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Z2 Spin Liquid

How can we characterize them ?

Where can we find them ?

What are the “Topological Properties” ?

Topological Phases of Matter



Z2 Spin Liquid

Cannot be fully characterized by 
a local order parameter

such as magnetization in magnets

Topological Phases of Matter

Often characterized by a variety of 
“Topological Properties” or “Non-local Properties”

Cannot be transformed to “simple phases” 
via local perturbations/operations 

without going through phase transitions



Z2 Spin Liquid

Quantum Hall States
Spin Liquids 

(correlated quantum paramagnetic state)

Type I   Topological Phases  (Gapped Phases)

Topological Phases 

“simple phases” 

No “Path” 
(Local unitary transformations)

without closing the bulk gap
X

(fully characterized by local order 
parameter/information)



Z2 Spin Liquid

Type-I Topological Phases  (Gapped Phases)

Quantum Hall States

Non-trivial ground state degeneracy:
quantum Hall state has “3” degenerate 

ground states on torus, but “1” on sphere
ν = 1/3

Non-trivial boundary states:
Edge state is a chiral Luttinger Liquid

Non-trivial excitations:
Fractionally charged e/3 Laughlin quasi-particles

Non-trivial topological invariant: σxy =
1

3

e2

h



Z2 Spin Liquid

Type-I Topological Phases  (Gapped Phases)
Spin Liquids Quantum Paramagnet �S� = 0

Correlated insulator with no broken translational symmetry
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Valence Bond

Resonating Valence Bond state (RVB); 
Superposition of Valence Bond coverings

Ultimate frustration?

• Can quantum fluctuations prevent order 
even at T=0: f=!?

• Many theoretical suggestions since 
Anderson (73)

• “Resonating Valence Bond” QSL states

+ + … 

Ψ =
P.W.Anderson

Rokhsar-Kivelson



Construction of a Spin Liquid

g(r − r
′)

■ BCS superconductor (L x L lattice)

average number of electrons per site = one (Half-filled)

Cooper pair wave function⇔

BCS wave function |BCS� ∝ e
�

r,r� g(r−r�)c†r↑c
†
r�↓ |0�

PG

■ RVB wave function

exactly one particle per site; freeze charge fluctuations

|RV B〉 = PG|BCS〉 ∝
∑

vb

Avb|vb〉

|vb〉
Avb =

∏

all valence

g(r − r
′)

bond (r, r′)

valence bond covering

Uni↑ni↓U → ∞Hubbard in



Degenerate Ground States

|RV B� = PG|BCS� |RV B�� = PG|BCS��

〈RV B|RV B
′〉 → 0 in the thermodynamic limit

No local measurement can distinguish these phases



Short ‘Coherence Length’ Limit 

|even〉 =
1

2
(|RV B〉 + |RV B

′〉) |odd〉 =
1

2
(|RV B〉 − |RV B

′〉)

TWO topologically distinct valence bond coverings

intersecting
even number

of dimers

intersecting
odd number

of dimers

Non-trivial ground state degeneracy



PG

Elementary Excitations

■ Elementary excitations in superconductors

Bogoliubov quasiparticles (zero average charge, S=1/2)

■ Elementary excitations in the spin liquid state

(Bogoliubov quasiparticles) = Spinons (Q=0,S=1/2)

■ Fractionalization of electrons !

Non-trivial excitations



Z2 Spin Liquid

Type II   “Symmetry-Protected” Topological 
Phases  (Gapped Phases)

Topological Band Insulator 
(e.g. time-reversal symmetry)

Topological Phases 

“simple phases” 

No Symmetry-
Preserving “Path” 
without closing 

the bulk gap

X
Symmetry-

Breaking “Path” 
without closing 

the bulk gap



Topological Band Insulator
2D time reversal invariant band structure has 

a Z2 topological invariant  

C. L. Kane, E. Mele, L. Fu B. A. Bernevig, T. L. Hughes, X.-L. Qi, S. C. Zhang ....Bulk - Boundary Correspondence

Equivalence classes of surface/edge: even or odd number
of enclosed Dirac points

d=2

d=3

EF

Time Reversal Invariant !2 Topological Insulator 
Time Reversal Symmetry : 

Kramers’ Theorem :

( ) 1 ( )H H−Θ Θ = −k k *yiψ σ ψΘ =
2 1   Θ = − ! All states doubly degenerate

!2 : two ways to connect Kramers

pairs on surface

E

k=Λa k=Λb

E

k=Λa k=Λb

OR

2!

22 3⊕! !

( )     dH T∈k k

EF
k

kF

kx

ky

(weak Topo. Ins.)
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Bulk - Boundary Correspondence

Equivalence classes of surface/edge: even or odd number
of enclosed Dirac points

d=2

d=3

EF

Time Reversal Invariant !2 Topological Insulator 
Time Reversal Symmetry : 

Kramers’ Theorem :

( ) 1 ( )H H−Θ Θ = −k k *yiψ σ ψΘ =
2 1   Θ = − ! All states doubly degenerate

!2 : two ways to connect Kramers

pairs on surface

E
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E

k=Λa k=Λb
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EF
k
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ky
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Trivial Band Insulator Topological Band Insulator
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Trivial Band Insulator Topological Band Insulator

ν = 0 ν = 1

Inversion (P) Symmetry: Parity of occupied 2D Bloch states at

Γ1 Γ2

Γ3Γ4Bulk 
Brillouin 

zone

P |ψn(Γi)� = ξn(Γi)|ψn(Γi)�

ξn(Γi) = ±1
(−1)ν =

4�

i=1

�

n

ξ2n(Γi)

Γ1,2,3,4

Spin-Orbit driven inversion of two bands with opposite parity



3D Topological Band Insulator

Three Dimensional Topological Insulators
In 3D there are 4 Z2 invariants:  (!0 ; !1!2!3) characterizing 

the bulk.   These determine how surface states connect.

Fu, Kane & Mele PRL 07

Moore & Balents PRB 07

Roy, cond-mat 06

Surface Brillouin Zone

"4

"1 "2

"3

2D Dirac

Point

E

k="a k="b

E

k="a k="b

!0 = 1 : Strong Topological Insulator

Fermi surface encloses odd number of Dirac points

Topological Metal

     • Berry’s phase # around Fermi surface

     • Robust to disorder  (antilocalization)

!0 = 0 : Weak Topological Insulator

Fermi surface encloses even number of Dirac points

Normal Metal
     • Berry’s phase 0, less robust.

     • Equivalent to layered 2D QSHI
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Three Dimensional Topological Insulators
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L. Fu, C. L. Kane
J. E. Moore, L. Balents
R. Roy

ν = 1

ν = 0

: Strong Topological Insulator

: Weak Topological Insulator

In 3D there are four      invariants:            
         characterizing the bulk. 

                 These determine how surface states connect.  
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FIG. 4: Tight-binding bandstructure of Ir 5d orbitals when there
is no trigonal crystal field effect. Here we have chosen λSO=4.0,

ta=te=0.5. Note that the upper 4 bands corresponding to the spin-
orbit doublet (jeff=1/2) are well separated from the other 8 bands

which come from the spin-orbit quadruplet (jeff=3/2).

with jeff = 3/2. It is straight forward to extend the approach
described above for a three-site cluster to the full pyrochlore

lattice system. The resulting effective lattice hopping Hamil-

tonian is given by

Heff =
∑

〈ij〉

∑

n,n′

∑

α,α′

d†inαTnα,n′α′djn′α′ + h.c., (11)

where

Tnα,n′α′ =
∑

lσ,l′σ′

(A∗)α,lσT̃nlσ,n′l′σ′(AT )l′σ′,α′ . (12)

Here i is the unit cell index and the indexn refers to the four Ir
sites within a single tetrahedral unit cell. Including the on-site

potentials for the local spin-orbit eigenstates, the expression

for the effective tight-binding Hamiltonian is finally given by

Eq.(3).

III. EVOLUTION OF THE ELECTRONIC STRUCTURE

UNDER TRIGONAL CRYSTAL FIELD

In this section, we discuss the evolution of the electronic

structure of the Ir 5d system on the pyrochlore lattice in the

presence of the trigonal crystal field. We start with the case

where the Ir ions are under the perfect cubic crystal field with

large spin-orbit coupling. In Fig. 4, we plot the electron band

dispersion along the high symmetry directions in the Bril-

louin zone for the perfect cubic crystal field on the Ir ions

with λSO=4.0, ta=te=0.5. Since we have 4 sites within a unit
cell and each site supports 3 t2g orbitals, there are 24 bands
within the first Brioullin zone including spin degrees of free-

dom. Due to the time reversal and inversion symmetries, each

band is doubly degenerate. In Fig. 4, the upper 4 bands are de-

rived from the spin-orbit doublets with total angular momen-

tum jeff=1/2. On the other hand, the lower 8 bands come from

the quadruplets with jeff=3/2. Note that these two groups of
bands are well separated by a large energy gap with an energy

scale given by λSO .

Since each Ir atom contributes 5 electrons, 20 bands among

the 24 bands are filled. Namely, we have a band insulator with

the half-filled jeff=1/2 bands. Therefore in the forthcoming
discussion, we neglect the fully occupied jeff=3/2 bands and
focus on the properties of the upper 4 bands (or 8 bands count-

ing the double degeneracy of each band) possessing jeff=1/2
character. The energy dispersions of the jeff = 1/2 states are
shown in Fig. 5(a). The fully occupied lower two bands are

separated from the upper two bands by a finite gap between

them.

To understand the topological properties of the insulating

phase, we compute the Z2 topological invariants (ν; ν1ν2ν3)
from the parity eigenvalues ξm(Γl) at the time reversal invari-
ant momenta, following Fu and Kane.9 Here ξm(Γl) indicates
the inversion parity of the mth occupied jeff = 1/2 band at
the time-reversal invariant momentum Γl. Using the recipro-

cal lattice vectorsGi (i=1, 2, 3), the eight time reversal invari-
ant momenta can be written as Γl=n1n2n3

=(n1G1 +n2G2 +
n3G3)/2 with n1,2,3 = 0, 1. The strong Z2 topological in-

variant ν is given by

(−1)ν =
∏

ni=0,1

2
∏

m=1

ξm(Γn1n2n3
), (13)

where the parity eigenvalues at the eight time reversal invari-

ant momenta are multiplied at the same time. On the other

hand, each of the three weak Z2 topological invariants νi
(i=1,2,3) is determined by the parity eigenvalues at the four
time reversal invariant momenta lying on a plane, which is

given by

(−1)νi =
∏

ni=1,nj "=i=0,1

2
∏

m=1

ξm(Γn1n2n3
). (14)

Because of the time reversal symmetry, each band is doubly

degenerate at the time reversal invariant momentum and every

Kramers doublet share the same inversion parity. Since the

Z2 topological invariants count the parity of one state for each

Kramers pair,9 we consider the product of the inversion par-

ities corresponding to the two occupied jeff = 1/2 bands in
Eq.(13) and (14). Notice that, since the product of the inver-

sion parities of the occupied jeff = 3/2 bands is +1 in every
time-reversal-invariantmomentum, we can neglect the contri-

butions from the jeff = 3/2 bands. These analyses lead to a
strong topological insulator with the Z2 invariants (1;000) as

found earlier by Pesin and Balents.20 It is interesting to note

that a strong topological insulator with the same Z2 invariant

(1;000) was also found in a simple one-band model on the

pyrochlore lattice.42

Now we describe the effect of the trigonal crystal field on

the electronic structure of the jeff=1/2 bands. As mentioned
above, the trigonal crystal field effect can be described by

changing the relative magnitude of ta and te. In general,

the pyrochlore oxides have oxygen x parameters ranging from
0.309 to 0.355.40 Since xc=0.3125 for the perfect cubic crystal

Non-trivial boundary states
Non-trivial topological invariant

: Strong Topological Insulator

Fermi surface encloses odd number of Dirac points

Fermi surface encloses even number of Dirac points



Where can we find them ?
especially in 

correlated materials



Interactions and Spin-Orbit Coupling

λ/t

U/t

H =
�

ij,α

tij,αβc
†
iαcjβ − λ

�

i

Li · Si + U

�

i

ni(ni − 1)

TI or Semi-Metals

Strong Spin-Orbit
Mott Insulators

Na4Ir3O8

A2Ir2O7

Na2IrO3

Simple
Metal/Band 
Insulator

Mott
Ins.



5d transition metal (Ir) oxides: New Playground

Energy(K)

101

102

103

104

105

3d TM
(Fe,Co,Ni,Cu..)

4f Ln
(Ce, Pr, Nd…)

Coulomb U Coulomb U

Crystal
 field D

Spin-orbit
 coupling λ

Spin-orbit
 coupling λ

Crystal
 field D

Traditional playground 
for correlated electron physics

5d TM
(Re, Os, Ir, Pt…)

Spin-orbit
 coupling λ

Crystal
 field D

Coulomb
 U

5d: U ~ 0.5-1 eV

~ 0.5 eVλSO



Honeycomb Iridates (A2IrO3)

Type-I Topological Phases ?



Honeycomb Lattice of Ir4+

Edge-Sharing
Oxygen 

Octahedra

ar
X

iv
:1

00
6.

04
37

v1
  [

co
nd

-m
at

.st
r-

el
]  

2 
Ju

n 
20

10

Antiferromagnetic Mott insulating state in single crystals of the hexagonal lattice
material Na2IrO3

Yogesh Singh and P. Gegenwart
I. Physikalisches Institut, Georg-August-Universität Göttingen, D-37077, Göttingen, Germany

(Dated: June 3, 2010)

We have synthesized single crystals of Na2IrO3 and studied their structure, transport, magnetic,
and thermal properties using powder x-ray diffraction (PXRD), electrical resistivity, isothermal
magnetization M versus magnetic field H , magnetic susceptibility χ versus temperature T , and
heat capacity C versus T measurements. Na2IrO3 crystallizes in the monoclinic C2/c (No. 15)
type structure which is made up of Na and NaIr2O6 layers alternately stacked along the c axis.
The χ(T ) data show Curie-Weiss behavior at high T > 200 K with an effective moment µeff =
1.82(1)µB indicating an effective spin Seff = 1/2 on the Ir4+ moments. A large Weiss temperature
θ = −116(3) K indicates substantial antiferromagnetic interactions between these Seff = 1/2, Ir4+

moments. Sharp anomalies in χ(T ) and C(T ) data indicate that Na2IrO3 undergoes a transition
into a long-range antiferromagnetically ordered state below TN = 15 K. The magnetic entropy at
TN is only about 20% of what is expected for Seff = 1/2 moment ordering. The reduced entropy
and the small ratio TN/θ ≈ 0.13 suggest geometrical magnetic frustration and/or low-dimensional
magnetic interactions in Na2IrO3. In plane resistivity measurements show insulating behavior. This
together with the local moment magnetism indicates that bulk Na2IrO3 is a Mott insulator.

