Realistic many-body calculations with spatial correlations and for systems with molecular orbitals

Harald O. Jeschke

Johannes Ferber, Hunpyo Lee, Kateryna Foyevtsova, Roser Valentí

Institut für Theoretische Physik, Universität Frankfurt

7th ISSP International Workshop

Emergent Quantum Phases in Condensed Matter - from topological to first principles approaches June 10, 2013

Acknowledgments

Frankfurt:

Hunpyo Lee, Kateryna Foyevtsova, Johannes Ferber, Milan Tomić, Roser Valentí.

Würzburg (experiment):

Andreas Ruff, Michael Sing, Ralph Claessen.

Funding:

- DFG FOR 1346 "Dynamical Mean Field Approach with Predictive Power for Strongly Correlated Materials"
- DFG TR 49 "Condensed Matter Systems with Variable Many-Body Interactions"

Topics

Introducing spatial correlations into realistic DMFT studies

Potassium doped picene: metallic or not?

Projectors for molecular orbitals: LDA+DMFT description of charge transfer salts

Introducing spatial correlations into realistic DMFT studies

Wanted: Momentum dependent selfenergy in realistic manybody calculations

- LDA+single site DMFT derives *k* dependence only from DFT; $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$
- Many systems with dimension < 3 show phenomena that are not captured by single site DMFT (cuprates, organic charge transfer salts)

Hope comes from various recent developments:

- 1 dual fermions (DFT+DF) (Lichtenstein, Katsnelson, Hafermann, ...)
- 2 variational cluster approach (DFT+VCA) (Aichhorn, ...)
- 3 DFT+DVA (Held, ...)
- 4 GW+DMFT (Biermann, Georges, Held, ...)

Here, we try to combine DFT with DCA.

LDA+DCA for SrVO₃

Introduction

$SrVO_3$ as a test system

- V t_{2g} with 1/6 filling
- correlated metal studied many times with LDA+DMFT
- intensively investigated experimentally; latest addition Aizaki *et al.*, PRL **109**, 056401 (2012).

Nekrasov et al., Phys. Rev. B 72, 155106 (2005).

Harald O. Jeschke

Method

LDA+DCA Method

Projective Wannier functions within FLAPW (Aichhorn et al., PRB 80, 085101 (2009)):

$$|\chi_{\mathbf{k},m}^{\alpha,\sigma}\rangle = \sum_{\nu \in W} \langle \psi_{\mathbf{k},\nu}^{\sigma} | \chi_{m}^{\alpha,\sigma} \rangle | \psi_{\mathbf{k},\nu}^{\sigma} \rangle,$$

with atom α , band ν , spin σ , orbital *m*. Bloch eigenfunction $|\psi^{\sigma}_{\mathbf{k},\nu}\rangle$, correlated orbital $|\chi_m^{\alpha,\sigma}\rangle = |u_l^{\alpha,\sigma}(E_l)Y_m^l\rangle$, linearization energies E_l , radial wave function $u_l^{\alpha,\sigma}$, and spherical harmonic function Y_m^l . Orthonormalized projectors:

$$P_{m,\nu}^{\alpha,\sigma}(\mathbf{k}) = \sum_{\alpha',m'} \langle u_l^{\alpha',\sigma}(E_l) Y_{m'}^l | \psi_{\mathbf{k},\nu}^{\sigma} \rangle [O(\mathbf{k},\sigma)^{-1/2}]_{m,m'}^{\alpha,\alpha'}$$

LDA+DCA lattice Greens function (cluster momenta K)

$$G^{\sigma}_{\nu,\nu'}(\mathsf{K}+\tilde{\mathsf{k}},i\omega_n) = \left[i\omega_n + \mu - \epsilon^{\sigma}_{\mathsf{K}+\tilde{\mathsf{k}},\nu} - \Sigma^{\sigma}_{\nu,\nu'}(\mathsf{K}+\tilde{\mathsf{k}},i\omega_n)\right]^{-1}$$

Lattice self-energy

$$\begin{split} & \Sigma_{\nu,\nu'}^{\sigma}(\mathsf{K}+\tilde{\mathsf{k}},i\omega_n) \\ & = \sum_{\alpha,m,m'} P_{\nu,m}^{\alpha,\sigma^*}(\mathsf{K}+\tilde{\mathsf{k}})\Delta\Sigma_{m,m'}^{\sigma,\mathrm{imp}}(\mathsf{K},i\omega_n) P_{m',\nu'}^{\alpha,\sigma}(\mathsf{K}+\tilde{\mathsf{k}}) \end{split}$$

