Topological effects on magnetic excitations in magnetic materials

Department of basic science, Univ. Tokyo Yoshinori Onose

Collaborators

• Transport & crystal growth: T. Ideue, Y. Shiomi, S. Ishiwata, S. Seki

• Microwave: Y. Okamura

• Theory: H. Katsura, N. Nagaosa

• Group Leader: Y. Tokura

Novel electromagnetic phenomena due to the topology of electronic state

Contents of this talk

Observation of magnon Hall effect

Dzyaloshinskii-Moriya interaction

T. Ideue, Y. Onose *et al.*, PRB 2012

Observation of Magnetic excitations in skyrmion crystal

Rotation mode

Breathing mode

Y. Onose et al., PRL 2012

Observation of magnon Hall effect

Quantum phase=Effective magnetic field

Motion in topologically twisted space

Additional quantum phase (Berry phase)

$$\psi = A \exp(i\mathbf{k} \cdot \mathbf{r}) \rightarrow A \exp(i\mathbf{k} \cdot \mathbf{r} + i\alpha)$$

Berry phase induced Hall effect

Topological Hall effect in skyrmion lattice
Anomalous Hall effect in ferromagnets
Spin Hall effect in metals and semiconductors
etc.

Berry phase-induced Hall effect for magnons??

Magnon: quantum of spin wave no charge, spin S=1

Lorentz force $\mathbf{F} = q(\mathbf{v} \times \mathbf{B}) = 0$ (q=0 for magnon)

Berry phase of magnon

Thermal Hall conductivity

<u>Thermal Hall conductivity in metal</u>

Electronic thermal current is deflected when B is applied.

Transverse T gradient $\nabla_y T$

Thermal Hall conductivity in insulator

$$\mathcal{K} = \mathcal{K}_{exctron} + \mathcal{K}_{phonon} + \mathcal{K}_{magnon}$$

Thermal Hall conductivity κ_{xy}

Hall effect of magnon (or phonon)

Thermal Hall conductivity for Lu₂V₂O₇

Y. Onose *et al.,* Science **329,** 297 (2010). Lu₂V₂O₇ H|[100] 2<mark>80K</mark> $OK(=T_c)$ 50K $\left(\right)$ κ_{xy} (10³ W/Km) 2 20K 2|40|0 -] -2 -5 -5 5 -5 5 -5 0 5 0 5 0 () Magnetic Field (T)

Discussion

Origin of thermal Hall conductivity?

✓ Possibility of electronic origin can be ruled out by Wiedemann Franz law.

 $\kappa_{xx}^{e} < 10^{-5}$ W/Km below 100K

 $\checkmark \kappa_{xy}$ decreases with *H* at low *T*.

Opening of magnon gap

 $\checkmark \kappa_{xy}$ is observed only below T_{C} . Coherent magnon propagation is crucial

Theory of magnon Hall effect based on DM interaction

Katsura & Nagaosa

Dzyaloshinskii-Moriya vectors in Pyrochlore Lattice Localized magnon state $|i \rangle = \uparrow \uparrow \uparrow \uparrow (\downarrow) \uparrow \uparrow \uparrow \uparrow \uparrow$

"transfer integral" of localized magnons

$$\langle j | -J\vec{S}_i \cdot \vec{S}_j + \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) | i \rangle = -(\widetilde{J}/2) e^{i\phi_{ij}}$$

$$\widetilde{J}e^{i\phi_{ij}} = J + i\overrightarrow{D}_{ij}\cdot\overrightarrow{n}$$

Magnons acquire Berry phase owing to DM interaction.

Fitting to Experimental data

From fitting, we obtain

D/J=0.38

Cf. D/J=0.19 for CdCr₂O₄

Theoretical formula of κ_{xy} (Matsumoto & Murakami)

$$\kappa^{xy} = -\frac{k_{\rm B}^2 T}{\hbar V} \sum_{n,k} c_2(\rho_n) \Omega_{n,z}(k)$$

 ho_n : Bose distribution function, $\Omega_{\it nz}$: Berry curvature

 $c_2(\rho) = (1+\rho)(\log \frac{1+\rho}{\rho})^2 - (\log \rho)^2 - 2Li_2(-\rho)$

Effect of lattice geometry on DM-induced magnon Hall effect

BiMnO₃

 $\kappa_{xy} \neq 0$

Observation of magnetic excitations in skyrmion crystal

Skyrmion crystal in an insulating oxide Cu₂OSeO₃ S. Seki *et al.* Science 2012

Space group: *P*2₁3 Same as B20 compounds

Microwave response in helical (conical) spin structure

Magnetic oscillation modes in Helical spin state

M. Kataoka JPSJ 1986 (Theory)

Theoretical calculation of magnetic oscillation in skyrmion crystal

Summary

We have investigated topological phenomena related to magnetic excitations in magnetic materials .

1, Observation of magnon Hall effect

Effect of lattice geometry

2, Magnetic excitations in Skyrmion crystal

Temperature dependence, anisotropy

