeled using the

notation of Altland and Zirnbauer (1997) (AZ) and are spec-

ified by presence or absence of T symmetry Θ, particle-hole

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and 0 denotes

the presence and absence of symmetry, with ±1 specifying

the value of Θ2
and Ξ2

. As a function of symmetry and space

dimensionality, d, the topological classifications (Z, Z2 and 0)

show a regular pattern that repeats when d → d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with Θ2 = ±1 and/or particle-hole symmetry
(15) with Ξ2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, Θ2 = −1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, Ξ2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing different topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, Θ2 = −1, Ξ2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)

shows the interface between a QSHI and an ordinary insula-

tor, and (b) shows the edge state dispersion in the graphene

model, in which up and down spins propagate in opposite

directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
σxy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J↑

x − J↓
x = σs

xyEy with
σs
xy = e/2π – a quantum spin Hall effect. Related ideas

were mentioned in earlier work on the planar state of

Θ

Ξ

Π = ΘΞ

Time-reversal sym.

Charge conjugation (particle-hole sym.)

Chiral sym. (sublattice sym.)

[superconductivity]

Z invariant in odd dimensions: 

HΠ = −ΠH

arises from chiral symmetry

k
0

-E1

E1

E2E3

-E2-E3

Hψ = Eψ

HΠψ = −EΠψ

winding number 

(Schnyder et al., Kitaev)

3He Li2Pt3B
CuxBi2Se3 

Kitaev model

e.g. 

Periodic table of TI and TSC
spatial dimension



An example of 3D class AIII topological insulator

• Band insulator on cubic 
lattice with AB sublattice

A

A

A

A

A

A

B

B
B

B

B

B H =

�
0 q(k)

q†(k) 0

�
|A�

|B�

|A� |B�

t1

t2

t3

• Electron hopping is only  
between A- and B-sublattices

• Energy levels at A (EA) and B 
(EB) sites are equal (put 0)

q(k) = A(k) + σ ·B(k)

A(k) = −8t2 cos kx cos ky cos kz

B(k) = it1(sin kx, sin ky, sin kz)

−4t3[cos kx(cos 2ky + cos 2kz)

+ cos ky(cos 2kz + cos 2kx)

+ cos kz(cos 2kx + cos 2ky)]

(arise from SO int.+ magnetic order)

chiral symmetry There is no diagonal element 
of         in AB sub-lattice spaceH

HΠ = −ΠH

(sub-lattice symmetry)Π =

�
1 0
0 −1

�



3D TRI (class DIII) topological superconductor

3He Li2Pt3B (NCS P+s-wave SC)  CuxBi2Se3 

chiral symmetry combination of time-reversal symmetry 
and particle-hole symmetry

k −k

E −E
TRS

k k

E −E

k

E
PHS

There is no explicit sub-lattice structure



Z invariant in odd dimensional TI / TSC: winding number  N

3D case

• How does the winding number N appear in electromagnetic or 
thermal responses and transport phenomena ? 

N =
�µνλ
24π2

�
dktr[q∂kµq

†q∂kν q
†q∂kλq

†]

• N is the total number of gapless surface Dirac (Majorana) fermions

e.g. He3,
Li2Pt3B

etc.

• N is the winding of the mapping from 3D BZ to 3D sphere 
homeomorphic to the Hilbert space of class AIII TI and class DIII TSC

for 3He 
(B phase)

: d-vector of SC

3D momentum 
space

(Brillouin 
zone)

3D sphere

nk = (εk, dx, dy, dz)

nk/|nk|

d(k) = (dx, dy, dz)q =
εk + id(k) · σ�
ε2k + |d(k)|2

q



 Effective low energy theory for Z topological insulator in 3 D 

3D class AIII top. insulator

in analogy with Axion electrodynamics of 3D TRI Z2 top. insulators

Ryu et al., Qi et al.

✦ However, only Z2 part (                    ) is captured. θ = 0 or π

✦ Is it possible to detect the Z invariant N in any electromagnetic  
responses ? 

✦ The Z invariant N (winding number taking any integer) is actually 
the number of topologically protected gapless surface modes. 
However, it is hidden in the above electromagnetic responses.

Quantum anomalous Hall effect

M = − e2

2πh
θE

Magnetoelectric effect

P = − e2

2πh
θB

e.g.

θ = 0 or π

Jx =
e2

2πh
θEyLeff =

θe2

2πh
E ·B

because of chiral symmetry
(mod 2π)



 Effective low energy theory for Z topological superconductor in 3D

3D TRI (class DIII) top. superconductor

Ryu et al., Qi et al.

