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Part 1. What is topological superconductor ?



Topological phase

-Bulk-

(D Gapped system such as insulators and superconductors

@ Topological #

#+ (0 Topological phase
=0 Non-topological phase

3 Topological # cannot change unless the bulk gap closes




Topological phase

-Boundary-

(D The existence of gapless state on the boundary

@ Mathematically, the existence of gapless states is ensured
by the bulk topological #

» Bulk-edge correspondence

(3 We can operate the gapless state without destroying the
bulk state




Why topological phase is useful ?

* The bulk state is gapped, so it is stable against
I local perturbation (i.e. decoherence free)

* Nevertheless, it support gapless states on the
boundary, so at the same time there exist
manageable quantum states (i.e. qubits)

Considering these two properties, we can expect that topological
phase is an ideal platform of quantum devices
(i.e. topological quantum computer)



Quantum Hall state: Prototype of topological phase

— ;V e: electron charge
h: Planck const.

Hall conductance is quantized
in the unit of e2/h
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Bulk of QH state

* QH states are gapped in the bulk due to the formation of
Landau level.

* They have a non-zero topological #.  Thouless-kohmoto etal. (82)

Kohmoto (85)
. Landau level in a crystal filed
Ai(k) =1 Z <un,k|akiun,k>
nefilled (k) N empty
N ~ T bands
Bloch wave fn. of occupied state T e
M filled
> bands
1
von = — [ dkgdky [0, Ay — Op, Ay
27T BY7

TKNN # (or Chern #)



* The quantization of Hall conductance is explained by the
guantization of topological #
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Edge of QH state To obtain the edge, we introduce confining potential

o

v=2

Em,v

Landau level + confining potential

ﬁ(b'c

Gapless states carry the Hall conductance
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Halperin (81)

* Due to the confining potential, occupied Landau levels cross

the Fermi energy near the edge. So there exist gapless states
localized on the boundary.

* The quantization of Hall conductance is explained by the

guantization of the number of edge states. e?

Oxy — ﬁ Vedge
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We have two different views of Hall conductance

D Bulk

(o] - n [ H
]

| IS
T T, m

The number of the edge states should be the same as

topological #
bulk-edge correspondence y



QH states (summary)

* QH states are gapped systems with non-zero topological #.
* QH states support gapless edge states.

* The gapless states are ensured by the bulk topological #.

m=) Topological phase

The Hall current is well-controlled and the quantization is extremely accurate.

Ex.) Hall effect devices



Topological Superconductors



A close similarity between quantum Hall states and SCs

Integer quantum Hall Superconducting state
state
bulk gapped gapped
(Landau level) (gap function)
edge Gapless edge state Andreev bound state

We can naturally expect that topological phase is possible for
superconducting state.

m=) Topological superconductors

Qi et al.(09) , Schnyder et al (08), MS (09), Roy (08), ...
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Topologically protected state = Majorana fermion

Majorana Fermion

» Dirac fermion with Majorana condition

1. Dirac Hamiltonian
H(k) =0 -k, or H(k,)= cky
2. Majorana condition

U =CU<

particle = antiparticle

For the gapless boundary states, their Hamiltonians
are naturally given by the Dirac Hamiltonians

18



Why the Majorana condition ?

‘ The Majorana condition is imposed by superconductivity

quasiparticle in Nambu rep. guasiparticle anti-quasiparticle
|
%Ew; ! v
¢¢ L * 0 ]-2><2
¢¢(x)
Majorana condition
4 & @ -
o % d - Ug0 @
: ¥ o
\_ P> Q@D

[Wilczek , Nature (09)] 19



different bulk topological #
= different Majorana fermions

2+1D time-reversal

2+1D time-reversal

3+1D time-reversal

breaking SC invariant SC invariant SC
15t Chern # Z, number 3D winding #
(TKNN82, Kohmoto85) (Kane-Mele 06, Qi et al (08)) (Schnyder et al (08))
1+1D chiral 1+1D helical 2+1D helical
edge mode edge mode surface fermion
— -
/7 /
L g L
I I
Sr,RuO, Noncentosymmetric SC 3He B

(MS-Fujimto(09))

20




Which system support Majorana fermions ?

e Spin-triplet (odd-parity) superconductors

Volovik (86), Read-Green(00)

* Superconducting states with SO interaction

MS, Physics Letters B535,126 (03), Fu-Kane (08)

MS, Takahashi, Fujimoto PRL(09) PRB(10), J.Sau et al (11)



A representative example of topological SC:
spinless chiral p-wave SC in 2+1 dimensions

[Read-Green (00)]

BdG Hamiltonian spinless chiral p-wave SC

H = Z e(k)c;;ck + % Z [A(k)chT_k - h.c}
k k

— %Zk: (CL,c_k) H(k) ( C?rk ) + const.