I. INTRODUCTION

Layered transition metal oxides provide a playground
for various strongly correlated phenomena. The anti-
ferromagnetic Mott insulating ground state in the spin
S = 1/2 square lattice material La2CuO4 and the related
high temperature superconductivity in doped materials,1

spin-triplet superconductivity in Sr2RuO4,2 metamag-
netism and quantum criticality in Sr3Ru2O7,3 the metal-
insulator transition in Cd2Os2O7,4 and superconductiv-
ity in water intercalated NaxCoO2,5 are just some exam-
ples of these correlated behaviors.
Electronic correlations are expected to be strongest in

3d transition metals and are expected to decrease as one
goes to 4d, and 5d transition metals as the extent of
the d orbital increases. Thus electronic correlations are
expected to be weakest in 5d materials and these mate-
rials are expected to be metallic due to the larger spa-
tial extent of their d orbitals. However, recently sev-
eral 5d transition metal oxides like Sr2IrO4,6 Sr3Ir2O7,7

Ba2NaOsO6,8 have rather surprisingly been discovered
to show insulating behaviors. As one goes from 3d to 5d
transition metals the spin-orbit interaction also increases
which leads to an effective angular momentum Jeff being
a good quantum number as opposed to just the spin S.
The insulating state in Sr2IrO4 has in fact been suggested
to be a novel Mott-insulating ground state arising from
electron correlations among Jeff = 1/2 Ir4+ moments.9

Thus in 5d systems, the spin-orbit interactions and elec-
tron correlations are of comparable strength. Recently a
new layered iridate Na2IrO3 has been studied theoreti-
cally and has been suggested to be a Jeff = 1/2 system
arising from strong spin-orbit interactions.10 Correlations
between these effective spins has been predicted to lead
to an antiferromagnetic insulating state.10,11 The hexag-
onal arrangement of the Ir4+ moments in Na2IrO3 was
also suggested to be a realization of the Kane-Mele model

FIG. 1: (Color online) The crystallographic structure of
Na2IrO3. The Na, Ir, and O atoms are shown as blue, red,
and yellow spheres, respectively. (a) The view perpendicular
to the c axis showing the layered structure with layers contain-
ing only Na atoms alternating slabs of NaIr2O6 stacked along
the c axis. The IrO6 octahedra are shown in pink with the
(red) Ir atoms sitting in the middle. (b) One of the NaIr2O6

slabs viewed down the c axis to highlight the honeycomb lat-
tice of Ir atoms within the layer. The Na atoms occupy voids
between the IrO6 octahedra.

which was put forward for quantum spin Hall (QSH)
effect in the honeycomb lattice of Graphene.12,13 Thus
Na2IrO3 was proposed to be a topological insulator and
a possible candidate to show the QSH effect at room
temperature.10 Recently A2IrO3 (A = Li, Na) materials
have also been suggested19 to be experimental realiza-
tion of the Kitaev model of spins S = 1/2 sitting on a
hexagonal lattice.20 The model consists of highly frus-
trated in-plane magnetic interactions which can lead to
the spin liquid ground state. Despite enormous theoret-
ical interest however, to the best of our knowledge, no
experimental information is reported for this material.
Herein we report synthesis, structure, electrical trans-

port, magnetic, and thermal properties of single crys-

Na2IrO3

Na

Ir
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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FIG. 3: (Color online) Examples of the structural units
formed by 90◦ TM-O-TM bonds and corresponding spin-
coupling patterns. Grey circles stand for magnetic ions, and
small open circles denote oxygen sites. (a) Triangular unit cell
of ABO2-type layered compounds, periodic sequence of this
unit forms a triangular lattice of magnetic ions. The model
(3) on this structure is a realization of a quantum compass
model on a triangular lattice: e.g., on a bond 1-2, laying per-
pendicular to x-axis, the interaction is Sx

1 Sx
2 . (b) Hexagonal

unit cell of A2BO3-type layered compound, in which magnetic
ions (B-sites) form a honeycomb lattice. (Black dot: nonmag-
netic A-site). On an xx-bond the interaction is Sx

i Sx
j , etc. For

this structure the model (3) is identical to the Kitaev model.

model on a honeycomb lattice [26]. It shows a number
of fascinating properties such as anyonic excitations with
exotic fractional statistics, topological degeneracy, and,
in particular, it is relevant for quantum computation [18].
This generated an enormous interest in a possible realiza-
tion of this model in real systems, with current proposals
based on optical lattices [27]. Here we outline how to
“engineer” the Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90◦

bonds together with “compass” interactions that follow
from Eq. (3). Such a structure is common for a num-
ber of oxides, e.g., layered compounds ABO2 (where A
and B are alkali and TM ions, respectively). The trian-
gular lattice of magnetic ions in an ABO2 structure can
be depleted down to a honeycomb lattice (by periodic
replacements of TM ions with non-magnetic ones). One
then obtains an A2BO3 compound, which has a hexago-
nal unit shown in Fig. 3(b). There are three nonequiva-
lent bonds, each being perpendicular to one of the cubic
axes x, y, z. Then, according to Eq. (3) the spin coupling,
e.g., on a (x)-bond is of Sx

i Sx
j type, precisely as in the

Kitaev model. The honeycomb lattice provides a par-
ticularly striking example of new physics introduced by
strong SO coupling: the Heisenberg model is converted
into the Kitaev model with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-
one Ru4+ with spin one-half Ir4+ ions, one may realize a
strongly spin-orbit coupled Mott insulator with low en-
ergy physics described by the Kitaev model.

“Weak” ferromagnetism of Sr2IrO4.– As an example
of a spin-orbit coupled Mott insulator, we discuss the
layered compound Sr2IrO4, a t2g analog of the undoped
high-Tc cuprate La2CuO4. In Sr2IrO4, a square lattice
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FIG. 4: The spin canting angle φ (in units of α) as a function
of the tetragonal distortion parameter θ. Inset shows a sketch
of an IrO2-plane. The oxygen octahedra are rotated by an
angle ±α about z-axis forming a two sublattice structure. In
the cubic case, θ ! π/5, one has φ = α exactly. The spin-flop
transition from the in-plane canted spin state to a collinear
Néel ordering along z-axis occurs at θ = π/4.

of Ir4+ ions is formed by corner-sharing IrO6 octahe-
dra, elongated along the c-axis and rotated about it by
α ! 11◦ [19] (see Fig. 4). The compound undergoes a
magnetic transition at ∼ 240 K displaying a weak FM,
which can be ascribed to a Dzyaloshinsky-Moriya (DM)
interaction. The puzzling fact is that “weak” FM mo-
ment is in fact unusually large, MFM ! 0.14µB [20] which
is two-orders of magnitude larger than that in La2CuO4

[29]. A simple estimate gives a spin canting angle φ ! 8◦

which is close to α, i.e., the ordered spins seem to rigidly
follow the staggered rotations of octahedra. Here we
show that the strong SO coupling scenario gives a natural
explanation of this observation.

We first show the dominant part of the Hamiltonian
for Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find:

H = J #Si · #Sj + JzS
z
i Sz

j + #D ·
[

#Si × #Sj

]

. (4)

Here, the isotropic coupling J = ν1(t2s − t2a), where
ts = sin2 θ + 1

2 cos2 θ cos 2α, and ta = 1
2 cos2 θ sin 2α.

The second and third terms describe the symmetric and
DM anisotropies, with Jz = 2ν1t2a, #D = (0, 0,−D), and
D = 2ν1tsta. [For α = 0, these terms vanish and we
recover J1-term of the 180◦ result (2)]. As it follows
from Eq. (4), the spin canting angle is given by a ratio
D/J ! 2ta/ts ∼ 2α which is independent of λ, and is
solely determined by lattice distortions. This explains
the large spin canting angle φ ∼ α in Sr2IrO4.

As in the case of weak SO coupling [30], the Hamilto-
nian (4) can in fact be mapped to the Heisenberg model
#̃Si · #̃Sj where operators #̃S are obtained by a staggered

rotation of #S around the z-axis by an angle ±φ, with
tan(2φ) = D/J . Thus, at JH = 0, there is no true mag-
netic anisotropy. Once JH -corrections are included, the
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5d orbitals of Ir4+: large spin-orbit coupling
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Strong Coupling Limit
the Kitaev Model ?
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.

Acknowledgments

Discussions with S. Trebst are gratefully acknowl-
edged. YS acknowledges support from Alexander von
Humboldt foundation. SM acknowledges support from
the Erasmus Mundus Eurindia Project.

1 A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
2 H. Jiang, Z. Gu, X. Qi, and S. Trebst, arXiv:1101.1145
(2011).

3 A. Stern, Nature 464, 187 (2010).
4 M. Storni and R. H. Morf, Phys. Rev. B 83, 195306 (2011).
5 Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

6 C. Zhang et al, Proc. Natl. Acad. Sci. USA 104, 18415
(2007); S. Dusuel, K. P. Schmidt, and J. Vidal, Phys. Rev.
Lett. 100, 177204 (2008).

7 G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

8 K. S. Tikhonov, M. V. Feigelḿan, and A. Yu. Kitaev, Phys.
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy〉-orbital, lz = 0, (middle) and
spin down one in (|yz〉 + i|xz〉) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy〉 and |xz〉 orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1
#Si · #Sj + J2(#Si · #rij)(#rij · #Sj) , (2)

where #Si is the S = 1/2 operator for isospins (referred to
as simply spins from now on), #rij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 $ 1
and ν2 $ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz〉 and |yz〉 orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy〉-orbital, lz = 0, (middle) and
spin down one in (|yz〉 + i|xz〉) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy〉 and |xz〉 orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1
#Si · #Sj + J2(#Si · #rij)(#rij · #Sj) , (2)

where #Si is the S = 1/2 operator for isospins (referred to
as simply spins from now on), #rij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 $ 1
and ν2 $ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz〉 and |yz〉 orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy〉-orbital, lz = 0, (middle) and
spin down one in (|yz〉 + i|xz〉) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy〉 and |xz〉 orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1
#Si · #Sj + J2(#Si · #rij)(#rij · #Sj) , (2)

where #Si is the S = 1/2 operator for isospins (referred to
as simply spins from now on), #rij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 $ 1
and ν2 $ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz〉 and |yz〉 orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

"σi. "σj − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data
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FIG. 3: (Color online) Examples of the structural units
formed by 90◦ TM-O-TM bonds and corresponding spin-
coupling patterns. Grey circles stand for magnetic ions, and
small open circles denote oxygen sites. (a) Triangular unit cell
of ABO2-type layered compounds, periodic sequence of this
unit forms a triangular lattice of magnetic ions. The model
(3) on this structure is a realization of a quantum compass
model on a triangular lattice: e.g., on a bond 1-2, laying per-
pendicular to x-axis, the interaction is Sx

1 Sx
2 . (b) Hexagonal

unit cell of A2BO3-type layered compound, in which magnetic
ions (B-sites) form a honeycomb lattice. (Black dot: nonmag-
netic A-site). On an xx-bond the interaction is Sx

i Sx
j , etc. For

this structure the model (3) is identical to the Kitaev model.

model on a honeycomb lattice [26]. It shows a number
of fascinating properties such as anyonic excitations with
exotic fractional statistics, topological degeneracy, and,
in particular, it is relevant for quantum computation [18].
This generated an enormous interest in a possible realiza-
tion of this model in real systems, with current proposals
based on optical lattices [27]. Here we outline how to
“engineer” the Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90◦

bonds together with “compass” interactions that follow
from Eq. (3). Such a structure is common for a num-
ber of oxides, e.g., layered compounds ABO2 (where A
and B are alkali and TM ions, respectively). The trian-
gular lattice of magnetic ions in an ABO2 structure can
be depleted down to a honeycomb lattice (by periodic
replacements of TM ions with non-magnetic ones). One
then obtains an A2BO3 compound, which has a hexago-
nal unit shown in Fig. 3(b). There are three nonequiva-
lent bonds, each being perpendicular to one of the cubic
axes x, y, z. Then, according to Eq. (3) the spin coupling,
e.g., on a (x)-bond is of Sx

i Sx
j type, precisely as in the

Kitaev model. The honeycomb lattice provides a par-
ticularly striking example of new physics introduced by
strong SO coupling: the Heisenberg model is converted
into the Kitaev model with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-
one Ru4+ with spin one-half Ir4+ ions, one may realize a
strongly spin-orbit coupled Mott insulator with low en-
ergy physics described by the Kitaev model.

“Weak” ferromagnetism of Sr2IrO4.– As an example
of a spin-orbit coupled Mott insulator, we discuss the
layered compound Sr2IrO4, a t2g analog of the undoped
high-Tc cuprate La2CuO4. In Sr2IrO4, a square lattice

!/8 !/4 3!/8 !/2
"
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FIG. 4: The spin canting angle φ (in units of α) as a function
of the tetragonal distortion parameter θ. Inset shows a sketch
of an IrO2-plane. The oxygen octahedra are rotated by an
angle ±α about z-axis forming a two sublattice structure. In
the cubic case, θ ! π/5, one has φ = α exactly. The spin-flop
transition from the in-plane canted spin state to a collinear
Néel ordering along z-axis occurs at θ = π/4.

of Ir4+ ions is formed by corner-sharing IrO6 octahe-
dra, elongated along the c-axis and rotated about it by
α ! 11◦ [19] (see Fig. 4). The compound undergoes a
magnetic transition at ∼ 240 K displaying a weak FM,
which can be ascribed to a Dzyaloshinsky-Moriya (DM)
interaction. The puzzling fact is that “weak” FM mo-
ment is in fact unusually large, MFM ! 0.14µB [20] which
is two-orders of magnitude larger than that in La2CuO4

[29]. A simple estimate gives a spin canting angle φ ! 8◦

which is close to α, i.e., the ordered spins seem to rigidly
follow the staggered rotations of octahedra. Here we
show that the strong SO coupling scenario gives a natural
explanation of this observation.

We first show the dominant part of the Hamiltonian
for Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find:

H = J #Si · #Sj + JzS
z
i Sz

j + #D ·
[

#Si × #Sj

]

. (4)

Here, the isotropic coupling J = ν1(t2s − t2a), where
ts = sin2 θ + 1

2 cos2 θ cos 2α, and ta = 1
2 cos2 θ sin 2α.

The second and third terms describe the symmetric and
DM anisotropies, with Jz = 2ν1t2a, #D = (0, 0,−D), and
D = 2ν1tsta. [For α = 0, these terms vanish and we
recover J1-term of the 180◦ result (2)]. As it follows
from Eq. (4), the spin canting angle is given by a ratio
D/J ! 2ta/ts ∼ 2α which is independent of λ, and is
solely determined by lattice distortions. This explains
the large spin canting angle φ ∼ α in Sr2IrO4.

