Topological insulators: interaction effects and new states of matter

Joseph Maciejko Center for Theoretical Science Princeton University

Emergent Quantum Phases in Condensed Matter June 11, 2013 ISSP, University of Tokyo

Band topology

$$H = \sum_{i,j;\alpha\beta} t_{ij,\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}^{\dagger} + \text{h.c.} + \lambda \sum_{i} \boldsymbol{L}_{i} \cdot \boldsymbol{S}_{i}$$

Electron correlations

Band topology and correlations

Witczak-Krempa, Chen, Kim, Balents, arXiv:1305.2193

Band topology and correlations

Witczak-Krempa, Chen, Kim, Balents, arXiv:1305.2193

Outline

- Introduction
- Correlation effects in the 2D Chern insulator

JM and A. Rüegg, arXiv:1305.1290

• Correlation effects in the 3D topological insulator

JM, V. Chua, and G. A. Fiete, to appear

• Conclusion

2D Chern insulator

VOLUME 61, NUMBER 18

PHYSICAL REVIEW LETTERS

31 October 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance σ^{xy} in the *absence* of an external magnetic field. Massless fermions without spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity anomaly" of (2+1)-dimensional field theories.

2D Chern insulator

- 2D CI predicted in magnetically doped semiconductors Bi_2Te_3 , Bi_2Se_3 , and Sb_2Te_3 (Yu et al., Science 2010)
- Experimentally observed recently in Cr-doped thin films of Bi_xSb_{1-x}Te₃

Chang et al., Science, 12 April 2013

Outline

- Introduction
- Correlation effects in the 2D Chern insulator

JM and A. Rüegg, arXiv:1305.1290

• Correlation effects in the 3D topological insulator

JM, V. Chua, and G. A. Fiete, to appear

• Conclusion

Interaction effects in the 2D CI

- Interactions in a spinless CI at fractional fillings v=1/3, 1/5, ... of the valence band can give a fractional CI = lattice FQH state (Tang, Mei, Wen, PRL 2011; Sun et al., PRL 2011; Neupert et al., PRL 2011; Sheng et al., Nature Commun. 2011; Regnault and Bernevig, PRX 2011)
- Here we focus on a spinful CI with <u>completely filled</u> valence band (C=2 state)

$$H = \sum_{rr'} \sum_{\alpha} t_{rr'} c^{\dagger}_{r\alpha} c_{r'\alpha} + U \sum_{r} \left(\sum_{\alpha} n_{r\alpha} - 1 \right)^{2} + U \sum_{r} \left(\sum_{\alpha} n_{r\alpha} - 1 \right)^{2} \alpha = \uparrow, \downarrow$$

Interaction effects in the 2D CI

U(1) slave-rotor mean-field theory (He et al., PRB 2011, PRB 2012) and small-cluster ED on the equivalent spin model at U→∞ (Nielsen, Sierra, Cirac, arXiv 2013) predict that the ground state at large U is the Kalmeyer-Laughlin chiral spin liquid state (bosonic v=1/2 Laughlin state)

$$H = \sum_{rr'} \sum_{\alpha} t_{rr'} c^{\dagger}_{r\alpha} c_{r'\alpha} + U \sum_{r} \left(\sum_{\alpha} n_{r\alpha} - 1 \right)^{2} \rightarrow U/t$$
weakly correlated CI CSL

• At large U, charge degrees of freedom are frozen

Interaction effects in the 2D CI

U(1) slave-rotor mean-field theory (He et al., PRB 2011, PRB 2012) and small-cluster ED on the equivalent spin model at U→∞ (Nielsen, Sierra, Cirac, arXiv 2013) predict that the ground state at large U is the Kalmeyer-Laughlin chiral spin liquid state (bosonic v=1/2 Laughlin state)

$$H = \sum_{rr'} \sum_{\alpha} t_{rr'} c_{r\alpha}^{\dagger} c_{r'\alpha} + U \sum_{r} \left(\sum_{\alpha} n_{r\alpha} - 1 \right)^{2} \rightarrow U/t$$
weakly correlated CI
?
CSL

- At large U, charge degrees of freedom are frozen
- Can there be interesting novel phases at intermediate U?

Z₂ slave-spin theory

 The Haldane-Hubbard model can be mapped to a (2+1)D Z₂ gauge theory with bosonic and fermionic matter using the Z₂ slave-spin representation (Huber and Rüegg, PRL 2009; Rüegg, Huber, Sigrist, PRB 2010; Nandkishore, Metlitski, Senthil, PRB 2012)

Effective Z₂ gauge theory

• Projection to physical Hilbert space introduces a Z₂ gauge field $\sigma_{ii}=\pm 1$ (Senthil and Fisher, PRB 2000)

$$Z = \int D\bar{f}_{i\alpha} Df_{i\alpha} \sum_{\{\tau_i^x\}} \sum_{\{\sigma_{ij}\}} e^{-S[\bar{f}, f, \tau^x, \sigma]}$$

$$S_{\tau^x} = -\kappa \sum_{ij} \tau_i^x \sigma_{ij} \tau_j^x,$$

$$S_f = -\sum_{ij} \sum_{\alpha} t_{ij} \bar{f}_{i\alpha} \sigma_{ij} f_{j\alpha}, \qquad \kappa = \frac{1}{2} \ln \coth\left(\frac{\epsilon U}{2}\right)$$

$$e^{-S_B} = \prod_{i,j=i-\hat{\tau}} \sigma_{ij}$$

Effective Z₂ gauge theory

$$\kappa = \frac{1}{2}\ln\coth\left(\frac{\epsilon U}{2}\right)$$

- Small U: large κ , slave-spins τ^x condense \rightarrow weakly correlated CI
- Infinite U: $\kappa=0$, slave-spins can be trivially integrated out, effective Hamiltonian has 4-slave-fermion terms $f^{\dagger}f^{\dagger}ff$ with the constraint of one slave-fermion per site \rightarrow effective spin model \rightarrow possible CSL
- Large but finite U: integrating out slave-spins gives "kinetic" term for Z₂ gauge field
- Focus on **deconfined phase** of the resulting Z₂ gauge theory (Wegner, 1971) which we call CI*