—k

with

H(k) = < e(k) A(k) ) e(k) = —2t, cosky — 2t, cosk, — i

AR —e(k) A(k) = d(sink, + isink,)

~  d(ky +ik,)

chiral p-wave
22



Topological number = 15t Chern number

TKNN (82), Kohmoto(85)

9,
Ok;

Aik) =i Y (uq(k)
acfilled

(k))

I/Ch:—/d2ak akA()]

= 3 Z sgne(kg) - Sgn[det(aiRj(kO))]
A(ko)=0

(A(k) = R (k) + iR2(k))

MS (09)
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Edge state

p=-1,d=0.5 4
kx kx

SC

Fermi surface ;. " y
c\/ L v
E
" " 2 gapless edge modes
|||||||II | Il||||||| (left-moving, right
by e moving,
spectrum ,,h.'f',"A|.||.|HA"|A"'5'.“ AAAAAAAAA on different sides on
||||||uI||||||H||||||ai|||III boundaries)
P . .
|||||||I |||||||| Majorana fermion
tr =1, ty =02 tp=1ty=1 Bulk-edge
ven = 0 vep = 1 correspondence
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In the second case, there also exist a single Majorana zero mode
In a vortex

We need a pair of the zero modes to define creation op.

vortex 2

S 1 - (2
vortex1 @ ® b q/é ) +7/yé ) {WTW} —1

@ _
% 70 ! V2

non-Abelian anyon

topological guantum computer
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For spin-triplet SCs ( or odd parity SCs), there exists a simple
criterion for topological phases

If the number of TRIMs enclosed by the Fermi surface is odd,
the spin-triplet SC is (strongly) topological.

[Sato (09), Sato (10),
Fu-Berg (10)]

2D spinless SC) . 2
X X A

Even 4+~ o o Odd & @ SC
Yy

L}x v

A(k) =k, + ik, Chiral Majorana
mode

26



3D time-reversal invariant spin-triplet SC)

b) k: a) k:

Odd

| .':l &
nr
| >
| ke
ky | »
kx

Even

kx

With proper topology of the Fermi surface, spin-triplet SCs (or
odd-parity SCs) naturally become topological.

27



Recently, it has been found that s-wave
superconductors also can support Majorana
fermion.

A) MS, Physics Letters B535,126 (03), Fu-Kane PRL (08)

B) MS-Takahashi-Fujimoto ,Phys. Rev. Lett. 103, 020401 (09);
MS-Takahashi-Fujimoto, Phys. Rev. B82, 134521 (10) (Editor’s suggestion),
J. Sau et al, PRL (10), J. Alicea PRB (10)

Key point: Spin-orbit interaction

28



Majorna fermion in spin-singlet SC 9
)

MS, Physics Letters B535,126 (03

(@ 2+1 dim Dirac fermion + s-wave Cooper pair €
H = ( _ig)iai —;IC)TZ'@' ) b = (I)Of(r)ew vortex
Zero mode in a vortex [Jackiw-Rossi (81), Callan-Harvey(85)]

=)

With Majorana condition, non-Abelian anyon is realized
[MS (03)]

Available online at www.sciencedirect.com
ScCIENCE @mnzcr-
e PHYSICS LETTERS B
ARl

R AR %
ELSEVIER Physics Letters B 575 (2003) 126-130

www.elsevier.com/locate/physletb

Non-Abelian statistics of axion strings

Masatoshi Sato 29




On the surface of topological insulator [Fu-Kane (08)]

Bi, , Sb,  Hsieh et al., Nature (2008)

Dirac fermion + s-wave SC
~ Eg
& db ¢
g 1oor S-wave SC
E 200

Wavenumber, k;; (A7h

Nishide et al., PRB (2010)

Bi,Se;  Hsieh et al., Nature (2009) Topological insulator

Spin-orbit interaction
=> topological insulator

30



2. S-wave superconductor with Rashba SO interaction

[MS, Takahashi, Fujimoto PRL(09) PRB(10)]

Rashba SO
(hk)? -
H<k>(mEF+E“BHZ%/W )

N (hk)? *
—1Ag0y —5 -+ FErt gk -o'|+usH.o,
HP(k) = DH(kK)D, D=—( L1 o
’ V2 \ oy 1
HD(k) Ag— upH,o, —1 [% — EF] Oy 19K - OO0y
— 2
7 [% — EF] Oy Higroy - O —Aog+ ugH,o

p-wave gap is induced
by Rashba SO int.

Topological superconductivity can be obtained if we choose
a suitable Fermi surface .