As in the case of weak SO coupling [30], the Hamilto-
nian (4) can in fact be mapped to the Heisenberg model
#̃Si · #̃Sj where operators #̃S are obtained by a staggered

rotation of #S around the z-axis by an angle ±φ, with
tan(2φ) = D/J . Thus, at JH = 0, there is no true mag-
netic anisotropy. Once JH -corrections are included, the

Na
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy〉-orbital, lz = 0, (middle) and
spin down one in (|yz〉 + i|xz〉) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy〉 and |xz〉 orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1
#Si · #Sj + J2(#Si · #rij)(#rij · #Sj) , (2)

where #Si is the S = 1/2 operator for isospins (referred to
as simply spins from now on), #rij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 $ 1
and ν2 $ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz

180o
(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz〉 and |yz〉 orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

"σi. "σj − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data
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FIG. 3: (Color online) Examples of the structural units
formed by 90◦ TM-O-TM bonds and corresponding spin-
coupling patterns. Grey circles stand for magnetic ions, and
small open circles denote oxygen sites. (a) Triangular unit cell
of ABO2-type layered compounds, periodic sequence of this
unit forms a triangular lattice of magnetic ions. The model
(3) on this structure is a realization of a quantum compass
model on a triangular lattice: e.g., on a bond 1-2, laying per-
pendicular to x-axis, the interaction is Sx

1 Sx
2 . (b) Hexagonal

unit cell of A2BO3-type layered compound, in which magnetic
ions (B-sites) form a honeycomb lattice. (Black dot: nonmag-
netic A-site). On an xx-bond the interaction is Sx

i Sx
j , etc. For

this structure the model (3) is identical to the Kitaev model.

model on a honeycomb lattice [26]. It shows a number
of fascinating properties such as anyonic excitations with
exotic fractional statistics, topological degeneracy, and,
in particular, it is relevant for quantum computation [18].
This generated an enormous interest in a possible realiza-
tion of this model in real systems, with current proposals
based on optical lattices [27]. Here we outline how to
“engineer” the Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90◦

bonds together with “compass” interactions that follow
from Eq. (3). Such a structure is common for a num-
ber of oxides, e.g., layered compounds ABO2 (where A
and B are alkali and TM ions, respectively). The trian-
gular lattice of magnetic ions in an ABO2 structure can
be depleted down to a honeycomb lattice (by periodic
replacements of TM ions with non-magnetic ones). One
then obtains an A2BO3 compound, which has a hexago-
nal unit shown in Fig. 3(b). There are three nonequiva-
lent bonds, each being perpendicular to one of the cubic
axes x, y, z. Then, according to Eq. (3) the spin coupling,
e.g., on a (x)-bond is of Sx

i Sx
j type, precisely as in the

Kitaev model. The honeycomb lattice provides a par-
ticularly striking example of new physics introduced by
strong SO coupling: the Heisenberg model is converted
into the Kitaev model with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-
one Ru4+ with spin one-half Ir4+ ions, one may realize a
strongly spin-orbit coupled Mott insulator with low en-
ergy physics described by the Kitaev model.

“Weak” ferromagnetism of Sr2IrO4.– As an example
of a spin-orbit coupled Mott insulator, we discuss the
layered compound Sr2IrO4, a t2g analog of the undoped
high-Tc cuprate La2CuO4. In Sr2IrO4, a square lattice
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FIG. 4: The spin canting angle φ (in units of α) as a function
of the tetragonal distortion parameter θ. Inset shows a sketch
of an IrO2-plane. The oxygen octahedra are rotated by an
angle ±α about z-axis forming a two sublattice structure. In
the cubic case, θ ! π/5, one has φ = α exactly. The spin-flop
transition from the in-plane canted spin state to a collinear
Néel ordering along z-axis occurs at θ = π/4.

of Ir4+ ions is formed by corner-sharing IrO6 octahe-
dra, elongated along the c-axis and rotated about it by
α ! 11◦ [19] (see Fig. 4). The compound undergoes a
magnetic transition at ∼ 240 K displaying a weak FM,
which can be ascribed to a Dzyaloshinsky-Moriya (DM)
interaction. The puzzling fact is that “weak” FM mo-
ment is in fact unusually large, MFM ! 0.14µB [20] which
is two-orders of magnitude larger than that in La2CuO4

[29]. A simple estimate gives a spin canting angle φ ! 8◦

which is close to α, i.e., the ordered spins seem to rigidly
follow the staggered rotations of octahedra. Here we
show that the strong SO coupling scenario gives a natural
explanation of this observation.

We first show the dominant part of the Hamiltonian
for Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find:

H = J #Si · #Sj + JzS
z
i Sz

j + #D ·
[

#Si × #Sj

]

. (4)

Here, the isotropic coupling J = ν1(t2s − t2a), where
ts = sin2 θ + 1

2 cos2 θ cos 2α, and ta = 1
2 cos2 θ sin 2α.

The second and third terms describe the symmetric and
DM anisotropies, with Jz = 2ν1t2a, #D = (0, 0,−D), and
D = 2ν1tsta. [For α = 0, these terms vanish and we
recover J1-term of the 180◦ result (2)]. As it follows
from Eq. (4), the spin canting angle is given by a ratio
D/J ! 2ta/ts ∼ 2α which is independent of λ, and is
solely determined by lattice distortions. This explains
the large spin canting angle φ ∼ α in Sr2IrO4.

As in the case of weak SO coupling [30], the Hamilto-
nian (4) can in fact be mapped to the Heisenberg model
#̃Si · #̃Sj where operators #̃S are obtained by a staggered

rotation of #S around the z-axis by an angle ±φ, with
tan(2φ) = D/J . Thus, at JH = 0, there is no true mag-
netic anisotropy. Once JH -corrections are included, the

Na
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3
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2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.
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Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

"σi. "σj − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data

Possible proximity of the Mott insulating Iridate Na2IrO3 to a topological phase:
Phase diagram of the Heisenberg-Kitaev model in a magnetic field
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Motivated by the recent experimental observation of a Mott insulating state for the layered Iridate Na2IrO3,
we discuss possible ordering states of the effective Iridium moments in the presence of strong spin-orbit coupling
and a magnetic field. For a field pointing in the �111� direction – perpendicular to the hexagonal lattice formed
by the Iridium moments – we find that a combination of Heisenberg and Kitaev exchange interactions gives rise
to a rich phase diagram with both symmetry breaking magnetically ordered phases as well as a topologically
ordered phase that is stable over a small range of coupling parameters. Our numerical simulations further
indicate two exotic multicritical points at the boundaries between these ordered phases.
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In the realm of condensed matter physics, spin-orbit cou-
pling has long been considered a residual, relativistic cor-
rection of minor relevance to the macroscopic properties of
a material. In recent years this perspective has dramatically
changed, especially due to the theoretical prediction and sub-
sequent experimental observation of fundamentally new states
of quantum matter, so-called topological insulators [1], that
are solely due to the effect of spin-orbit coupling. The topo-
logical insulators experimentally realized so far are semicon-
ductors, whose physical properties can be largely captured by
band theory of non-interacting electrons. It is an interesting
challenge, for both theory and experiment, to identify an even
broader class of materials where this physics plays out even in
the presence of interactions and strong correlations [2]. Good
candidate materials for the latter are the Iridates [3, 4]. These
5d transition metal oxides are prone to exhibit electronic cor-
relations and form (weak) Mott insulators, while the relatively
large mass of the Iridium ions (Z = 77) gives rise to a com-
parably strong spin-orbit coupling, which has been found to
be as large as λ ≈ 400 meV [5]. The most common va-
lence of the Iridium ions in these materials is Ir4+. The d-
orbitals of this 5d5 configuration are typically split by the sur-
rounding crystal field, and for the octahedral geometry of the
IrO6 oxygen cage, result in an orbital configuration where five
electrons occupy the lowered, threefold degenerate t2g level.
Spin-orbit coupling will further lift this degeneracy of the t2g

orbitals and for strong coupling the effective l = 1 orbital
angular momentum [6] is combined with the s = 1/2 spin
degree of freedom carried by the hole of this partially filled
t2g orbital configuration. This leaves us with two Kramers
doublets of total angular momentum j = 3/2 and j = 1/2,
of which the former is of lower energy and fully occupied by
four electrons, while the partial filling of the latter gives rise
to an effective spin-1/2 degree of freedom.

In this manuscript we focus on the Iridate Na2IrO3, in
which NaIr2O6 slabs are stacked along the crystallographic
c-axis, and the Ir4+ ions in the layers form a hexagonal lat-
tice [4]. Recent measurements of the magnetic susceptibil-

ity provide evidence of effective spin-1/2 moments and mag-
netic correlations below TN ≈ 15 K indicating that Na2IrO3

is indeed a Mott insulator [4]. Theoretically, it has been ar-
gued [7, 8] that the interactions between the effective Iridium
moments in the Mott regime are captured by a combination
of isotropic and highly anisotropic exchanges, which can be
tracked back to the spin and orbital components of the effec-
tive momenta. A microscopic Hamiltonian interpolating be-
tween these two types of exchanges is given by

HHK = (1− α)
�

�i,j�

�σi · �σj − 2α
�

γ−links

σγ
i σ

γ
j , (1)

where the σi denote the effective spin-1/2 moment of the Ir4+
ions, γ = x, y, z indicates the three different links of the
hexagonal lattice, and 0 ≤ α ≤ 1 parametrizes the relative
coupling strength of the isotropic and anisotropic exchange
between the moments. For α = 0 the Hamiltonian reduces
to the ordinary Heisenberg model, while in the opposite limit
of highly anisotropic exchanges (α = 1) the system corre-
sponds to the Kitaev model [9]. The latter is known to exhibit
a gapless spin-liquid ground state (for equal coupling along
the links) that can be gapped out into a topological phase with
non-Abelian quasiparticle excitations by certain time-reversal
symmetry breaking perturbations [9]. One such perturbation
is a magnetic field pointing in the �111� direction, perpendic-
ular to the honeycomb layer

HHK+h = HHK −
�

i

�h · �σi . (2)

The main result of our manuscript is the rich phase diagram
of this model, shown in Fig. 1. Besides two conventional,
magnetically ordered phases we find a topologically ordered
phase and two multicritical points, which we will discuss in
detail in the remainder of the manuscript.

Numerical simulations.– We determine the ground-state
phase diagram of Hamiltonian (2) by extensive ‘quasi-2D’
density-matrix renormalization group (DMRG) [10] calcula-
tions on systems with up to N = 64 sites. In particular,
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by Ir ions, there are three distinct types of NN bonds
referred to as γ(= x, y, z) bonds because they host the
Ising-like J1 coupling between the γ components of spins
[see Fig. 1(a)]. The first part of Eq. (1) is thus nothing
but the FM Kitaev model, and the J2 term is a conven-
tional AF Heisenberg model. The exchange constants J1
and J2 are derived from a multiorbital Hubbard Hamilto-
nian consisting of the local interactions and the hopping
term. The latter describes tpdπ hopping between Ir 5d
and O 2p orbitals via the charge-transfer gap ∆pd, and
a direct dd overlap t′ between NN Ir t2g orbitals [15].
We find J1 = (η1 + 2η2) and J2 = (η2 + η3). Hereafter,
we use 4t2/9Ud as our energy unit, where t = t2pdπ/∆pd,
and Ud stands for the Coulomb repulsion on the same
d orbitals. There are three physically distinct virtual
processes that determine the set of η parameters and
thus the ratio J2/J1. The η1 = 6JH

Ud−3JH

Ud

Ud−JH
term ap-

pears due to the multiplet structure of the excited lev-
els induced by Hund’s coupling JH [8]. The processes
when two holes meet at the same oxygen site (and ex-
perience Up repulsion) and when they are cyclically ex-
changed around a Ir2O2 square plaquette bring together
a η2 = Up

∆pd+Up/2
Ud

∆pd
contribution. Further, a direct dd-

hopping t′ between NN Ir t2g orbitals contributes to the
Heisenberg term with exchange coupling η3 = (t′/t)2. It
is difficult to estimate the values of all the parameters
involved; however, we expect η1 to be the largest, of the
order of 1, and η2,3 < 1.
We parametrize the exchange couplings as J1 = 2α and

J2 = 1−α and study the properties of Kitaev-Heisenberg
model (1) in the whole parameter space 0 ≤ α ≤ 1.
Phase diagram.– At α = 0, we are left with the Heisen-

berg model exhibiting the Néel order with a staggered
moment reduced to 〈Sz〉 % 0.24 [16]. The opposite limit,
α = 1, corresponds to the exactly solvable Kitaev model
with a short-range spin-liquid state [4], where spin corre-
lation functions are identically zero beyond the NN dis-
tance and, on a given NN bond, only the components of
spins matching the bond type are correlated [5].
Interestingly, the model is exactly solvable at α = 1

2 ,
too. At this point Eq. (1) reads, e.g., on a z-type bond,

as H(z)
ij = 1

2 (S
x
i S

x
j + Sy

i S
y
j − Sz

i S
z
j ). This anisotropic

Hamiltonian can be mapped to that of a simple Heisen-
berg model on all bonds simultaneously [17]. Specifically,
we divide the honeycomb lattice into four sublattices [see
Fig. 1(b)] and introduce the rotated operators S̃: While
S̃ = S in one of the sublattices, S̃ on the remaining
three sublattices differs from the original S by the sign
of two appropriate components, depending on the sub-
lattice they belong to. In the new basis, Eq. (1) takes
the form

H(γ)
ij = −2(2α− 1) S̃γ

i S̃
γ
j − (1− α) S̃i ·S̃j . (2)

At α = 1
2 , the first term vanishes and we obtain the

isotropic, both in spin and real spaces, Heisenberg model

H(γ)
ij = − 1

2 S̃i ·S̃j with FM coupling. Thus, at α = 1
2 ,
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FIG. 1: (a) Three types of bonds in the honeycomb lat-
tice and Kitaev part of the interaction. (b) The supercell
of the four-sublattice system enabling the transformation of
the model (1) into the Hamiltonian of a simple ferromagnet
at α = 1

2 . This supercell with periodic boundary conditions
applied was used as a cluster for the exact diagonalization.
(c) Schematic phase diagram: With increasing α, the ground
state changes from the Néel AF order to the stripy AF state
(being a fluctuation-free exact solution at α = 1

2 ) and to the
Kitaev spin liquid. See the text for the critical values of α.

i.e., at J1 = 2J2, the exact ground state of model (1)
is a fully polarized FM state in the rotated basis. Now
consider the FM array of spins with, e.g., 〈S̃z〉 = 1/2,
and map it back to the original spin basis. The resulting
order corresponds to a stripy AF pattern of the original
magnetic moments depicted in Fig. 1(c). Note that such
a stripy order, despite being of AF type, is fluctuation-
free at α = 1

2 and would thus show a fully saturated AF
order parameter.
The above discussion suggests three possible ground

state phases of the model (1) as shown in Fig. 1(c): (i)
Néel order near α = 0, (ii) stripy AF order around α = 1

2 ,
and (iii) a spin-liquid phase close to α = 1.
We first consider the ordered phases. Except special

cases of α = 0 and α = 1
2 just discussed, the Hamil-

tonian (1) does not have any spin-rotational symmetry.
However, a spurious SU(2) continuous symmetry and as-
sociated pseudo-Goldstone mode appear in a linear spin-
wave (SW) description. As in the case of a similar model
on a cubic lattice [18], we find that quantum fluctuations
restore the underlying discrete (hexagonal) symmetry of
the model, selecting thereby the direction of ordered mo-
ments along one of the cubic axes (of IrO6 octahedra),
and also open a gap in SW spectra. Considering the
quantum energy cost for rotating the order parameter by
a small angle away from a cubic axis, we find a quantum
SW gap ∆ % 2

α (α− 1
2 )

2 for α ∼ 1
2 .
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A=Y, Ln and Ir reside on the inter-penetrating two 
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Fig. 1. Corner-sharing lattices, clockwise from top left: the pyrochlore lattice. A projection of the lattice of the

gadolinium gallium garnet (GGG), which consists of two separate, interpenetrating sublattices of corner-sharing

triangles. The Kagome lattice.A side-on view of the trilayer lattice of SCGO, consisting of triangles and tetrahedra.