Harald O. Jeschke

Brillouin zone sectors Double counting correction $\Delta \Sigma_{m m'}^{\sigma, \text{imp}}(\mathbf{K}, i\omega_n) = \Sigma_{m m'}^{\sigma, \text{imp}}(\mathbf{K}, i\omega_n) - \Sigma_{m m'}^{\text{dc}}$ Local cluster Greens function $G_{m,m'}^{\sigma,\mathrm{loc}}(\mathbf{K},i\omega_n) = \sum P_{m,\nu}^{\alpha,\sigma}(\mathbf{K}+\tilde{\mathbf{k}})$ $\tilde{\mathbf{k}}, \nu, \nu'$ $\times G^{\sigma}_{\mu,\mu'}(\mathbf{K}+\tilde{\mathbf{k}},i\omega_n)P^{\alpha,\sigma^{*'}}_{\mu',\mu'}(\mathbf{K}+\tilde{\mathbf{k}}),$ Weiss field update $\left[G_{m,m'}^{\sigma,0}(\mathbf{K},i\omega_n)\right]^{-1}$ $= \Sigma_{m m'}^{\sigma, \text{imp}}(\mathbf{K}, i\omega_n) + \left[G_{m m'}^{\sigma, \text{loc}}(\mathbf{K}, i\omega_n) \right]^{-1}$

Results

Comparison between LDA+DMFT and LDA+DCA

Interaction Hamiltonian to be solved:

$$\begin{split} H_{I} = & U \sum_{m} n_{m\uparrow} n_{m\downarrow} + \sum_{m < n, \sigma} \left[U' n_{m\sigma} n_{n\bar{\sigma}} \right. \\ & + \left(U' - J \right) n_{m\sigma} n_{n\sigma} \right], \end{split}$$

- LDA+DMFT, calculated with hybridzation expansion CT-QMC (from ALPS), agrees well with result of Aichhorn *et al.*, PRB 80, 085101 (2009).
- LDA+DCA, calculated with interaction expansion CT-QMC, shows some extra structure.
- Understandable from **K** sector resolved spectral functions.
- $\Sigma_{m,m'}^{\sigma,\mathrm{imp}}(\mathbf{K},i\omega_n)$ different for the two sectors

Compare also Zhang, Imada, PRB **76**, 045108 (2007); Lin, Millis, PRB **79**, 205109 (2009).

Results

Comparison to experiment

Yoshida *et al.*, Phys. Rev. B **82**, 085119 (2010).

Lee, Foyevtsova, Ferber, Aichhorn, Jeschke, Valentí, Phys. Rev. B 85, 165103 (2012).

Harald O. Jeschke

Potassium doped picene: metallic or not?

Doping of organic molecular crystals

Superconductivity in K₃picene with $T_c = 18$ K:

Mitsuhashi et al., Nature 464, 76 (2010)

- SC subsequently found in phenantrene (5 K) and dibenzopentacene (33 K)
- Indication for Mott physics in doped organics: compare case of pentacene

unexpected

- observed through Meissner effect
- recently: zero conductivity at 7 K (PRB 2013)

Problem for theory: Explain metallic state

Harald O. Jeschke

K_xpicene structure and electronic structure

Structure not known experimentally

→ need to simulate

Hamiltonian we solve is $H_{K} = -\sum_{ijm\sigma} t_{m} c_{mj\sigma}^{\dagger} c_{mi\sigma} - t_{\perp} \sum_{i\sigma} c_{1i\sigma}^{\dagger} c_{2i\sigma}$ $H_{I} = U \sum_{mi} n_{mi\uparrow} n_{mi\downarrow} + \sum_{\sigma} \left[(U - 2J_{z}) n_{1i\sigma} n_{2i\bar{\sigma}} + (U - 3J_{z}) n_{1i\sigma} n_{2i\sigma} \right].$

Harald O. Jeschke

7th ISSP International Workshop

K_xpicene: Photoemission and DFT/TB+DMFT

K_xpicene: DMFT for two orbital model

- essential ingredient: two orbital model with hybridization between orbitals
- off-diagonal Greens functions
 → use of interaction expansion CT-QMC
- both bands gapped in K₂picene
- no metallic state for commensurate doping
- source of superconductivity unclear

Ruff, Sing, Claessen, Lee, Tomić, Jeschke,

Valentí, PRL 110, 216403 (2013).

7th ISSP International Workshop

Projectors for molecular orbitals: LDA+DMFT description of charge transfer salts

κ -phase BEDT-TTF based charge transfer salts

- Rich phase diagram accessible by chemical or physical pressure
- Extensively studied by theory
- So far: Model calculations, generic or based on Hückel/DFT extracted parameters, solved with myriad manybody methods.
- Plan: apply full LDA+DMFT method.