Topological Edge state Sato-Takahashi-Fujimoto (09, 10)

Two Fermi surfaces Single Fermi surface Fermi
E surface
Level \/ N 7 E
Zeeman field

| S
| >

= J/AZFEZ  psH.> VA2 + EZ

Edge state

superconducor

Majorana Yy

: v
\fermlon T_) .
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Majorana fermions are realized under a strong magnetic field
satisfying upH, > /A2 + E2

. MS-Takahashi-Fujimoto (09)
1D Nanowire

nanowire Zeeman field

MF=_}

Mourik et al., Science (2012)

Lutchyn et al (10), Oreg et al (10)

Majorana Fermion

33



Majorana fermions are not merely a theoretical

possibility now, but they are what we can realize
somehow in experiments.

Topological superconductor is not a fancy way to

rewrite the existing theory of the Andreev bound
state, but it can be a useful way to predict novel
properties in SCs.



Symmetry Protected MFs in Superconductors

Y. Ueno, A. Yamakage, Y. Tanaka, MS, arXiv:1303.0202

MS, A. Yamakage, T. Mizushima, arXiv:1305.7469

Chui, Yao, Ryu, arXiv: 1303.1843
Zhang, Kane, Mele, arXiv:1303.4144



Majorana Fermions

 Majorana fermions are naturally realized in spinless SCs

Spinless chiral p-wave SC Read- Green (00)

Dirac fermion + s-wave condensate MS(03), Fu-Kane (08)

S-wave superconducting state with Rashba SO + Zeeman field

MS-Takahashi-Fujimoto (09), J. Sau et al (10)

ROZAANVNY

Level

Hsieh et al

Non spin-degenerate
single Fermi surface

3
| Zeeman field

36



Why Majorana Fermions favor spinless SCs ?

For spinless SCs, we have the Majorana condition naturally.

~ 4

([
® -~ O+ "a.\)\
4 'y
9

However, the spin degrees of freedoms obscure the Majorana
condition
Nitta’s talk at JPS) meeting (12)

(A
¢ = @ ¥ %\ﬁ @rana con@

37



Moreover, spinful SCs support MFs in pairs because of the spin
degeneracy.

VST = 7ot ”Y(L = 7ol

They can be considered as Dirac fermions as well as MFs

Y = vyor + 10y

The Dirac fermions are easily gapped away by the Dirac mass
term myTy

‘ No topologically stable MFs

38



To avoid these difficulties, a half-quantum vortex has been
considered. lvanov (01)

d(k,r) = iAoe’/?(sinf/2,cos0/2,0)
Twist in spin space

Akr) = id(h,r) o0, = (73" (20))

Only downspin sector Au supports a vortex

= A vortex in spinless SCs

Topologically stabbe MF

However, the twist in spin space makes the configuration
unstable, so the experimental realization is challenging.

Chung-Bluhm-Kim(07)
39



Question

Is there another way to realize Majorana fermions in

spinful SCs ?

Key observation

If there is an additional symmetry such as time-reversal
symmetry, Majorana fermions can be realized in spinful SCs

Cu, Bi,Se, 0 Agiaste ®18

Fu-Berg (10) CuXB]25e3Au wire 555_

Au wire E 0.75 2 K
= 1.15 K
54 0135' Kl b— T T
-2 -1 1 2

Sasaki-Kriener-Segawa-
Yada-Tanaka-MS -Ando(11)

Yamakage--Yada-MS-Tanaka(12)

\/ \/
\/ \/
v v
00 b 40
2 -15 -1 05 0.5 5 2



Ex.) 1D spinful p,-wave superconductor

—

* Yot
» AEEEEE—— o ~ A pair of MFs

p,-wave SC ,

Kramers theorem
mmmms) No scattering between Yotand 704

Thus, they naturally can be considered as two independent
particles, not as a single Dirac fermion. @M

Actually, the Dirac mass term is forbidden by the time-reversal

symmetry. ,
I

Topologically stable MF 4



Our idea

To obtain topologically stable MFs in spinful SCs, we use symmetry
specific to material structures.

Ex.) point group symmetry

UPt,

c.f.) Topological crystalline insulators

Fu (11)

42



In particular, we consider the mirror reflection symmetry

- B coordinate
Sy (567?/7 Z) — (Qj,y,—Z)
spin
Ru ‘ (O'a;,O'y,O'Z) — (—O'a;,—O'y,O'z)
O o
N

Now consider how the mirror reflection symmetry protect MFs

43



Our system

2dim spinful SC

BdG Hamiltonian

. gk)  A(K)
Ty (k) = ( Af(k) —ET(—k)

Mirror symmetry M., with respect to xy-plane

~

{/\;lxy,”ﬂ(k)} — 0

)

44



Basic idea

Using the eigen value of mirror operator, spinful SC can be
separated into a pair of spinless SCs

M

LY 7
4
VA

For each spinless SCs, the mirror Chern number can be defined
like topological crystalline insulators (TClI).