Since charge and spin are not conserved, topological characters 
(quantization of physical quantities) do not appear in electromagnetic 
responses

basically, spin-triplet SC

surface gapless states are Majorana fermions

However, instead, topological characters appear in thermal responses,
because of energy conservation

Thermal responses gravitational field theory

E

c2
couples to gravity potential φg (Luttinger (1964))

gravitoelectric fieldEg = ∇φg ∼ −∇T

T

Bg gravitomagnetic field associated with circulating
heat (energy) current



in analogy with Axion electrodynamics of 3D TRI Z2 top. insulators

✦ However, only Z2 part (                    ) is captured. 
Incomplete description for Z topological features ! 

θ = 0 or π

✦ Is it possible to detect the Z invariant N in any thermal responses ? 

Quantum anomalous thermal Hall 
effect

Thermal-analogue of ME effect

e.g.

θ = 0 or π

L =
πk2BT

2

12h
θBg ·Eg

Thermal responses !

gravitoelectric field

gravitomagnetic field

∼ −∇T

TEg

Bg

JH

x = −πk2
B
T

12h
θ
∂T

∂y

PH = −πk2BT
2

12h
θBg

 Effective low energy theory for Z topological superconductor in 3D
Ryu et al., Qi et al.,Nomura et al.

gravitational field theory for low-energy effective theory of TRI TSC in 3D

MH = −πk2BT
2

12h
θEg

(mod 2π)



Electromagnetic and thermal responses 
which characterize 

Z topological non-triviality of 
class AIII TIs and class DIII TSCs :

An idea using heterostructure systems    



in 3D cases, we can make a connection between the winding number N 
and      of the axion field theory by considering spatially (temporally) 
varying systems (e.g. heterostructure systems), which consist of chiral-
symmetric topological insulators (or superconductors) and chiral-
symmetry-broken trivial insulators (or superconductors).

θ

itself is the chiral-symmetry breaking field.

: Hamiltonian of class AIII topological insulator in 3D
HΠ = −ΠH

H(k)

Basic Key Idea: 

H̃(φ) = H cosφ+Π sinφHamiltonian
for heterostructure
systems φ = φ(r, t) 0 ≤ φ ≤ π

2

Π

H(k)

chiral-SB
trivial insulator

chiral-symmetric
topological 

insulator
(class AIII)

Π =

�
ε 0
0 −ε

�

� π
2

0

dφ

2π

dθ(φ)

dφ
=

N

2

φ = 0

φ =
π

2



Quantum anomalous Hall effect

φ = 0
class AIII
topological 
insulator

φ =
π

2

chiral-SB
trivial 
insulator

Hall current carried by 
surface states

energy level difference
between A-B sublatticesΠ =

�
ε 0
0 −ε

�

n̂

surface mode
gives quantized 
conductivity

Jtotal =

� π
2

0
dφ

dJ(φ)

dφ
=

e2

2h
N n̂×E

Π

� π
2

0

dφ

2π

dθ(φ)

dφ
=

N

2

(from axion EM)

J =
e2

2πh

�
dz∇zθ ×E

J
E



Topological magnetoelectric effect

M = − e2

2πh
θE

P = − e2

2πh
θB

class AIII
topological 

insulator circulating 
current

trivial  
insulator  

with broken chiral 
symmetry

E (B)

Mtotal

(Ptotal)

Mtotal =

� π
2

0
dφ

dM(φ)

dφ
= − e2

2h
NE

Ptotal =

� π
2

0
dφ

dP (φ)

dφ
= − e2

2h
NB

� π
2

0

dφ

2π

dθ(φ)

dφ
=

N

2

axion EM



Case of class DIII (TRI) topological superconductor

• 3He (BW phase) 

• Li2Pt3B (noncentrosymmetric P+s-wave SC)  

winding number N=1

winding number N>1 (or < -1) 4 band systems with SO split pairs 

1-band with spins  

137
D=0.4%
S=0.82

138
D=0.5%
S=0.83

139
D=12.1%
S=0.70

140
D=52.4%
S=0.75

141
D=21.2%
S=0.65

142
D=9.1%
S=0.72

143
D=2.5%
S=0.60

144
D=1.9%
S=0.77

8

(Shishidou and 
Oguchi)

• CuxBi2Se3 (p-wave SC)  1-band with spins      winding number N=1 ? 

spherical Fermi surface  



H =

�
εk dk · σiσy

−iσydk · σ −εk

�
3D p-wave SC (BW-phase)

dk ∝ k

chiral-symmetry breaking field is
Time reversal symmetry breaking s-wave SC gap !