It can be thought of as two Kagome layers coupled by an intermediate triangular layer (circles).

frustrated SCGO, GGG, Kagome, and pyrochlore lattices (see Fig. 1) [4].2

Geometric frustration arises when the arrangement of spins on a lattice precludes satisfying all

interactions at the same time. The simplest case is provided by a group of three anti-ferromagnetically

coupled spins: once two spins point in opposite directions, the third one cannot be antiparallel to

both of them. Geometrically frustrated magnets are considered to be in a separate class both from

unfrustrated and from disordered magnets (spin glasses and the like). This article concentrates on

continuous, classical, disorder-free geometrically frustrated magnetism, although discrete, quantum,

and disordered models are also briefly discussed.

The popularity of geometrically frustrated magnets stems from the very rich behaviour they present.

For example, magnetic analogues of solid, glassy, liquid, and even ice phases have been identified in

this class of magnets, which is increasingly seen as providing a stage for studying generic questions in

many-body physics in a set of well-characterized compounds described by simple model Hamiltonians.

A wide range of experimental probes are available for their study — including neutron and X-ray

scattering, muon spin rotation (µSR), nuclear magnetic resonance (NMR), and susceptibility and heat

capacity measurements—which yield complementary information. For instance, recently begun NMR

measurements on SCGO are providing information about the local physics at the different inequivalent

sites of the magnetic Cr ions [5], complementing our knowledge obtained from the probes from which

such local information is harder to extract [4]. In the following, however, only cursory reference will

be made to experiment, since a number of detailed experimental reviews exist, to which the reader is

2 Several of these experiments, as well as related theoretical work, are treated in other articles of this volume.

©2001 NRC Canada
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 81 and 82. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 79.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC λ splits the t2g spinful manifold into a higher energy Jeff = 1/2

doublet and a lower Jeff = 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

Jeff = 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the Jeff = 3/2 levels are split and mixed

with the Jeff = 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a Jeff = 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.47 and Yang et al.,52 it is instructive to

consider their structure at the Γ point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found47 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those
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kinetic Hamiltonian, Eq. (3), has been supplemented by small next nearest neighbor hopping). The
shaded regions harbor antiferromagnetic (AF) order, which can be of the AIAO type (blue) or a related
type (orange). M = Metal, I/M-AF= Insulating/Metallic AF. The evolution of the electronic spectrum
along the vertical dashed line is shown in Figure 5(b).

the AIAO phase is entered. Other types of magnetic order, e.g. ferromagnetism, can also induce

Weyl points, or relatives of them.57,95

Many signatures of the WSM have been suggested. We have already mentioned the surface

Fermi arcs. Without disorder, the low frequency optical conductivity scales as σ(ω) ∼ ω. Though

a pair of opposite Weyl points mediates an intrinsic Hall conductivity,96 this sums to zero given

the cubic symmetry of the AIAO state, which dictates at least 8 nodes. However, it was suggested

that a zero field Hall conductivity could be induced by appropriate strain.96 Interesting transport

phenomena are predicted, related to the Adler-Bell-Jackiw anomaly of Weyl fermions, in parallel

electric and magnetic fields.97 In general, taking into account the interplay of various types of

disorder, scattering, and interactions in the WSM makes modeling transport challenging.

A nice point of consistency of the proposed AIAO magnetic order is that it is characterized

on Landau symmetry grounds by a simple Ising order parameter, for which a continuous thermal

transition is allowed. As remarked earlier, the thermal MITs indeed appear continuous in the ex-

periments. Adding finite temperature to the simple mean-field Hubbard model calculation further

corroborates the expectation from Landau reasoning, showing that the magnetic transition is con-

tinuous, and its critical temperature grows with U , following the behavior of the charge excitation

gap.92 It may be interesting to study the corresponding thermal and quantum phase transitions in

the future, for which the mean-field analysis may be inadequate.
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FIG. 5. a) Cartoon of two opposite-chirality Weyl points in the three dimensional Brillouin zone (BZ),

and the associated Fermi arc surface states. The green sheets correspond to the top and bottom surface-

BZs. b) Spectra for the quadratic band touching SM (due to inversion and TRS, all bands are two-fold

degenerate), WSM, and insulating AF (I-AF), obtained using the Hamiltonian Eq. (3) supplemented

with small second nearest hopping.
48,92

The red circle shows one Weyl point at the Fermi level (horizontal

dashed line).

4. The role of many-body effects

In the preceding, we considered correlations only at the mean field level. This is expected on

general grounds to be qualitatively correct for describing many phenomena within the phases so

obtained. For example, in fully gapped states such as the TI or gapped AIAO phase, the gap cannot

be broken by any small perturbation. The WSM is also stable to interactions, which are irrelevant

(marginally for long-range Coulomb) in the renormalization group sense, though they may have

important transport consequences. A cellular dynamical mean field theory98,99 (CDMFT) study

bears out the robustness of the mean field treatment, though it shows that correlations may yet

induce new phases: an axion insulator state appears in the CDMFT analysis51,94 of Eq. (3) (plus

Hubbard U) though it does not arise at the Hartree-Fock level. For these calculations, a convenient

formulation of the Z2 topological invariant in terms of the interacting electron Green’s function64

was employed.

Other qualitative effects of correlations exist. Most obviously, it is likely that at least some of

the quantum phase transitions indicated in Figure 4 are not fully captured by mean-field theory.

Excitations and collective modes, which may be measured in the future by resonant inelastic x-ray
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FIG. 5: Brillouin zone of the FCC lattice with locations of

Dirac points (shown by + signs denoting their ”positive” chi-

ral charges) as found by our LSDA+U+SO calculation with

U=1.5 eV for Y2Ir2O7.

extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:

HD =
3�

i=1

vi · qσi (1)

, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =

±
��3

i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2

12h
|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:

HD =
3�

i=1

vi · qσi (1)

, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =

±
��3

i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2

12h
|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:

HD =
3�

i=1

vi · qσi (1)

, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =
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i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2

12h
|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.
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momentum k = k0 + q is:
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tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =
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i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2
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|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:

HD =
3�

i=1

vi · qσi (1)

, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =

±
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i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2

12h
|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:

HD =
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, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =
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i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2

12h
|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
Berry flux, is defined as F = ∇k × A. Now consider
energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
points, hence the bulk Fermi surface is a collection of
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
by a magnetic field.

Topological Dirac semi-metal

The effective Hamiltonian in the vicinity of a Dirac
momentum k = k0 + q is:
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, where energy is measured from the chemical poten-
tial, and σi are the three Pauli matrices. The three ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is ∆E =
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i=1(vi · q)2. Note, by inversion symmetry, there
must exist Dirac points at both k0 and −k0, whose ve-
locity vectors are reversed. One can assign a chirality
(or chiral charge) c = ±1 to the fermions defined as
c = sign(v1 · v2 × v3), so Dirac points related by in-
version have opposite chirality. Note, since the 2 × 2
Pauli matrices appear, our Dirac particles are two com-
ponent fermions. In contrast to regular four component
Dirac fermions, it is not possible to introduce a mass gap.
The only way to eliminate them is if they meet with an-
other 2 component Dirac dispersion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topo-
logical objects. We note that near each L point there
are three Dirac points related by the three fold rotation,
which have the same chiral charge. Fig.5 denotes those
points as ”+” dots. Another three Dirac points with op-
posite chirality, related by inversion. Thus, there are 24
Dirac points in the whole Brillouin zone. Since they are
all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
state with power law forms for various properties, which
will be described in more detail elsewhere. For example,
the density of states N(E) ∝ E

2. The small density of
states makes it an electrical insulator at zero tempera-
ture. For a single node with isotropic velocity v, the a.c.
conductivity in the free particle limit of the clean system
is σ(Ω) = e2
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|Ω|
v tanh |Ω|/4kBT .

Surface States: We now discuss surface states that
are associated with the presence of the two component
Dirac fermions. We first note that they behave like
’magnetic’ monopoles of the Berry flux whose charge
is given by the chirality.The Berry connection, a vec-
tor potential in momentum space, is defined by A(k) =�N

n=1 i�unk|∇k|unk� where N is the number of occupied
bands. As usual, an analog of the magnetic field, the
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energy eigenstates at the Fermi energy (taken to be at
E = 0). In the bulk, this corresponds to the set of Dirac
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extension of the Mott insulator. However, a closer look at
the parities reveals that a phase transition has occurred.
A pair of levels with opposite parity are exchanged at
the L points. Near this crossing point it can readily be
argued that only one of the two adjacent phases can be
insulating[30]. Since the large U phase is found to be
smoothly connected to a gapped Mott phase, it is reason-
able to assume the smaller U phase is the non–insulating
one. This is also borne out by the LSDA+U+SO band
structure. A detailed analysis perturbing about this tran-
sition point (the k.p expansion see [30]) allows us to show
that a Dirac semi-metal is expected for intermediate U ,
with 6 Dirac nodes about every L point. Indeed, in the
LSDA+U+SO band structure, we find a 3 dimensional
Dirac crossing located within the ΓXL plane of the Bril-
louin zone. This is illustrated in Fig.5 and corresponds
to the k–vector (0.52, 0.52, 0.3)2π/a. There also are two
additional Dirac points in the proximity of the point L
related by symmetry. When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Dirac phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Dirac points but in proximity
to a Mott insulating state. Both phases can be switched
to a normal metal if Ir moments are collinearly ordered
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The only way to eliminate them is if they meet with an-
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logical objects. We note that near each L point there
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all related by symmetry, they are at the same energy.
The chemical potential is fixed to be at the Dirac point
energy as verified in the microscopic calculation. The
Fermi velocities at the Dirac point are found to be typ-
ically an order of magnitude smaller than in graphene.
We briefly note that this Dirac semimetal is a critical
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conductivity in the free particle limit of the clean system
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Figure 1.15: BZ of a TWS, with two Weyl nodes of opposite chirality. We show the

Fermi arcs on surfaces perpendicular to the (100) direction. The planes correspond to

the surface BZs of the top and bottom real-space boundaries. The arcs join projections

of the bulk Weyl points.

by the region. In particular, if the cylinder for the region encloses Weyl points in pairs of

opposite chirality, no arcs will be produced or annihilated by the region. In our minimal

model, the Weyl nodes occur along the z-axis, this will occur for a surface parallel to the

xy-plane.

1.3 Outline

The thesis can be divided in three main parts depending on the type of quantum order

under study. In Chapters 2 and 3, we discuss gapless quantum spin liquids with

a Fermi surface of spinons. Specifically, Chapter 2 reviews the slave-rotor formulation,

and the corresponding description of the Mott transition from a metal to a spin liquid

insulator. Chapter 3 focuses on the universal transport (both electric and thermal)

properties near such a quantum critical Mott transition. The results are based on a

paper currently in press in Physical Review B[47].

The second part deals with the interplay between non-trivial band topology

and correlations in a Hubbard model for electrons on the pyrochlore lattice, motivated

by the pyrochlore iridates family of transition metal oxides (Chapter 4). Topological
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FIG. 5. a) Cartoon of two opposite-chirality Weyl points in the three dimensional Brillouin zone (BZ),

and the associated Fermi arc surface states. The green sheets correspond to the top and bottom surface-

BZs. b) Spectra for the quadratic band touching SM (due to inversion and TRS, all bands are two-fold

degenerate), WSM, and insulating AF (I-AF), obtained using the Hamiltonian Eq. (3) supplemented

with small second nearest hopping.
48,92

The red circle shows one Weyl point at the Fermi level (horizontal

dashed line).

4. The role of many-body effects

In the preceding, we considered correlations only at the mean field level. This is expected on

general grounds to be qualitatively correct for describing many phenomena within the phases so

obtained. For example, in fully gapped states such as the TI or gapped AIAO phase, the gap cannot

be broken by any small perturbation. The WSM is also stable to interactions, which are irrelevant

(marginally for long-range Coulomb) in the renormalization group sense, though they may have

important transport consequences. A cellular dynamical mean field theory98,99 (CDMFT) study

bears out the robustness of the mean field treatment, though it shows that correlations may yet

induce new phases: an axion insulator state appears in the CDMFT analysis51,94 of Eq. (3) (plus

Hubbard U) though it does not arise at the Hartree-Fock level. For these calculations, a convenient

formulation of the Z2 topological invariant in terms of the interacting electron Green’s function64

was employed.

Other qualitative effects of correlations exist. Most obviously, it is likely that at least some of

the quantum phase transitions indicated in Figure 4 are not fully captured by mean-field theory.

Excitations and collective modes, which may be measured in the future by resonant inelastic x-ray
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SUPPLEMENTARY MATERIAL

Representations of the Hamiltonian

In this section, we provide more information about
the different representations used in the main text. The
Hamiltonian reads

H0(k) = α1k
2 + α2(�k · �J)2 + α3(k
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2M0
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d4(k)Γ4 + d5(k)Γ5

2Mc
. (9)

The first line uses the conventional Luttinger parameters
(α1,2,3) in the j = 3/2 matrix representation, and the
second line is the form used in the main text. For the
purpose of computations, it is convenient to introduce
the Clifford gamma matrices (Γa) in the third line as in
the paper by Murakami et al. [23].

�a(k) =
da(k)

2m
,

d1(k) = −
√
3kykz , d2(k) = −
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(2k2z − k

2
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2
y). (10)

It is straightforward to relate the masses used in the main
text and the Luttinger αi parameters. This can be done
by expressing the spin operators in terms of gamma ma-
trices, using the equalities
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√
3

2
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1

2
(Γ23 − Γ14) ,

Jy = −
√
3
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1

2
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Jz = −Γ34 −
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2
Γ12 , (11)

where Γab =
1
2i [Γa,Γb] is used.

Weyl semimetal

Here we consider how the Weyl semimetal appears,
taking for simplicity the case δ = 0, θ1 < θ < θ2. It is
straightforward to generalize this to the cases with δ �= 0.
For convenience, we set m = 1/2. For �k = (0, 0, kz), the
Hamiltonian in the presence of the Zeeman field, h (along
the same axis), becomes

H(kz ẑ) = k
2
z(
5

4
− J

2
z )−H(cos(θ)Jz + sin(θ)J3

z ).