From Z_2 to U(1)

Z₂ gauge theory can be written as U(1) gauge theory coupled to conserved charge-2 "Higgs" link variable (Ukawa, Windey, Guth, PRD 1980)

$$\prod_{\langle ij \rangle} \sum_{\sigma_{ij}=\pm 1} e^{-S[\sigma_{ij}]} = \prod_{\langle ij \rangle} \int_{-\pi}^{\pi} da_{ij} \sum_{\substack{n_{ij}=-\infty\\n_{ij}=-\infty\\ \uparrow\\\Delta_{\mu} \mathsf{n}_{i,i+\mu}}}^{\infty} e^{ip\sum_{\langle ij \rangle} n_{ij}a_{ij}} \exp\left(-S[\sigma_{ij}=e^{ia_{ij}}]\right)$$

• Deconfined phase: U(1) gauge field is weakly coupled and we can take the continuum limit

$$\partial_{\mu}n_{\mu} = 0 \implies n_{\mu} = \frac{1}{2\pi}\epsilon_{\mu\nu\lambda}\partial_{\nu}b_{\lambda}$$

$$S_{n} = -ip\sum_{ij}n_{ij}a_{ij} \implies \frac{p}{2\pi}\int d^{3}x \,\epsilon^{\mu\nu\lambda}b_{\mu}\partial_{\nu}a_{\lambda}$$
level-p (2+1)D BF term

TQFT of CI* phase

• CI* phase is a chiral topological phase, with TQFT of the BF + Chern-Simons type

BF term describes Z₂ topological order of Z₂ gauge
sector (Hansson, Oganesyan, Sondhi, Ann. Phys. 2004)

$$\mathcal{L}_{\mathrm{CI}^*} = \frac{1}{\pi} \epsilon^{\mu\nu\lambda} b_{\mu} \partial_{\nu} a_{\lambda} + \frac{e}{2\pi} \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} (a_{\lambda}^{\uparrow} + a_{\lambda}^{\downarrow}) + \sum_{\sigma=\uparrow,\downarrow} \left(\frac{1}{4\pi} \epsilon^{\mu\nu\lambda} a_{\mu}^{\sigma} \partial_{\nu} a_{\lambda}^{\sigma} + \frac{1}{2\pi} \epsilon^{\mu\nu\lambda} a_{\mu}^{\sigma} \partial_{\nu} a_{\lambda} \right)$$

CS term obtained by integrating out gapped slave-fermions, encodes Chern number C=2 of electron bandstructure

Properties of CI* phase

• Hall conductance and quasiparticle charge are **integer**, but statistics are **fractional** (semionic) and ground state on T² is 4-fold degenerate

$$K = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \qquad \sigma_{xy} = \frac{e^2}{h} t^T K^{-1} t = \frac{2e^2}{h} t^T$$

quasiparticle	Q	S_z	$ heta_{ll}$	$ heta_{ll'}$	rge
$l_1 = (1, 0, 0, 0)$	-e	0	$\pi/2$	$\theta_{13} = \pi$	char t
$l_2 = (0, -1, 0, 0)$	e	0	$-\pi/2$	$\theta_{23} = -\pi$	
$l_3 = (1, -1, 0, 0)$	0	0	0	$\theta_{31} = -\theta_{32} = \pi$	o ⊒.
$l_4 = (0, 0, 1, 0)$	e	1/2	π		spir
$l_5 = (0, 0, 0, 1)$	e	-1/2	π		

Linear vs nonlinear response

• In CI* phase, spontaneously created Z₂ vortices can screen external fluxes and modify Hall response in nonlinear regime

Quasiparticle excitations of CI* phase

- Excitations of Z_2 gauge field are Z_2 vortices (visons) = π fluxes
- A π flux in a $\nu = 1$ QH state traps a fermionic mode with charge e/2, and the resulting bound state is an anyon with $\theta = \pi/4$ (Weeks et al., Nature Phys. 2007)
- A π flux in a spinful (C = 2) CI state traps a fermionic mode with charge e: bound state is a semion ($\theta = \pi/2$)

Band topology + interactions → novel states of matter

Outline

- Introduction
- Correlation effects in the 2D Chern insulator

JM and A. Rüegg, arXiv:1305.1290

• Correlation effects in the 3D topological insulator

JM, V. Chua, and G. A. Fiete, to appear

• Conclusion

Conclusion

- The interplay of band topology and electron correlations can lead to qualitatively new quantum phenomena
- Hubbard interaction in a spinful (C=2) Chern insulator can lead to a "hybrid" topological phase with integer Hall conductance and quasiparticle charge but nontrivial GSD and fractional statistics
- Hubbard interaction in a 3D topological insulator can likewise lead to a gapped fractionalized phase, the TI*, and possibly also a condensed matter realization of oblique confinement
- The search for exotic phases in 4d and 5d transition metal compounds is a promising direction for the experimental realization of novel topological quantum phenomena