∆s �= ∆∗
s

change 
basis 

H =

�
0 q(k)

q†(k) 0

�

H� =

�
0 ∆siσy

−∆∗
siσy 0

�
s-wave gap

H� = i
∆s −∆∗

s

2

�
1 0
0 −1

�

What is chiral-symmetry-breaking perturbation ?

Case of class DIII (TRI) topological superconductor



Quantum anomalous thermal Hall effect

TRI
topological 

superconductor

trivial TRB  
s-wave  

superconductor Heat Hall current 
carried by 
surface states

n̂

−∇T

JH

Im∆s �= 0

JH

x = −πk2
B
T

12h
θ
∂T

∂y

= −π2k2BT

12h
N n̂×∇T

JH
total =

π2k2BT
2

12h
N n̂×Eg

N : winding number

c.f. axion gravitational field theory

c.f. Wang, Qi, Zhang, 
similar result  based on argument of 
surface Majorana fermions.

� π
2

0

dφ

2π

dθ(φ)

dφ
=

N

2

∆p
How to realize phase difference ?
• bias between s-wave SC and TSC
• dynamical effect,                     
   for             due to inelastic scattering        ω �= 0

Im∆s(ω) �= 0



Topological gravitomagnetoelectric effect 
(Thermal analogue of topological magnetoelectric effect)

: heat  polarization which induces temperature gradientPH ∇T

TRI
topological 

superconductor

circulating heat current

Bg
PH

total
gravitomagnetic field
(raised by
mechanical rotation ?)

trivial TRB  
s-wave  

superconductor

(Nomura et al.)

PH
total = −π2k2BT

2

12h
NBg

N : winding number

PH = −πk2BT
2

12h
θBg

c.f. axion gravitational field theory

Im∆s �= 0



Implications for dynamical axion

TRI topological insulator magnetic fluctuations dynamical 
axion

TRI topological SC fluctuations of 
TRSB s-wave OP

dynamical 
axion

K. Shiozaki, S.F.,
 poster presentation on 13 June

(Li,Wang,Qi,Zhang)

Case of non-centrosymmetric SC

admixture of p-wave gap                and s-wave gap  

relative phase fluctuation a la Leggett mode             
                                 is dynamical axion !!

∆pe
iφp ∆se

iφs

δφp − δφs

break quantization of θ



Bulk electromagnetic responses characterizing 
Z topological non-triviality :
Chiral charge polarization   



Chiral charge polarization: bulk quantity related to the winding number 

P 5 = −e
�

n∈occ

�wnR|Πr̂|wnR�

For class AIII systems,       is the difference of the charge polarization 
between A-sublattice and B-sublattice 

P 5

A

A

A

A

A

A
B

B
B

B

B
B

Π =

�
1 0
0 −1

�

H =

�
0 q(k)

q†(k) 0

�
|A�

|B�

|A� |B�

P 5 is gauge-invariant 
even for periodic B.C. !

c.f. charge polarization:

P = −e
�

n∈occ

�wnR|r̂|wnR�

polarization is gauge-dependent

|wnR� : Wannier func. Π : operator for chiral symmetry 



Chiral charge polarization: bulk quantity related to the winding number 

1D case

chiral polarization is indeed equivalent to the winding number !

P 5 = −e
�

n∈occ

�wnR|Πx̂|wnR�

N =
1

2πi

�
dktr[q∂kq

†] winding number in 1D

A

B

A

B

A

B

A

B

modified SSH model
Kitaev’s Majorana chain model

      corresponds to
fractional charge
(or # of Majorana 
fermions) 
emergent at open 
edges

(class AIII, class BDI)

= −e
N

2

zero-energy 
edge state

P 5



Chiral charge polarization: bulk quantity related to the winding number 

       is induced by an applied magnetic field, and, 
remarkably, related to the bulk winding number !!
P 5

P 5 = − e2

2h
NB

Topological magnetoelectric effect

: winding numberN

• This relation is obtained by first-order perturbative calculation 

P = − e2

2πh
θB

Topological ME effect from axion field theory (only Z2 part)

θ = π

•          is gauge-invariant.  (uniquely defined without heterostructure!)

(gauge-dependent)

P 5

(mod 2π)

3D class AIII



Summary 

(i) The Z topological invariant in 3D can be observed in the 
quantum anomalous (thermal) Hall effect and topological (gravito-)
magnetoelectric effects in heterostructure systems which consist of 
the chiral-symmetric TI (TRI TSC) and chiral-symmetry-broken 
trivial insulators (superconductors).

(ii) In 3D class AIII TI, the winding number appears in chiral charge 
polarization induced by an applied magnetic field. 

P 5 = − e2

2h
NB