Clearly, the energy eigenstates can be labeled by both
kz and Jz = ±1/2,±3/2. One can readily see that level
crossings occur between the two bands with Jz = 1/2 and
Jz = −3/2. In the vicinity of these crossing points, the
other states with Jz = −1/2,+3/2 can be discarded, and
the Hamiltonian projected onto the two level subspace
of low energy states. We introduce Pauli matrices in
this subspace, so that τz = |

1
2 ��

1
2 | − | − 3
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3
2 |, τ

+ =
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2 |, which is the identity matrix in the 2×2 subspace.

We define two energy parameters, �−3/2 = H( 32 cos(θ) +
27
8 sin(θ)) and �1/2 = −H( 12 cos(θ) +

1
8 sin(θ)). Then the

reduced Hamiltonian becomes

H2 = �+τ
0 + (�− + d5(k))τ

z + d4(k)τ
x − d3(k)τ

y
,

�± = (�−3/2 ± �1/2)/2. (12)

There are level crossing points at kx = ky = 0 and kz =
±K, with K =

√
�−. We expand around these points,

letting kx = px, ky = py and kz = ±K + pz, which gives
H2(±Kẑ + �p) = �+τ0 +H

±
2 (�p), with, to leading order in

�p,

H
±
2 = ∓v pzτ

z + d4(p)τ
x + d3(p)τ

y
,

with v = 2
√
�−. The energy spectrum is

E(p) = ±

�
v2p2z +

3

4
(p2x + p2y)

2.

We see that the electrons disperse linearly along the
field and quadratically orthogonal to it, near the touch-
ing point. This can be understood as a consequence
of 4-fold rotational symmetry around the z axis. Since
|Jz� → e

iπJz/2|Jz� under such a rotation, the operators
τ± carry a net angular momentum of ±2, and therefore
must couple to the “d-wave” combinations of px and py,
which are precisely given by d3(p) and d4(p).

Though the quadratic dispersion normal to the field
is due to symmetry, the touching itself has a topological
character. To see it, it is convenient to define the reduced
Hamiltonian in the form

H
±
2 = �b±(�p) · �τ , (13)
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y
,

with v = 2
√
�−. The energy spectrum is

E(p) = ±

�
v2p2z +

3

4
(p2x + p2y)

2.

We see that the electrons disperse linearly along the
field and quadratically orthogonal to it, near the touch-
ing point. This can be understood as a consequence
of 4-fold rotational symmetry around the z axis. Since
|Jz� → e

iπJz/2|Jz� under such a rotation, the operators
τ± carry a net angular momentum of ±2, and therefore
must couple to the “d-wave” combinations of px and py,
which are precisely given by d3(p) and d4(p).

Though the quadratic dispersion normal to the field
is due to symmetry, the touching itself has a topological
character. To see it, it is convenient to define the reduced
Hamiltonian in the form

H
±
2 = �b±(�p) · �τ , (13)

�J = (Jx, Jy, Jz) are  J=3/2, 4 x 4 matrices

Quadratic band touching of two 
doubly-degenerate bands

B. J. Yang, Y. B. Kim
(2010)



Time-Reversal Symmetry Breaking
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Hfield = C1(HxJx +HyJy +HzJz) + C2(HxJ
3
x +HyJ

3
y +HzJ

3
z )

Hmag order = D1({kx, ky}Vz + {ky, kz}Vy + {kz, kx}Vy)

+D2(JxJyJz + JzJyJx)

Weyl Points from Luttinger Parameters

June 29, 2012

Here we use a fairly simple k · p Hamiltonian to capture many interesting
phases and properties of the pyrochlores, most notably being all-in/all-out mag-
netic order. The semi-metal, Weyl, and insulating phases are also described, and
the effect of magnetic field and potentially strain can also be captured.

We begin by considering four-band k ·p Hamiltonians and examine the effect
of a time-reversal breaking ‘monopole’ term which is the nontrivial one dimen-
sional representation of the octahedral (O) group. This is A2 in Fig. 1. For
completeness, we also examine the effect of other terms quadratic in k, one of
which is also odd under time-reversal symmetry.

1 All-in/all-out order

The monopole term may serve as an order parameter for the all-in, all-out spin
configuration, in which all the spins of a pyrochlore tetrahedron point in or
all out. Both the spin configuration and monopole term transform the same
under physical transformations, most notable being time reversal; moreover,
both are even under inversion, odd under certain C2 rotations. (Note: not C2

4 ,
but two-fold rotation about (−1, 1, 0) for example).

2 Representing Hermitian operators in terms of

spin operators

Consider the generators of the spin-3/2 representation:

Jx =





0
√
3
2 0 0√

3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0




, Jy =





0 −i
√
3
2 0 0

i
√
3
2 0 −i 0

0 i 0 −i
√
3
2

0 0 i
√
3
2 0




, Jz =





3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2





The 16 Hermitian 4× 4 matrices can be expressed as

1, Jx, Jy, Jz, J
2
x , J

2
y ,Kz ≡ {Jx, Jy},Kx ≡ {Jy, Jz},Ky ≡ {Jz, Jx}, (1)

Vx ≡ {(J2
y − J2

z )Jx}, Vy ≡ {(J2
z − J2

x)Jy}, Vz ≡ {(J2
x − J2

y )Jz}, (2)

Lx ≡ J3
x , Ly ≡ J3

y , Lz ≡ J3
z ,M ≡ JxJyJz + JzJyJx (3)

1

Both types of 
perturbations can 

generate Weyl fermions

5
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FIG. 15: spectrum for C1 = 1, C2 = 2, D1 = ±1, D2 = ±1, D3 = −2 and the rest of the parameters being zero. This is almost
same as above, only C2 s positive. These possible Weyl points/nodes seem to be stable as long as D3 < 0. Also there seems to
be pockets as well.
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FIG. 16: spectrum for C1 = 1, C3 = ±5, D2 = ±1 and the rest of the parameters being zero. It is not clear if this represents 4
Weyl points or extended Weyl nodes. These gapless structures are stable to change in C3. However, their position shifts such
that it incorporates pockets also in some parameter regime.
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FIG. 17: spectrum for C1 = 1, C3 = ±5, D1 = ±1, D2 = ±1 and the rest of the parameters being zero. On including D1 the
gapless structures near along Γ−K is lifted to give two Weyl points/nodes along Γ−L. One can alternatively also tune C2 to
get the same picture. It is curious that changing C2 and D1 gives the same result since the former term does not break time
reversal symmetry while the later does.

T. Hsieh, L. Fu (2012) E. G. Moon, C. Xu, Y. B. Kim, L. Balents (2012)
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From the first equation above we find the fixed point

coupling and hence dynamical exponent,

u
∗
=

15

30Nf + 8
ε , z = 2− 4

15Nf + 4
ε, (5)

and since u
∗
> 0, the second line in Eq. (4) implies both

m/M0 and m/Mc are irrelevant. This establishes the

existence and nature of the stable, isotropic fixed point

describing the LAB phase. As a check, we have carried

out a large Nf expansion, which gives the same bosonic

anomalous dimension as in the ε expansion at the one-

loop level, supporting the stability of the LAB phase.

The presence of the stable interacting fixed point can

be understood physically as a balance of partial dynam-

ical screening of the Coulomb interactions by electron-

hole pairs and mass enhancement of the same quasipar-

ticles by pairs. This situation is in sharp contrast to the

case of a vanishing indirect band gap, for which to lead-

ing order in the long-range Coulomb interaction electrons

and holes are separately conserved, so there is no screen-

ing by virtual electron-hole pairs, and exciton formation

destabilizes the putative gapless state[25].

Using the RG, we can evaluate the anomalous di-

mension of any physical operator. By charge conser-

vation, [ψ†ψ] = d. Due to the isotropy of the fixed

point, there are only two non-trivial values for the

other charge-conserving fermion bilinears. We obtain ,

[ψ†Γaψ] = d+η1 , [ψ†Γabψ] = d+η12, , where Γa are the

(time-reversal invariant) Dirac gamma matrices, Γab =

− i

2 [Γa,Γb] are time-reversal odd, and a, b = 1, 2, · · · , 5.

Using the standard operator insertion technique, we find

η1 = − 6
15Nf+4ε and η12 = − 3

15Nf+4ε. These operators

describe many physical observables, e.g. the “angular

momentum” operator Jz ∼ ψ†
(−Γ34− 1

2Γ12)ψ. The nega-
tive anomalous dimension of these operators suggests the

a schematic picture of power-law excitons due to electron-

hole attraction. For pairing channels, we find positive

anomalous dimensions, consistent with this view. The

local pairing channel has ηpairing =
u
∗

5 =
3

30Nf+8�.

Using these results, we obtain thermodynamic re-

sponses such as the specific heat, cv ∼ T
d/z ≈ T

1.7

and the spin susceptibility χ(T ) ∼ a+ b T
(d−z+2η12)/z ≈

a + b T
0.5

, with some constants a, b. Interestingly,

the non-linear susceptibility χ3 = ∂3
M/∂H3

��
H=0

∼
T

−(3z−4η12−d)/z ≈ T
−1.7

diverges, as in spin glasses but

with completely different physics. Comparing the scaling

of current and electric field gives the usual result [σij ] =

d− 2. Consequently, the temperature and frequence de-

pendence of the conductivity is σ(ω, T ) ∼ T
1/zF(ω/T ),

and a clean, undoped LAB is therefore a power-law insu-

lator.

We now turn to the effect of applied strain and Zee-

man field upon the LAB. These perturbations break

cubic/time-reversal symmetries, and thus destabilize the

LAB. Due to the isotropic nature of the LAB fixed point,

the response to the Zeeman field alone is to leading or-

der independent of its direction (the cubic mass 1/Mc

can be “dangerously irrelevant”, however – see below),

so we take it to lie along the (001) direction. We con-

sider for simplicity tetragonal strain which preserves C4

rotation about this axis (in the absence of Zeeman field,

the direction of strain is again unimportant). This leads

to the perturbations

H
�
= −δ(J2

z
− 5

4
)−H(cos(θ)Jz + sin(θ)J3

z
), (6)

where δ parametrizes the strain, h is the Zeeman field,

and θ controls the strength of the cubic Zeeman term

allowed by the cubic symmetry [26, 27]. Using the RG

results, the dimensions of these perturbations are [δ] =
z−η1 ≈ 2.1 and [H] = z−η12 ≈ 1.9; i.e. strain is slightly

enhanced while Zeeman field is slightly suppressed by

interactions. However, both dimensions are positive and

close to 2, so that they are strongly relevant. They flow

to strong coupling under the RG, and the fate of the

system must be re-analyzed in the limit.

To do so, we assume, and check self-consistently, that

interactions have weak effects at strong coupling, and

simply solve the quadratic Hamiltonian (with m/M0 =

m/Mc = 0) in the presence of the renormalized H�
.

The result depends upon the dimensionless quantities

θ and the renormalized coupling ratio ∆ = (δ/H)R ∼
δ/H(z−η1)/(z−η12). For H = 0 (∆ = ∞), we have time-

reversal invariance, and we recover the known result that

strain δ > 0 induces a gapped, 3d TI phase, as observed

in HgTe [19]. The situation in applied Zeeman field is

more interesting. Notice that for �k = kẑ, Jz is a good

quantum number, and there is no level repulsion between

bands of different Jz. This allows (non-degenerate) bands
to cross along this axis, which indeed occurs when |∆| is

not too large. Further analysis in the Supplementary Ma-

terial shows that these crossings correspond to a pair of

double Weyl points, with linear dispersion along the z axis

and quadratic dispersion normal to it. These points are

strength ±2 monopoles in momentum space. Away from

the kz axis, electron and hole pockets may accidentally

cross the Fermi energy. If this does not occur, one has

a pristine double Weyl semimetal, which occurs for the

angular range θ1 ≤ θ ≤ θ2, where θ1 = − tan
−1

(
8+4

√
3

7
√
3+26

)

and θ2 = tan
−1

(
8−4

√
3

7
√
3−26

) for δ = 0, as shown in horizontal

axis of Fig. 1. When 0 < |∆| < ∞, we observe insulating,

double Weyl semimetal, and Weyl metal (with coexisting

electron-hole pockets) phases, as shown in Figure 1. Note

that in all these phases, the Coulomb interactions become

either unimportant (in the insulator), screened (in the

metal), or marginally irrelevant (in the Weyl semimetal),

justifying our treatment of the phase diagram to a first

approximation.

More subtle effects may make small modifications to

this picture. Coulomb interactions can destabilize some

2

Weyl

Weyl

Insulator

Metal

0 Π
4

Π
2

3 Π
4 Π

Θ

1

2

�

FIG. 1. Phase diagram of the perturbed LAB in the space

of renormalized strain to Zeeman field ratio, ∆ ≡ (δ/H)R,

versus cubic Zeeman angle, θ. Here“Weyl” denotes the (dou-

ble) Weyl semimetal, “Ins.” insulator, and “Metal” a metallic

phase which has Weyl points shifted from the Fermi energy

in the region below the dashed line. For H = 0, the insulator

is a topological insulator.

j = 3/2 matrices) transforming as the T2 representation

of the cubic group. In our minimal model, we assume

only these states close to Γ are important. Then k · p
theory and cubic symmetry determines the band struc-

ture in its vicinity to be precisely described by the Lut-

tinger Hamiltonian with three effective mass parameters

[16, 23],

H0(k) =
k2

2M̃0

+

5
4k

2 − (�k · �J)2

2m
−

(k2xJ
2
x + k2yJ

2
y + k2zJ

2
z )

2Mc
.

This describes doubly degenerate bands with energy

E±(k) =
k2

2M0
±

��
k2

2m

�2

+
m+ 2Mc

4mM2
c

pc(k), (1)

where pc(k) =
�

i k
4
i −

�
i �=j k

2
i k

2
j and M0 =

(4McM̃0)/(4Mc−5M̃0). Henceforth we assume M0 > m,

which describes conduction and valence bands touching

quadratically at E = k = 0, where the chemical potential

for the undoped material crosses.

The LAB is obtained by adding to this the long-range

Coulomb interaction. We implement the latter by a

scalar potential ϕ, which in the Euclidean path integral

formalism gives the action

SL =

�
dτddx

�
ψ†

�
∂τ − ieϕ+ Ĥ0

�
ψ +

c0
2
(∂iϕ)

2
�
,(2)

with Ĥ0 = H0(−i�∇) and c0 = 1/4π. Here ψ is a four-

component spinor, but subsequently we will artificially

add an additional U(Nf ) flavor index, which allows a

check on our calculations by large Nf methods; the phys-

ical case is Nf = 1. Eq. (2) contains in addition to the

three mass parameters, the Coulomb coupling constant

e. For e = 0, scale invariance is manifest, with the scaling

dimensions [x−1
] = 1 , [τ−1

] = z , [ψ] = d
2 , [

1
m ] = z − 2,

[ϕ] = (d+ z− 2)/2. Here we introduce the dynamic crit-

ical exponent (z), which is naturally z = 2 with e = 0,

but will become non-trivial with interactions.

