

Correlation effects on topological insulators -a dynamical mean field approach -

Tsuneya Yoshida Kyoto Univ.

Collaborators: Robert Peters, Satoshi Fujimoto, and N. KawaKami

T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012)

Outline

1. Introduction

- Topological phase in d f electron systems
- Several studies of correlated TBI

Mott vs. TBI

2. Purpose
3. Model and Method
4. Numerical Results

(DMFT study of BHZ+U model)

5. Summary

Related studies: (If time allows.)

1. Introduction

\sim Properties of topological insulators \sim

C. L. Kane et al, PRL 95 146802

Characteristic magnetoelectric response

```
Quantized spin Hall conductivity. (QSH ins.)
```

Topological magnetoelectric effect. (**3**D strong-TBI)

$$\mathbf{P} = \frac{e^2}{2hc}\mathbf{B}$$
 $\mathbf{M} = -\frac{e^2}{2hc}\mathbf{E}$

 \sim Topological phase in d,f electron systems \sim

Symmetry protected phases

Topological phases induced by Coulomb interaction

Phase competition :

[Topological phase] vs. [ordered phases]

etc

magnetic phase, charge density wave phase

Topological phases induced by interactions

6/21

Such phases are also reported in pyrochlore and diamond lattice.

•Phase competition : Topological phase v.s. magnetic phase (Kane-Mele+U)

M. Hohenadler ef al, PRL 106 100403

(Auxiliary field QMC) $H_{\rm KM} = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} c_{\mathbf{i}}^{\dagger} c_{\mathbf{j}} + i \lambda \sum_{\langle \langle \mathbf{i}, \mathbf{j} \rangle \rangle} c_{\mathbf{i}}^{\dagger} \mathbf{e}_{\mathbf{i}, \mathbf{j}} \cdot \boldsymbol{\sigma} c_{\mathbf{j}},$ 8 $H_U = \frac{U}{2} \sum_{i} (c_i^{\dagger} c_i - 1)^2.$ (a) xy AFMI *← xyz* AFMI 6 a₁ TBI 2 ←SM Low High (d) 0 0.06 0.02 0.04 0.1 0 0.3 λ / t 0.2 0.5 Spin configuration λt TBI 0.4 (in-plane) 0.3 ا الا 0.1 0.2 <u>SM</u> 2 ¹ U/t ² 0.0 8 10 6 0.1 (with VCA) -2 0 3 5 6 8 U/tS. Yu et al, PRL 107, 010401 -6 π/a 2π/a

Outline

 Introduction
 Purpose
 Model and Method

 DMFT+CT-QMC
 Relation between spin Hall conductivity and spin Chern number

4. Numerical Results

•spin Hall conductivity,

spectral function,
magnetic instability

5. Summary and Outlook

Understand the phase competition with non-perturbative method.

Bernevig-Hughes-Zhang model+U
 Dynamical Mean field theory

 t
 Continuous Time-Quantum Monte Carlo simulation

Introduction
 Purpose
 Model and Method

 Model ~ BHZ+U model ~
 Method ~DMFT+CT-QMC ~
 How to detect the topological property ~Relation between spin Hall conductivity and spin Chern number ~

4. Numerical Results5. Summary and Outlook

Method : Dynamical Mean Field Theory (DMFT+CT-QMC)

Advantage

DMFT has had a great success describing Mott transitions

CT-QMC provides numerically exact solutions.

13/21

 \sim How to detect topological property \sim

Even in
$$U \neq 0$$
 : $\sigma_{xy}^{SH} = -\frac{e^2}{(2\pi)\hbar}N$

K. Ishikawa et al, Nucl. Phys. B 280 523.

Kubo formula

Introduction
 Purpose
 Model and Method

4. Numerical Results

Phase competition

•Topological ins. •Mott ins. (i). Spin Hall conductivity(ii). Spectral function(iii). Magnetic instability

(at finite temperature)

5. Summary and Outlook

\sim (iii) Magnetic instability \sim

18

Summary

Related studies

and N. Kawakami PRB 87, 165109 (2013)

20/21

Thank you for your attention!