κ -(BEDT-TTF)₂-Cu[N(CN)₂]Br_xCl_{1-x} optical conductivity

Harald O. Jeschke

Method

LDA+DMFT for molecular orbitals

Idea for projection on molecular orbital: Diagonalize occupation matrix in the basis of atomic orbitals within the correlated subspace. Starting point: FLAPW projectors $\tilde{P}^{\alpha,\sigma}_{m\nu}(\mathbf{k})$

$$\mathcal{O}_{m,m'}^{\alpha,\alpha'}(\sigma) = \sum_{\nu \in W'} \tilde{P}_{m\nu}^{\alpha,\sigma}(0) \tilde{P}_{m'\nu}^{\alpha',\sigma*}(0).$$

Narrow energy window W', $\mathbf{k} = 0$, atomic orbitals $\{\alpha, m\}$.

Eigenvectors of $\mathcal{O}_{m,m'}^{\alpha,\alpha'}(\sigma)$ corresponding to largest eigenvalues now indicate composition of molecular orbitals in terms of $\{\alpha, m\}$. If $\mathcal{U}_{m}^{\alpha}(\sigma)$ is such an eigenvalue,

$$\tilde{\mathcal{P}}^{\sigma}_{M\nu}(\mathbf{k}) = \sum_{\alpha,m} U^{\alpha}_{m}(\sigma) \tilde{P}^{\alpha,\sigma}_{m\nu}(\mathbf{k})$$

is a molecular projector for molecular orbital M.

κ -(BEDT-TTF)₂-Cu[N(CN)₂]Cl, BEDT-TTF dimer Wannier function

Method

κ -(BEDT-TTF)₂X structure and bands

Kandpal, Opahle, Zhang, Jeschke, Valentí, PRL 103, 067007 (2009).

7th ISSP International Workshop

Results

κ -(ET)₂-Cu[N(CN)₂]Cl spectral function $A(\mathbf{k}, \omega)$

- Hybridization expansion CT-QMC impurity solver from ALPS project
- Temperature T = 300 K, U = 0.6 eV≈ 10t (compare Nakamura *et al.*, J. Phys. Soc. Jpn. **78**, 083710 (2009)).
- Renormalized quasiparticle band and spectral weight transfer to lower and upper Hubbard bands

Ferber, Foyevtsova, Jeschke, Valentí, arXiv:1209.4466.

κ -(ET)₂-Cu[N(CN)₂]Cl DOS and $A(\omega)$

- evolution of quasiparticle peakd and Hubbard bands with interaction strength U
- U = 0.84 eV close to insulating state
 - some underestimation of critical *U* due to use of single site DMFT

Ferber, Foyevtsova, Jeschke, Valentí, arXiv:1209.4466.

Results

Optical conductivity

$$\sigma_{zz}(\tilde{\nu}_n) = \frac{e^2}{4\pi\epsilon_0 V \tilde{\nu}_n \beta} \sum_{\nu\nu'\nu''\nu''',\mathbf{k},\sigma} v_{z,\mathbf{k}}^{\nu\nu'} v_{z,\mathbf{k}}^{\nu'\nu''} \sum_{\omega_n} G_{\mathbf{k}}^{\nu'\nu''}(i\omega_n + i\tilde{\nu}_n) G_{\mathbf{k}}^{\nu''\nu}(i\omega_n)$$

(lattice Greens function $G_{\mathbf{k}}(i\omega_n)$, bosonic (fermionic) Matsubara freq. $\tilde{\nu}_n(\omega_n)$, Fermi velocity $v_{\alpha,\mathbf{k}}^{\nu\nu'}$).

- comparison to T = 300 K measured optical conductivity (Faltermeier *et al.*, Phys. Rev. B **76**, 165113 (2007)).
- interband (intradimer) contribution nearly similar to DMFT result
- DMFT shifts spectral weight from Drude peak into intraband ("Hubbard") peak

Harald O. Jeschke

Influence of the interaction strength

- Drude peak suppressed as interaction strength increases
- position of intraband (interdimer) peak shifts like Hubbard bands, proportional to 0.75*U* due to contributions from *U* and *U*/2
- position of interband (intradimer) peak nearly constant
- conjecture of Faltermeier et al. confirmed from first principles

Harald O. Jeschke

7th ISSP International Workshop

Conclusions

LDA+DCA summary (Lee et al., Phys. Rev. B 85, 165103 (2012).)

- LDA+DCA introduces some momentum dependence into realistic calculations for strongly correlated materials.
- Low energy features seem to be described better in SrVO₃.

Theory&PES for K_xpicene summary (Ruff et al., PRL 110, 216403 (2013)).

- \blacksquare Insulating state found in photoemission and DFT/TB+DMFT theory
- Importance of multiorbital nature

LDA+DMFT for CT salts summary (Ferber *et al.*, arXiv:1209.4466).

- Projector scheme for molecular orbitals within FLAPW allows LDA+DMFT calculation for Mott insulator κ-(ET)₂-Cu[N(CN)₂]Cl.
- Interband and intraband contributions to optical conductivity described at the same level.