Directly in the physical case d = 3, the dimension of

the coupling constant is [e2] = 1, so Coulomb interactions

are strongly relevant. Therefore we employ the ε = 4− d
expansion to control the RG analysis. As familiar from

quantum electrodynamics, three one loop Feynmann di-

agrams contribute to leading order in ε: the fermion self-

energy, boson self-energy, and vertex correction. Here we

show that the relevance of Coulomb interactions signals,

rather than a flow to strong coupling and a symmetry

breaking instability, the formation of a new stable inter-

acting fixed point, which describes the critical non-Fermi

liquid LAB state (Abrikosov’s analysis tacitly assumes

this stability).

The RG is carried out perturbatively in e, but non-

perturbatively in the mass parameters. Thus a full treat-

ment gives non-trivial and complete beta functions for

the two dimensionless mass ratios m/M0, m/Mc; these

are given in the Supplementary Material. The analysis of

the full RG shows, however, that there is a single stable

isotropic fixed point corresponding to m/M0 = m/Mc =

0, so for simplicity we quote in the main text only the

results in the vicinity of this point.

In this limit, the leading contribution to the bosonic

self energy becomes

1

Nf
Σϕ(q, 0) = −(2m)e2

��
ddk

(2π)d
1

k4

�
× q2, (3)

where we took the ω → 0 limit because frequency de-

pendence is subdominant. The divergence should be ab-

sorbed by rescaling the bosonic field, ϕ → e−ηbd�ϕ upon

reduction of the hard momentum cutoff Λ → e−d�Λ,
which defines the RG parameter �. This gives the bosonic
anomalous dimension ηb = 2Nfu [24], where the dimen-

sionless coupling constant is u =
me2

8π2c0Λ4−d , which has

the physical meaning in d = 3 of the ratio of the real

space cutoff to the effective Bohr radius. The frequency

dependence of the one loop fermionic self-energy and the

vertex correction both vanish, the result of a Ward iden-

tity. For k �= 0, the fermion self-energy gives mass cor-

rections, e.g. δ(1/m) = 8u/(15m) × d� to leading order.

Detailed analysis is given in the Supplementary Material.

Given these calculations, we choose z = 2 − 8u/15 to

keep the mass m fixed, which gives the RG equations, to

lowest order in m/Mc,m/M0:

d

d�
u = εu− 30Nf + 8

15
u2, (4)

d

d�

�
m
Mc

�
= −0.152u

�
m
Mc

�
,
d

d�

�
m
M0

�
= − 8

15u
�

m
M0

�
.

E. G. Moon, C. Xu, Y. B. Kim, L. Balents, arXiv:1212.1168



Long-range Coulomb interaction
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Relevant in RG sense near the non-interacting limit

expansion leads to non-trivial interacting 
(isotropic) fixed point

ε = 4− d

Non-Fermi Liquid scaling in physical quantities

E. G. Moon, C. Xu, Y. B. Kim, L. Balents, arXiv:1212.1168

χ3 =
∂3

M

∂H3

����
H=0

∼ T
−1.7

3

From the first equation above we find the fixed point

coupling and hence dynamical exponent,

u
∗
=

15

30Nf + 8
ε , z = 2− 4

15Nf + 4
ε, (5)

and since u
∗
> 0, the second line in Eq. (4) implies both

m/M0 and m/Mc are irrelevant. This establishes the

existence and nature of the stable, isotropic fixed point

describing the LAB phase. As a check, we have carried

out a large Nf expansion, which gives the same bosonic

anomalous dimension as in the ε expansion at the one-

loop level, supporting the stability of the LAB phase.

The presence of the stable interacting fixed point can

be understood physically as a balance of partial dynam-

ical screening of the Coulomb interactions by electron-

hole pairs and mass enhancement of the same quasipar-

ticles by pairs. This situation is in sharp contrast to the

case of a vanishing indirect band gap, for which to lead-

ing order in the long-range Coulomb interaction electrons

and holes are separately conserved, so there is no screen-

ing by virtual electron-hole pairs, and exciton formation

destabilizes the putative gapless state[25].

Using the RG, we can evaluate the anomalous di-

mension of any physical operator. By charge conser-

vation, [ψ†ψ] = d. Due to the isotropy of the fixed

point, there are only two non-trivial values for the

other charge-conserving fermion bilinears. We obtain ,

[ψ†Γaψ] = d+η1 , [ψ†Γabψ] = d+η12, , where Γa are the

(time-reversal invariant) Dirac gamma matrices, Γab =

− i

2 [Γa,Γb] are time-reversal odd, and a, b = 1, 2, · · · , 5.

Using the standard operator insertion technique, we find

η1 = − 6
15Nf+4ε and η12 = − 3

15Nf+4ε. These operators

describe many physical observables, e.g. the “angular

momentum” operator Jz ∼ ψ†
(−Γ34− 1

2Γ12)ψ. The nega-
tive anomalous dimension of these operators suggests the

a schematic picture of power-law excitons due to electron-

hole attraction. For pairing channels, we find positive

anomalous dimensions, consistent with this view. The

local pairing channel has ηpairing =
u
∗

5 =
3

30Nf+8�.

Using these results, we obtain thermodynamic re-

sponses such as the specific heat, cv ∼ T
d/z ≈ T

1.7

and the spin susceptibility χ(T ) ∼ a+ b T
(d−z+2η12)/z ≈

a + b T
0.5

, with some constants a, b. Interestingly,

the non-linear susceptibility χ3 = ∂3
M/∂H3

��
H=0

∼
T

−(3z−4η12−d)/z ≈ T
−1.7

diverges, as in spin glasses but

with completely different physics. Comparing the scaling

of current and electric field gives the usual result [σij ] =

d− 2. Consequently, the temperature and frequence de-

pendence of the conductivity is σ(ω, T ) ∼ T
1/zF(ω/T ),

and a clean, undoped LAB is therefore a power-law insu-

lator.

We now turn to the effect of applied strain and Zee-

man field upon the LAB. These perturbations break

cubic/time-reversal symmetries, and thus destabilize the

LAB. Due to the isotropic nature of the LAB fixed point,

the response to the Zeeman field alone is to leading or-

der independent of its direction (the cubic mass 1/Mc

can be “dangerously irrelevant”, however – see below),

so we take it to lie along the (001) direction. We con-

sider for simplicity tetragonal strain which preserves C4

rotation about this axis (in the absence of Zeeman field,

the direction of strain is again unimportant). This leads

to the perturbations

H
�
= −δ(J2

z
− 5

4
)−H(cos(θ)Jz + sin(θ)J3

z
), (6)

where δ parametrizes the strain, h is the Zeeman field,

and θ controls the strength of the cubic Zeeman term

allowed by the cubic symmetry [26, 27]. Using the RG

results, the dimensions of these perturbations are [δ] =
z−η1 ≈ 2.1 and [H] = z−η12 ≈ 1.9; i.e. strain is slightly

enhanced while Zeeman field is slightly suppressed by

interactions. However, both dimensions are positive and

close to 2, so that they are strongly relevant. They flow

to strong coupling under the RG, and the fate of the

system must be re-analyzed in the limit.

To do so, we assume, and check self-consistently, that

interactions have weak effects at strong coupling, and

simply solve the quadratic Hamiltonian (with m/M0 =

m/Mc = 0) in the presence of the renormalized H�
.

The result depends upon the dimensionless quantities

θ and the renormalized coupling ratio ∆ = (δ/H)R ∼
δ/H(z−η1)/(z−η12). For H = 0 (∆ = ∞), we have time-

reversal invariance, and we recover the known result that

strain δ > 0 induces a gapped, 3d TI phase, as observed

in HgTe [19]. The situation in applied Zeeman field is

more interesting. Notice that for �k = kẑ, Jz is a good

quantum number, and there is no level repulsion between

bands of different Jz. This allows (non-degenerate) bands
to cross along this axis, which indeed occurs when |∆| is

not too large. Further analysis in the Supplementary Ma-

terial shows that these crossings correspond to a pair of

double Weyl points, with linear dispersion along the z axis

and quadratic dispersion normal to it. These points are

strength ±2 monopoles in momentum space. Away from

the kz axis, electron and hole pockets may accidentally

cross the Fermi energy. If this does not occur, one has

a pristine double Weyl semimetal, which occurs for the

angular range θ1 ≤ θ ≤ θ2, where θ1 = − tan
−1

(
8+4

√
3

7
√
3+26

)

and θ2 = tan
−1

(
8−4

√
3

7
√
3−26

) for δ = 0, as shown in horizontal

axis of Fig. 1. When 0 < |∆| < ∞, we observe insulating,

double Weyl semimetal, and Weyl metal (with coexisting

electron-hole pockets) phases, as shown in Figure 1. Note

that in all these phases, the Coulomb interactions become

either unimportant (in the insulator), screened (in the

metal), or marginally irrelevant (in the Weyl semimetal),

justifying our treatment of the phase diagram to a first

approximation.

More subtle effects may make small modifications to

this picture. Coulomb interactions can destabilize some

σxy ∼ M0.51

z ≈ 1.8 Cv ∼ T d/z ≈ T 1.7 χ ∼ a+ bT 0.5



Pr2Ir2O7

• “Frustrated Kondo lattice”

• NFL power laws in χ, cv, χ3, ρ

normalizing the AF interaction to j!Wj ! 1:7 K. Below
j!Wj, the underscreened moments show spin-liquid behav-
ior as indicated by the lnT dependence of the susceptibility
and the T1=2 dependence of the specific heat, as predicted
for a frustrated Kondo lattice [6,7].

Single crystals of Pr2Ir2O7 of 1 mm3 in size were grown
using a flux method for the first time at Kyoto [9]. A
standard four-probe method was employed for resistivity
measurements. Magnetotransport measurements were per-
formed at the NHMFL dc field facility using a sample
rotator. Specific heat CP was measured by the thermal
relaxation method down to 0.35 K. Magnetization mea-
surements between 1.8 and 350 K were performed using a
commercial SQUID magnetometer. Magnetization be-
tween 0.07 and 2.5 K and at fields up to 13 T was measured
by the Faraday balance method using a dilution refrigerator
at ISSP [10]. Single crystal four-axis x-ray diffraction
analysis performed at LSU confirmed a well-ordered py-
rochlore structure with Fd-3m symmetry with a !
10:3940"4# !A (300 K) and 10.3850(4) Å (105 K) [9].
Energy dispersive x-ray analysis measurements found no
trace of impurities.

The metallic transport of Pr2Ir2O7 is shown in Fig. 1.
No anisotropy was found with respect to the current
direction. The resistivity ""T# steeply decreases on cool-
ing and saturates at a large residual resistivity "0 $
360 #" cm. On the other hand, a carrier density of 2:6%
1020 cm&3 (1:8%=Pr ), estimated from our preliminary
Hall effect measurements at low T, yields a mobility of
$70 cm2=V sec for a single carrier model. This confirms
the high quality of our single crystals, and shows that the
low carrier density is the origin of the large "0.

The crystal electric field (CEF) scheme of Pr3' has been
determined by inelastic neutron scattering measurements
at 5 K [11]. Our analysis reveals the following two points:
(i) nine multiplet levels of Pr3' split into a ground-state
doublet, three excited-singlets (162, 1218, 1392 K) and
two excited doublets (580, 1044 K); and (ii) the #3 ground-
state doublet is magnetic with local h111i Ising anisotropy
whose strength is $160 K. Because of the large separation
between CEF levels, the magnetism discussed below
comes solely from the ground doublet.

The inverse susceptibility "$& $0#&1"T# is shown in
Fig. 1. No anisotropy is found under a field of 0.1 T
applied along (100), (110), and (111). $0!1:25%
10&3 emu=mole-Pr is determined by a Curie-Weiss (CW)
analysis above 100 K using the formula $ ! $0 ' C="T &
T*#. This agrees with the sum of the Van Vleck term ($vv!
7:0%10&4 emu=mole-Pr), as estimated from the above
CEF scheme, and a Pauli paramagnetic term ($p $ 5:0%
10&4 emu=mole-Ir) from the Ir 5d-conduction electrons,
as in the metallic phase of "Y;Ca#2Ir2O7 [12]. The effective
moment gJ

!!!!!!!!!!!!!!!!!!!!!
Jz"Jz ' 1#

p
! 3:06#B for the ground doublet

is lower than the Pr3' multiplet value (3:62#B) due to the
CEF. The AF Weiss temperature T* ! &20:0 K is most
likely due to the RKKY interactions of the 4f moments for

the following three reasons. (i) CW analysis of the suscep-
tibility $CEF"T# computed using the above CEF scheme
indicates a negligibly small CEF contribution ('0:77 K) to
T* (Fig. 1). (ii) Single-ion Kondo coupling cannot be as
large as 20 K. In fact, few Pr-based compounds show
Kondo effect because of Hund coupling in the Pr3' 4f2

configuration which strongly reduces the Kondo tempera-
ture TK [13]. Moreover, the low carrier concentration
should also considerably decrease TK [14]. (iii) The 4f
moment superexchange and dipolar interactions in insulat-
ing pyrochlore magnets are normally of the scale of $1 K.
Actually, T* ! '0:35 K for Pr2Sn2O7, an insulating ana-
log of Pr2Ir2O7 [15]. Thus, a several orders of magnitude
stronger T* indicates that it is due to the RKKY interaction.

Normally, one expects a Pr-based low carrier system like
Pr2Ir2O7 to be deep in a magnetic regime, and to exhibit
magnetic LRO at the intersite interaction scale jT*j, if the
system has no magnetic frustration [16]. Remarkably,
however, no anomalies due to a magnetic transition were
detected in $"T#, except for freezing at Tf ! 120 mK
(Fig. 2). A large ratio jT*j=Tf ! 170 is a strong indication
of frustrated magnetism in Pr2Ir2O7. In addition, an
anomalous lnT dependence of $"T# was observed over a
decade of T between Tf and 1.4 K. This diverging $"T# as
T ! 0 K, combined with an exact pyrochlore lattice sym-
metry, confirmed by single crystal x ray, excludes the
possibility that the non-Kramers ground doublet is split
into nonmagnetic singlets. Instead, this lnT dependence,
distinct from the mean-field CW behavior, indicates that
the 4f moments are strongly fluctuating even at T + jT*j
owing to the magnetic frustration, forming a liquidlike
short-range order. In addition, the zero-field-cooled
(ZFC) $"T# only levels off below Tf as set by a bifurcation
of the field-cooled and ZFC curves (inset of Fig. 2).
Normally for spin glasses, the ZFC curve is expected to
show a steep decrease below Tf because most spins get
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Usually, the AHE arises in ferromagnets because the spontaneous
magnetization breaks the TRS macroscopically even in the absence of
applied magnetic field. The dominant part of the AHE in moderately
dirty ferromagneticmetals can be captured by the band-intrinsicmech-
anism4,16. The adiabatic motion of electrons under an electric field E
(ref. 17) acquires the Berry phase18 because of the relativistic spin-orbit
interaction and the net spin polarization. This phase acts as a mac-
roscopic fictitious magnetic field b that bends the orbital motion of
electrons like the Lorentz force does due to a realmagnetic fieldB. Thus,
it causes theAHEcharacterizedby a finiteHall conductivitysHatB5 0.

