7th ISSP International Symposium "**Emergent Quantum Phases in Condensed Matter**" Kashiwa Chiba, Japan, June 12, 2013

Transport Studies of Epitaxial Thin Films of Topological Crystalline Insulators

Alexey Taskin

Institute of Scientific and Industrial Research, Osaka University

Outline

- Topological Crystalline Insulator (TCI)
- MBE growth of SnTe on Bi_2Te_3
- Transport properties of SnTe thin films

Collaborators at Osaka Univ.

Yoichi Ando

Kouji Segawa

Satoshi Sasaki

Z₂ Topological Insulator vs. Topological Crystalline Insulator

Two important ingredients for TI:

- 1) Spin-Orbit Coupling \Rightarrow band inversion
- 2) Time Reversal Symmetry \Rightarrow Kramers' degeneracy at TRIMs

Two important ingredients for TCI:

- 1) Spin-Orbit Coupling \Rightarrow band inversion
- 2) Symmetry of the crystal lattice \Rightarrow degeneracy at mirror planes, etc.

SnTe as a topological crystalline insulator (prediction)

• Band inversion in $Pb_{1-x}Sn_xTe$ with x

• Band inversion at even number of time-reversal-invariant momenta

Hsieh et al., Nature Commun. 2012

SnTe as a topological crystalline insulator (prediction)

- Band inversion in $Pb_{1-x}Sn_xTe$ with x
- Mirror plane symmetry

SnTe is predicted to be a topological crystalline insulator with mirror symmetry having robust surface states with an even number of Dirac cones on crystal surfaces such as {001}, {110} or {111}, which are symmetric about {110} mirror planes. The [001] surface states of SnTe

Hsieh *et al.*, Nature Commun. 2012 Okada *et al.*, arxiv 1305.2823

SnTe as a topological crystalline insulator (prediction)

0.90

- Band inversion in $Pb_{1-x}Sn_xTe$ with x
- Mirror plane symmetry

Hsieh et al., Nature Commun. 2012

SnTe as a topological crystalline insulator (ARPES)

2D transport in SnTe?

For SnTe concentration of **holes** is $\sim 10^{20} \div 10^{21} \text{ cm}^{-3}$ \rightarrow it should be a problem to probe 2D transport

Nimtz & Schlicht, Narrow-Gap Semiconductors, 1983

Molecular Beam Epitaxy (MBE)

• surface-to-bulk ratio

MBE growth of SnTe (111) thin films on Bi_2Te_3

(111) plane

cubic SnTe a = 6.3 ÅBaF₂ $a = 6.2 \text{ Å} (\sim 1.6\%)$

SnTe $a^* = a/\sqrt{2} = 4.45$ Å (~1.5%)

 $Bi_2Te_3 a^* = 4.386 \text{ Å}$

Close lattice match

- Natural continuation for growth of Sn layer on Te-terminated layer
- p-type SnTe on n-type Bi_2Te_3

MBE growth of SnTe (111) thin films on Bi_2Te_3

SnTe

• 2D growth mode

(RHEED)

MBE growth of SnTe (111) thin films on Bi_2Te_3

No sign of the cubic-to-rhombohedral phase transition

No sign of the cubic-to-rhombohedral phase transition

> WAL

No sign of the cubic-to-rhombohedral phase transition

> WAL

Coexistence of pand n-type carriers

No sign of the cubic-to-rhombohedral phase transition

> WAL

Coexistence of pand n-type carriers

SdH oscillations in both $\rho_{xx}(B)$ and $\rho_{yx}(B)$

No sign of the cubic-to-rhombohedral phase transition

> WAL

Coexistence of pand n-type carriers

SdH oscillations in both $\rho_{xx}(B)$ and $\rho_{yx}(B)$

2D character of quantum oscillations

>
$$\pi$$
 Berry phase \rightarrow Dirac fermions

$$\sim v_F = 3.2 \times 10^7 \text{ cm/s}$$

$$\ell = 26 \text{ nm}, \\ \mu^{\text{SdH}} = 2000 \text{ cm}^2/\text{Vs}$$

 $k_F = 1.9 \times 10^6 \text{ cm}^{-1},$ $n_s = 3 \times 10^{11} \text{ cm}^{-2}$ for each FS (each spin)