45



However, there is an important difference between TCls and SCs

Particle-hole symmetry = Majorana condition
CH(k)CT = —H*(—k) U =CU!

~

PH symmetry ¢

N
¢ $ T ‘ My = —i

The problem is how the particle-hole symmetry is realized in the

spinless SCs.

4
-




Key point

Two different mirror symmetries are possible in SCs.

S-wave SC A(k) = ipoy
Spin-tripletSC  A(k) = id(k)oo, (Myy ~ ic.)
with d || z
i ) U(1) gauge sym
b) My A(k)ML, = —A(k) —— A(k)

Spin-triplet SC A(k) = id(k)O'O'y
with d L z

47




My, =i
/ ¢ ‘V Class A
* $ Class A
: >
My = —i Dirac fermion

Mirror subsector does not support its own particle-hole
symmetry.
Mirror subsector is topologically the same as quantum Hall

states.
Symmetry protected topological states are Dirac fermions.

48



Ty _A(k) Oodd

/ ‘l’ * / Class D

/ V V / Class D

Moy = =i Majorana fermion

* Mirror subsector supports its own particle-hole symmetry .

* Mirror subsector is topologically the same as spinless SCs.
 Symmetry protected topological states are Majorana fermions
 Majorana zero mode can exit in a vortex or in a dislocation

Schnyder et al (08) 2D 3D
Teo-Kane (10) class D @ 7 N



My A(E) M,

LY

— A(k)

» No PH symmetry in mirror
subsector

> Mirror subsector is class A

» Only Dirac fermions are
possible

» PH symmetry in mirror
subsector

> Mirror subsector is class D

Majorana fermions are
possible in each mirror
ctor

20



Application to Sr,RuO,

Fermi surface

e

C. Bergemann

* (quasi) 2-dimensional
time-reversal breaking
spin-triplet SC

Maeno, Kittaka, Nomura, Yonezawa,
Ishida, JPSJ (12)

Interestingly, the NMR measurements have suggested that d-

vector is normal to the z-direction in the presence of magnetic
fields along the z-direction.

MwyA(k)Mfcy = —A(k) | Odd

We can expect
comospondsto | Majorana Fermions !!

0 05 10
T(K)

51



Our model

All three bands and relevant SO int. are taken into account.

€k1 gk 0 Cks1
Hiyin = Z(C;;Sl, 6};327 C;rcsS) Jdk  €k2 0 Cks2
k,s 0 0  egs3 Cks3 Fermi surface
Hso =i tmn 3 chycram et
Ilmn kss’ ky |
_ T _ !
Hpair = Z A'd(k O'Jy)SS’Ck:le kst T h-Co : ]
k:lss \ S f‘
ke
r d-vector M, subsector [w(A). ve(A). vy (A)]
fAu rsink, + ysinky @ class D 1£1, 1, 1] a=+q
xsinky, — ysin k,
B, @sink; —¢ysink, Codd) class D [F1, 1, 15—
_ xsin ky + ysin kg y

E, =zZ(sink; Fisink,) even class A [1, . —]A:ii

92



Topological state (M, =i sector) d = &sink, — gsink,
edge state

Majorana

fermion

04 | . ] ﬂ) s
< 02 | ze ro o 0 d e
e oo "— ]
02 F .
04 |
06 oooonno 00 O
index of states

The other three mirror odd gap functions also show qualitatively
the same results. 53



Our arguments also work for other unconventional SCs/SFs

Thin film of 3He-A MS, Yamakage, Mizushima (13)
0g.
vortex - d—= ’fl(kx + Zky)
Y

L ) 3He-A

LDOS at core of integer vortex

40 ~ . .
s Majorana zero modes exist
25| in integer vortex when

dJ_Z(Hd:ﬂ'/Q)

Nip=0E)

51
0

20 A

15} | d I i Hop L

pi l Y b",!“‘!¢
=02

05 54



Remark

These symmetry protected MFs show non-trivial phenomena
like usual MF if the mirror symmetry is preserved.

Y10
i Y10

Vortex

~ . . : ™
Due to the existence of MF, a vortex in each mirror subsector

obeys non-Abelian statisitics . Therefore, a vortex in original

. spinful SC also obeys non-Abelian statistics y
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Summary

1. We have revealed the condition necessary to obtain
Majorana fermions protected by the mirror symmetry.

2. With the mirror symmetry, unconventinal spinful SCs can
host Majorana fermions

In particular, Sr,RuO, can hosts Majorana zero mode in a
vortex and a dislocation without considering half-
quantum vortex

3. Our arguments are general and applicable to 3
dimensional spinful SCs.
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