In general, however, the source of the fictitious magnetic field b,
namely, the condition for observing the AHE at B5 0, is not
restricted to the magnetization, but to the macroscopically broken
TRS19, which means that the time-reversal operation cannot be com-
pensated by any other symmetry operations of the crystal (Sup-
plementary Information). In particular, the scalar spin chirality in
non-coplanar ferromagnets or canonical spin glasses can also pro-
duce the fictitious field and thus the AHE4,5,12,13,20, as indeed has been
observed in Nd2Mo2O7 (ref. 5), AuMn (refs 6, 7), and MnSi (refs 9,
10). In these pioneering works, however, the spin chirality is not the
primary order parameter, but only accompanies a chiral spin texture
of a magnetic dipole LRO or is induced by the applied magnetic field.
Thus, it has remained an important open issue to find a possible
chiral spin-liquid phase3 by probing the macroscopically broken
TRS through the AHE at zero magnetic field.

Here, we report the discovery of a TRS-broken phase in the absence
of bothmagnetic dipole order and spin freezing in the thermodynamic
measurements, suggesting a chiral spin-liquid state. In particular, we
observed a spontaneous Hall effect in the absence of uniform mag-
netization within experimental accuracy in the metallic cooperative
paramagnet Pr2Ir2O7 above its spin freezing temperature, as indicated
by the bifurcation of the susceptibility. Both the experiment and the
theory suggest that a chiral spin-liquid phase is inducedbymelting of a
spin ice, because the quantum fluctuations of the Pr 4f magnetic
moments21 were stronger than in dipolar spin-ice systems14,15.

The pyrochlore iridate Pr2Ir2O7 has an antiferromagnetic Curie–
Weiss temperature HW<220K, mainly due to the correlations
among,111. 4f Isingmagneticmoments of Pr31 ions, which point
either inwards to or outwards from the centre of the Pr tetrahedron
(Fig. 1b and c)22,23. Ir 5d conduction electrons are weakly correlated
and remain in a Pauli paramagnetic state22. They mediate the RKKY
interaction between Pr 4f moments via the Kondo coupling. The
absence of any sharp anomalies indicating conventional magnetic
LRO in the measurements of specific heat, magnetic susceptibility,
and muon spin relaxation (mSR)22,24 signals strong geometrical frus-
tration15. Only a spin freezing is observed in the magnetic suscepti-
bility below Tf< 0.3 K, which is two orders of magnitude lower than
jHWj< 20K (ref. 22) (Fig. 2a). Therefore, below jHWj, the 4f
moments probably remain in a cooperative paramagnetic state down
to at least Tf< 0.3 K (refs 22, 24).

First, we show our main experimental evidence for the broken TRS
found in the states where neither magnetic dipole LRO nor spin freez-
ing is observed in thermodynamic measurements. Figure 2a presents
the temperature dependence of the Hall conductivity sH(T) (defined
in the figure caption)measuredat a low field of 0.05Tapplied along the
[111] direction. The zero-field-cooled and the field-cooled data of
sH(T) and thus the Hall resistivity rH(T) (Supplementary Fig. 1)
bifurcate at TH< 1.5K, a temperature which is nearly an order of
magnitude higher than Tf< 0.3K, although the longitudinal conduc-
tivity s(T) (Fig. 2b, inset) and resistivity r(T) (Supplementary Fig. 1)
does not exhibit any detectable bifurcation. The bifurcation in sH(T)
suggests the emergence of a spontaneous component. To avoid a
(partial) cancellation of sH due to a domain formation, we have per-
formed field sweep measurements up to 7T at various temperatures.
Corresponding to the above bifurcation found in sH(T), the field
dependence of sH(B) forBjj[111] atT,TH< 1.5K shows a hysteresis
between field up and down sweeps, which is accompanied by a finite

remnant Hall conductivity at B5 0 (Fig. 3a, inset). In sharp contrast,
the field dependence of the magnetization M(B) shows no hysteresis
within our experimental accuracy (,1023mB) at T,TH, and only a
small hysteresis at T,Tf (Fig. 3b, inset). Our observations on
sH(B5 0,T) andM(B5 0,T) at various temperatures are summarized
in Fig. 2b. This is evidence of a remarkable separation between the two
temperature scales TH and Tf. Upon cooling, the TRS is broken spon-
taneously and macroscopically at TH without any apparent LRO of
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Figure 2 | Temperature dependence of the magnetic and transport
properties of Pr2Ir2O2. a, Temperature dependence of the Hall conductivity
sH (left axis) and the direct-current susceptibility x5M/H (right axis)
under a magnetic field of B5 0.05 T along the [111] direction. e.m.u.,
electromagnetic unit. Here, Hall conductivity is given by sH52rH/
(rH

21 r2), where rH is the Hall resistivity and r is the longitudinal
resistivity. Both the zero-field-cooled (ZFC) and field-cooled (FC) results are
plotted. Vertical dashed lines denoteTH< 1.5 K andTf< 0.3 K, respectively.
b, Temperature dependence of the remnant Hall conductivity sH(B5 0)
(left axis) and remnant magnetization M(B5 0) (right axis) at zero field,
obtained after a field sweep down from 7T in the hysteresis loop
measurements (Supplementary Information). The inset shows the
temperature dependence of the longitudinal conductivity s5 1/r under
B5 0.05 T along the [111] direction. No hysteresis is found between the
results obtained in the ZFC and FC sequences. c, Temperature dependence of
the nonlinear susceptibility x3 (Supplementary Information) (left axis), and
magnetic specific heat Cm (right axis) under zero field, adapted from ref. 22.
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with ab initio tools in the quest for experimentally relevant candidate materials.
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SUPPLEMENTARY MATERIAL

Cellular dynamical mean-field theory

Cellular dynamical mean-field theory (CDMFT) reduces infinite lattice to a cluster of size Nc which hybridizes with

the self-consistent electronic bath sites. It extends single-site DMFT with the goal of capturing spatial correlations

more adequately. In this work, we used a tetrahedron cluster with 4 sites, which corresponds to a unit cell of the

pyrochlore lattice. Figure 5 illustrates the cluster which is embedded in an effective, self-consistent bath. In order

to investigate the ground state properties, we employ the exact diagonalization method to fully solve the quantum

many-body properties of the cluster. The algorithm is iterative in nature: we initially input an ansatz for the

bath parameters and solve the hybridized Hamiltonian with the impurity solver. From the cluster Hamiltonian we

compute the cluster Green function Ĝ, the hat denoting an 8×8 matrix structure, as well as the cluster self-energy,

Σ̂c
= Ĝ−1 − Ĝ−1

, where Ĝ is the Weiss field describing the noninteracting bath. The new Weiss field is obtained by

the self-consistent equation, Ĝ−1
new = Ĝ−1

loc + Σ̂c
, where the local Green function

Ĝloc(iωn) =

�

k̃

�
(iωn + µ)1̂− t̂(k̃)− Σ̂c

(iωn)

�−1
(4)

is calculated by integration over the momentum vector of the reduced Brillouin zone. We then determine new bath

parameters to best fit Ĝnew. The steps are repeated until convergence is reached.

The calculation for a slab structure is similar to the bulk case, but the Green’s function is now an 8L× 8L matrix.

ba

FIG. 5. CDMFT cluster and slab geometry. a, Unit tetrahedron (cluster) and bath sites. Only Nb = 2 bath sites are shown while

Nb = 8 (4) were used for the bulk and slab calculations, respectively. The blue and red spheres denote the cluster and the bath sites,

respectively. The dashed green lines indicate the effective hybridization between the cluster and the bath. b, Three layers within a

slab that is finite along the (110)-direction. The tetrahedra in each layer are colored alternately with blue or green. We use 16 layers

with periodic boundary conditions for the other two directions which span the sky-blue plane.
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analysis. This being said, we emphasize that as we are dealing with topological phases, many of our results are

expected to hold in general. Indeed, we envision that our methods can be fruitfully used in the analysis of correlated

symmetry-protected topological ordered states and combined with ab initio tools in the quest for experimentally

relevant candidate materials [15].

MODEL

We consider the following Hubbard Hamiltonian for the Iridium d-electrons hopping on a pyrochlore lattice with

onsite Coulomb repulsion [13]:

H =

�

�Ri,R�i��,σσ�

([To]
ii�

σσ� + [Td]
ii�

σσ�)c
†
RiσcR�i�σ� − µ

�

Ri,σ

c
†
RiσcRiσ + U

�

Ri

nRi↑nRi↓, (1)

where cRiσ annihilates an electron with the pseudospin σ at the ith basis site of the Bravais lattice vector R. The

index i runs from 1 to 4 and labels the corners of a tetrahedron. The hopping matrix To arises from oxygen-mediated

hopping between the Ir atoms [10] with amplitude t, while Td from the Ir-Ir hopping due to the direct overlap between

the d-orbitals. The latter depends on two energy scales, tσ and tπ, arising from the σ- and π-bonding between the

d-orbitals, respectively. The chemical potential, µ, is such that each Ir atom contributes a single pseudospin-1/2

electron. The pseudospin arises from the combined effect of crystal fields and spin-orbit coupling [16]. Finally, the

Hubbard repulsion U generates correlations by penalizing double occupation and thus drives the system away from

simple single-particle physics. (We shall use the oxygen hopping strength, t, as our comparison scale.)

The phase diagram of the above Hamiltonian was previously analyzed by treating the onsite repulsion within a

mean-field Hartree-Fock (HF) approach [13], which allows for a single-particle description. It was found that for

small U/t, one obtains strong topological insulator and metallic phases, depending on the ratios of tσ/t and tπ/t. At

sufficiently large U , the systems becomes magnetic. Near the transition, i.e. for small enough magnetization, it was

found that the topological Weyl semimetal (TWS) arises. Here, we shall focus on two representative sets of hopping

parameters, tσ/t = 1 or −1, with the ratio tπ/tσ = −2/3 fixed. The first one, being at the center of our analysis,

is such that the HF mean-field theory predicts that the system undergoes transitions from a TI to a TWS, and to

a magnetic antiferromagnet as one increases U . The second set of hoppings corresponds to the transition from a

semimetal to a magnetic Mott insulator, passing through a “tilted Weyl semimetal”.

We use the above model to examine the fate of these phases and transitions within CDMFT. CDMFT has been

widely used to investigate correlated microscopic models [5] but only recently was it applied to topological phases [17],

specializing to two dimensions. As we will deal with robust topological properties, most of our results will hold

generically. We emphasize that CDMFT fully incorporates the quantum many-body effects within a cluster (unit

cell here). We thus cannot speak of sharp bands nor use topological indices based on Bloch states. Instead, we

shall make use of the interacting Green’s function incorporating quantum fluctuations. We will corroborate the bulk-

boundary correspondence for these correlated topological phases by examining the system in both infinite-size and

slab geometries.

TURNING ON CORRELATIONS IN A TI

We first examine the bulk properties of the TI as U is turned on. The evolution of the phases together with their

magnetization are shown in Fig. 1. The figure also shows a Z2 topological index ∆, which determines the presence

(∆ = 1) or absence (∆ = 0) of a topological magneto-electric response. Specifically, ∆ = 1 implies that an applied

electric field E will induce a magnetization in a properly prepared system: M = αE, where α = e
2
/2h depends only

on universal constants [14]. In the presence of TRS, this topological response can be used as a defining property of

a correlated TI. The associated topological index can be computed from the full interacting Green’s function by the

following Wess-Zumino-Witten like integral [14]

∆
mod 2
=

π

3

� 1

0
du

�
dω

2π

�

BZ

d
3k

(2π)3
Tr

�
�µνρσĜ∂µĜ

−1
Ĝ∂νĜ

−1
Ĝ∂ρĜ

−1
Ĝ∂σĜ

−1
Ĝ∂uĜ

−1
�
. (2)
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The self-consistent equation for a slab with L layers is given by

G−1
0,new(iωn) =




�

kx,ky

1

(iωn + µ)1− t(kx, ky)−Σ(iωn)




−1

+Σ(iωn) (5)

where bold letters denote an 8L× 8L matrix structure and the summation runs over the surface Brillouin zone. We

assume that the self-energy is block-diagonal with the blocks of size eight. The correlations beyond a unit cell are

treated on the mean-field level. In other words, the sectors make an effect on each other via the hopping matrix t,
although each sector of the self-energy is self-consistently determined by its own cluster Hamiltonian,

H
p
c =

�

µνσ

E
p
µνc

†
p,µσcp,νσ + U

�

µ

np,µ↑np,µ↓

+

�

µlσ

(V
p
p,µlσa

†
p,lσcp,µσ +H.c.) +

�

lσ

�plσa
†
p,lσap,lσ, (6)

where µ, ν = 1, 2, . . . , 4 are the site indices in a unit cell, l = 1, 2, . . . , Nb label the bath sites, and p = 1, . . . , L is a

layer index. The hoppings within a cluster and chemical potential are introduced by Ê while the L-effective Weiss

fields are described by the V ’s and �’s.

Topological invariant ∆

We provide information on the implementation of the topological invariant ∆ [18] and its usage in the absence of

TRS. For clarity, we rewrite it here,

(−1)
∆
=

�

R-zero

η1/2α (7)

As was noted in the main text, ηα = ±1 is a parity eigenvalue corresponding to an eigenstate, |α�, of the inverse of the
interacting Green’s function, Ĝ

−1
, evaluated at one of eight TRIM, Γi. We now explain the notion of “Right-zero”

(R-zero). The eigenvector satisfies:

Ĝ
−1

(ω,Γi) |α(ω,Γi)� = µα(ω,Γi) |α(ω,Γi)� (8)

P̂ |α(ω,Γi)� = ηα |α(ω,Γi)� (9)

where Ĝ
−1

(ω,k) is the inverse Green’s function, µα(ω,k) is its generally complex eigenvalue, and P̂ the parity operator.

As ω is tuned from −∞ to ∞, µα(ω,k) sweeps a curve. At ω = 0, Ĝ
−1

(0,k) is Hermitian hence its eigenvalues are

real. µα(0,k) thus crosses the real axis in the complex plane and in this sense is called a “zero”. It is a R-zero simply

if the crossing occurs to the right of the imaginary axis, i.e.

R-zero ⇔ µα(0,k) > 0 (10)

Hence, if µα(0,Γi) is a R-zero, the associated parity eigenvalue ηα will contribute to the product for (−1)
∆

above.