> π Berry phase \rightarrow Dirac fermions

$$\sim v_F = 3.2 \times 10^7 \text{ cm/s}$$

$$\geq \ell = 26 \text{ nm},$$

 $\mu^{\text{SdH}}=2000 \text{ cm}^2/\text{Vs}$

2D Dirac fermions are of n-type (electrons)

- > π Berry phase \rightarrow Dirac fermions
- \succ v_F= 3.2×10⁷ cm/s
- $\geq \ell = 26 \text{ nm},$ $\mu^{\text{SdH}}=2000 \text{ cm}^2/\text{Vs}$
- 2D Dirac fermions are of n-type (electrons)

both SnTe and Bi₂Te₃ have topological SS

- both SnTe and Bi₂Te₃ have topological SS
- heterostructure(common anion rule)

Band lineups in heterostructures

Zhores I. Alferov

Herbert Kroemer

The Nobel Prize in Physics 2000

- both SnTe and Bi₂Te₃ have topological SS
- heterostructure (common anion rule)
- p⁺- n⁺ tunneling junction

- both SnTe and Bi₂Te₃ have topological SS
- heterostructure (common anion rule)
- p⁺- n⁺ tunneling junction
- SnTe and Bi₂Te₃ are electrically isolated

- both SnTe and Bi₂Te₃ have topological SS
- heterostructure (common anion rule)
- p⁺- n⁺ tunneling junction
- SnTe and Bi₂Te₃ are electrically isolated
- SS is most likely on the free surface of SnTe

SS on the (111) plane of SnTe

Surface States of Topological Crystalline Insulators in IV-VI Semiconductors

Junwei Liu^{1,2}, Wenhui Duan¹ and Liang Fu² ¹Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People's Republic of China ²Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

ArXiv 1304.0430

SS on the (111) plane of $Pb_{0.6}Sn_{0.4}Te$

The topological-crystalline-insulator (Pb,Sn)Te - surface states and their spin-polarization

S. Safaei,¹ P. Kacman,¹ and R. Buczko^{1, *}

¹Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland (Dated: March 27, 2013)

M₁ M₃ M₄ M₁ M₁ M₁ M₁

ArXiv 1303.7119

Surface termination

 polar catastrophe in SnTe films grown along the (111) direction

- polar catastrophe in SnTe films grown along the (111) direction
- partially compensated charge on the surfaces

- polar catastrophe in SnTe films grown along the (111) direction
- partially compensated charge on the surfaces
- natural compensation at the interface (p-n junction)

- polar catastrophe in SnTe films grown along the (111) direction
- partially compensated charge on the surfaces
- natural compensation at the interface (p-n junction)
- upward band bending for Te-terminated surface

- polar catastrophe in SnTe films grown along the (111) direction
- partially compensated charge on the surfaces
- natural compensation at the interface (p-n junction)
- **upward** band bending for Te-terminated surface
- finite electrostatic potential for Te-terminated surface

- polar catastrophe in SnTe films grown along the (111) direction
- partially compensated charge on the surfaces
- natural compensation at the interface (p-n junction)
- zero electrostatic potential for Sn-terminated surface
- downward band bending for Sn-terminated surface

> Sn-terminated surface

- downward band bending
- Fermi level crosses
 Dirac cones
 at ~0 (Γ) and ~40 meV (M)
- single frequency F =12.3 T of SdH oscillations
- $> v_F = 3.2 \times 10^7 \text{ cm/s (SdH)}$

Nonlinear Hall effect

 \succ two-band fitting

> n_s = 3 × 3×10¹¹ cm⁻² (from SdH oscillations) is fixed

> p_{3D} = 6.4 ×10²⁰ cm⁻³ (from 300K Hall meas.) is fixed

high mobility of surface Dirac electrons

Summary

- High quality epitaxial SnTe films have been grown on Bi_2Te_3 buffer layer.
- n- and p-type carriers are found to coexist in SnTe film, which is electrically decoupled from Bi₂Te₃ layer due to a p-n junction at the interface.
- SdH oscillations combined with the Hall resistivity data provide evidence that the n-type carriers are Dirac fermions residing on the top SnTe (111) surface.