In the presence of TRS, each |α(0,Γi)� has a time-reversal partner with the same eigenvalue µα [18]. Hence, each

of the Kramers pairs of odd-parity eigenstates contributes i
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= −1, and the index can only be zero or one. When

one breaks TRS, the R-zeroes need not come in Kramers pairs. However, we argue that even in that case, as long

as inversion symmetry is preserved, the topological index can still be used to test for the presence of a quantized

magneto-electric response. An insulator with TRS broken but with such a response is called an axion insulator [6, 19].

The applicability of ∆ for such inversion-symmetric topological insulators was briefly suggested in Ref. [18].
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The self-consistent equation for a slab with L layers is given by

G−1
0,new(iωn) =




�

kx,ky

1

(iωn + µ)1− t(kx, ky)−Σ(iωn)




−1

+Σ(iωn) (5)

where bold letters denote an 8L× 8L matrix structure and the summation runs over the surface Brillouin zone. We
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In the presence of TRS, each |α(0,Γi)� has a time-reversal partner with the same eigenvalue µα [18]. Hence, each

of the Kramers pairs of odd-parity eigenstates contributes i
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= −1, and the index can only be zero or one. When

one breaks TRS, the R-zeroes need not come in Kramers pairs. However, we argue that even in that case, as long

as inversion symmetry is preserved, the topological index can still be used to test for the presence of a quantized

magneto-electric response. An insulator with TRS broken but with such a response is called an axion insulator [6, 19].

The applicability of ∆ for such inversion-symmetric topological insulators was briefly suggested in Ref. [18].

When TRS is broken, one needs to first ensure that ∆ remains 0 or 1, avoiding imaginary values for instance. The

equivalent statement for band insulators was established by Refs. [19, 20] who proved that inversion symmetric band

insulators always have an even number of odd-parity occupied states (including all TRIM). For correlated inversion-

symmetric insulators, this would translate to the requirement to have an even number of odd-parity R-zeroes. This

statement seems natural for insulators that are adiabatically connected to a band-insulator. With this constraint, we
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FIG. 1. Magnetization (m) and topological index (∆) versus interaction strength. An interaction-driven topological transition
accompanies an abrupt change of the magnetization. The nontrivial electronic structure of a correlated TI can be characterized by a
Z2-invariant computed using the CDMFT Green’s function. In the intermediate region, a topologically nontrivial insulator with a finite
magnetization indicates the realization of an interacting axion insulator (AI). As the interaction strength increases, a topological Weyl
semimetal (TWS) follows after the magnetization jump. At large U , the system is a topologically-trivial insulating antiferromagnet
(AF). (Note: the region 1 < U/t < 5 has been truncated to emphasize the phases around the transition.)

The hat on the Green’s function, Ĝ, denotes the 8 by 8 matrix structure due to the pseudospin (σ) and sublattice
(1 ≤ i ≤ 4) degrees of freedom. The parameter u extends the true Green’s function at u = 0 to a trivial constant one
at u = 1. It has been shown recently that in the special case where inversion symmetry is present, as is the case in
this work, one can significantly simplify the above expression [18]:

(−1)∆ =
�

R−zero

η1/2α , (3)

where ηα = ±1 is a parity eigenvalue corresponding to a vector |α�, an eigenstate of the interacting Green’s function
evaluated at one of eight special momenta, Γi. These are the time reversal invariant momenta (TRIM) satisfying
−Γi = Γi, up to a reciprocal lattice vector. The expression Eq. (3) is in contrast with the analogous Fu-Kane formula
which can only be used for non-interacting systems. More details about ∆, such as the notion of “R-zero”, can be
found in the Supplementary Material.

From Fig. 1 we can see that the invariant indicates a topologically non-trivial phase for a wide range of onsite
repulsion until a trivial phase results in the magnetic antiferromagnet, found at large U . It can be noted that the
topological index remains invariant under the evolution of the Green’s function due to interactions, such as spectral
broadening. Eventually, a time-reversal-symmetry (TRS) breaking transition occurs, and there is a quantum phase
transition out of the TI. From Fig. 1, we note that there is a regime where the magnetization increases continuously
from zero before jumping discontinuously at U/t = 6.11. The latter jump, where the order parameter has a sudden
increase even though TRS has already been broken, signals a first order transition. We have verified that it is a
robust property within our framework. Figure 1 also shows that there is a small range of U where ∆ = 1, yet the
system is magnetized. Because of the breaking of TRS, one cannot call this a topological insulator in the above
sense. Rather this is a closely-related phase: a correlated axion insulator. It was introduced at the non-interacting
level by Refs. [6, 19], where it was noted that even in the absence of TRS, by virtue of inversion symmetry and a
special structure of the parity eigenvalues, the topological magneto-electric effect discussed above could be realized.
Contrary to the TI, this phase does not have protected boundary states. As discussed in the Supplementary Material,
the ∆-invariant, Eq. (3), is a natural generalization of the one introduced in Refs. [19, 20] as it essentially counts the
total number of odd-parity eigenstates, not only one per Kramers pair. We add that one expects such a phase to be
present if the magnetization increases continuously from a TI, because the parity structure is not expected to change
dramatically. Finally, as the continuous transition preceding the first order one is a feature that is absent from the
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FIG. 1. Magnetization (m) and topological index (∆) versus interaction strength. An interaction-driven topological transition
accompanies an abrupt change of the magnetization. The nontrivial electronic structure of a correlated TI can be characterized by a
Z2-invariant computed using the CDMFT Green’s function. In the intermediate region, a topologically nontrivial insulator with a finite
magnetization indicates the realization of an interacting axion insulator (AI). As the interaction strength increases, a topological Weyl
semimetal (TWS) follows after the magnetization jump. At large U , the system is a topologically-trivial insulating antiferromagnet
(AF). (Note: the region 1 < U/t < 5 has been truncated to emphasize the phases around the transition.)

The hat on the Green’s function, Ĝ, denotes the 8 by 8 matrix structure due to the pseudospin (σ) and sublattice
(1 ≤ i ≤ 4) degrees of freedom. The parameter u extends the true Green’s function at u = 0 to a trivial constant one
at u = 1. It has been shown recently that in the special case where inversion symmetry is present, as is the case in
this work, one can significantly simplify the above expression [18]:
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−Γi = Γi, up to a reciprocal lattice vector. The expression Eq. (3) is in contrast with the analogous Fu-Kane formula
which can only be used for non-interacting systems. More details about ∆, such as the notion of “R-zero”, can be
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From Fig. 1 we can see that the invariant indicates a topologically non-trivial phase for a wide range of onsite
repulsion until a trivial phase results in the magnetic antiferromagnet, found at large U . It can be noted that the
topological index remains invariant under the evolution of the Green’s function due to interactions, such as spectral
broadening. Eventually, a time-reversal-symmetry (TRS) breaking transition occurs, and there is a quantum phase
transition out of the TI. From Fig. 1, we note that there is a regime where the magnetization increases continuously
from zero before jumping discontinuously at U/t = 6.11. The latter jump, where the order parameter has a sudden
increase even though TRS has already been broken, signals a first order transition. We have verified that it is a
robust property within our framework. Figure 1 also shows that there is a small range of U where ∆ = 1, yet the
system is magnetized. Because of the breaking of TRS, one cannot call this a topological insulator in the above
sense. Rather this is a closely-related phase: a correlated axion insulator. It was introduced at the non-interacting
level by Refs. [6, 19], where it was noted that even in the absence of TRS, by virtue of inversion symmetry and a
special structure of the parity eigenvalues, the topological magneto-electric effect discussed above could be realized.
Contrary to the TI, this phase does not have protected boundary states. As discussed in the Supplementary Material,
the ∆-invariant, Eq. (3), is a natural generalization of the one introduced in Refs. [19, 20] as it essentially counts the
total number of odd-parity eigenstates, not only one per Kramers pair. We add that one expects such a phase to be
present if the magnetization increases continuously from a TI, because the parity structure is not expected to change
dramatically. Finally, as the continuous transition preceding the first order one is a feature that is absent from the

tσ = 1 CDMFT



TWS: Topological Weyl Semimetal

AI: Axion Insulator ∆ = 1 θ = π

Correlation in the cluster important; non-existent in HF   

possibility discussed in X. Wan, et al, PRB 83, 205101 (2011)

Magnetic Order

3

0.0

0.2

0.4
m

TI AI AFI

TWS

0

1

0 1

!

5 6 7
U/t

FIG. 1. Magnetization (m) and topological index (∆) versus interaction strength. An interaction-driven topological transition
accompanies an abrupt change of the magnetization. The nontrivial electronic structure of a correlated TI can be characterized by a
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magnetization indicates the realization of an interacting axion insulator (AI). As the interaction strength increases, a topological Weyl
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(AF). (Note: the region 1 < U/t < 5 has been truncated to emphasize the phases around the transition.)
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repulsion until a trivial phase results in the magnetic antiferromagnet, found at large U . It can be noted that the
topological index remains invariant under the evolution of the Green’s function due to interactions, such as spectral
broadening. Eventually, a time-reversal-symmetry (TRS) breaking transition occurs, and there is a quantum phase
transition out of the TI. From Fig. 1, we note that there is a regime where the magnetization increases continuously
from zero before jumping discontinuously at U/t = 6.11. The latter jump, where the order parameter has a sudden
increase even though TRS has already been broken, signals a first order transition. We have verified that it is a
robust property within our framework. Figure 1 also shows that there is a small range of U where ∆ = 1, yet the
system is magnetized. Because of the breaking of TRS, one cannot call this a topological insulator in the above
sense. Rather this is a closely-related phase: a correlated axion insulator. It was introduced at the non-interacting
level by Refs. [6, 19], where it was noted that even in the absence of TRS, by virtue of inversion symmetry and a
special structure of the parity eigenvalues, the topological magneto-electric effect discussed above could be realized.
Contrary to the TI, this phase does not have protected boundary states. As discussed in the Supplementary Material,
the ∆-invariant, Eq. (3), is a natural generalization of the one introduced in Refs. [19, 20] as it essentially counts the
total number of odd-parity eigenstates, not only one per Kramers pair. We add that one expects such a phase to be
present if the magnetization increases continuously from a TI, because the parity structure is not expected to change
dramatically. Finally, as the continuous transition preceding the first order one is a feature that is absent from the

tσ = 1 CDMFT

A. Go, 
W. Witczak-Krempa, 

G.S.Jeon, 
K. Park, 
Y.B.Kim, 

PRL 109, 066401 (2012)
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muSR: Magnetic Order ?

S. Zhao, D. E. MacLaughlin, 
S. Nakatsuji et al, 

(2011)

Eu2Ir2O7

Eu3+ is non-magnetic

Magnetic moments from Ir4+

TM = 120K
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Non-magnetic 
A-site

Magnetic A-site

Eu2Ir2O7

Y2Ir2O7

Nd2Ir2O7

Yb2Ir2O7

muSR

Yes (< 120K)

Yes ( < 150K)

Neutron (elastic/inelastic)

?

< 0.5µB

Damped (< 8K)

Yes ( < 130K)
J=7/2

J=9/2

Nd3+ ordered ?

< 0.5µB

S. Zhao, D. MacLaughlin,  Nakatsuji et al, (2011)

M.C. Shapiro, I. R. Fisher et al, (2012)S. M. Disseler et al, (2012)
S. M. Disseler et al, (2012)

K. Tomiyasu, K. Yamada et al, (2011)

S. M. Disseler et al, (2012)
Not detected

S. M. Disseler et al, (2012)

S. M. Disseler et al, (2012)

S. M. Disseler et al, (2012)

(single crystal)



Elastic Resonant X-ray Scattering

H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J. 
Ishikawa, E. O’Farrell, S. Nakatsuji (2013)

Eu2Ir2O7

q=0 magnetic order confirmed

But need inelastic resonant X-ray 
scattering to directly prove 

the all-in/all-out order 



Finite Temperature (Hartree-Fock)
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Correlated quantum phenomena in the strong spin-orbit regime

William Witczak-Krempa

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
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We discuss phenomena arising from the combined influence of electron correlation

and spin-orbit coupling, with an emphasis on emergent quantum phases and tran-

sitions in heavy transition metal compounds with 4d and 5d elements. A common

theme is the influence of spin-orbital entanglement produced by spin-orbit coupling,

which influences the electronic and magnetic structure. In the weak-to-intermediate

correlation regime, we show how non-trivial band-like topology leads to a plethora of

phases related to topological insulators. We expound these ideas using the example

of pyrochlore iridates, showing how many novel phases such as the Weyl semi-metal,

axion insulator, topological Mott insulator, and topological insulators may arise in

this context. In the strong correlation regime, we argue that spin-orbital entangle-

ment fully or partially removes orbital degeneracy, reducing or avoiding the normally

ubiquitous Jahn-Teller effect. As we illustrate for the honeycomb lattice iridates and

double perovskites, this leads to enhanced quantum fluctuations of the spin-orbital

entangled states and the chance to promote exotic quantum spin liquid and multi-

polar ordered ground states. Connections to experiments, materials, and future

directions are discussed.

Key Words: Spin-Orbit Coupling, Electron Correlation, Mott Insulator, Spin-

Orbital Entanglement, Topological Insulator, Weyl Semi-metal, Axion Insulator,

Pyrochlore Iridates, Quantum Spin Liquid, Multi-polar Order, Honeycomb-lattice

Iridates, Double Perovskites
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High Pressure Experiment 

F. F. Tafti, 
J. J. Ishikawa, 
A. McCollam,
S. Nakatsuji,
S. R. Julian, 

2012
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FIG. 1. Resistivity as a function of temperature from P =
2.06 to 12.15 GPa. The left-hand panel contains all of our
results, showing that the resistivity is strongly suppressed
by increasing pressure. The right-hand panel focuses on the
intermediate-pressure data. Red arrows indicate the metal-
insulator transition (see Fig. 2 and the text); blue arrows
indicate the minimum in ρ(T ).

ture state, physical pressure has the obvious advantage
that it can be tuned continuously. (Continuous substi-
tution studies in the pyrochlore iridates are not useful,
since the ground state is sensitive to disorder [8].) Phys-
ical pressure is somewhat different from chemical pres-
sure, however. Increasing the R atomic size increases
the Ir-O-Ir bond angle and the lattice parameter in par-
allel [7], while hydrostatic pressure increases the former
but decreases the latter. Thus we expect new insights
from the application of physical pressure to explore the
boundary between metallic and insulating ground states
in pyrochlore iridates.

EXPERIMENT

Eu2Ir2O7 single crystals were grown at ISSP using the
KF-flux method [11]. We pressurized samples measuring
approximately 150× 100× 30 µm3 in a moissanite anvil
cell [12] and measured resistivity as a function of temper-
ature at several pressures in the range P = 2 to 12GPa,
using a four terminal ac method. The pressure medium
was 7373 Daphne oil, and pressure was monitored by
ruby fluorescence spectroscopy at room temperature. A
1K dipping probe was used in the temperature range T =
300 to 2K. Resistivity below 2K and magnetoresistance
at 10.01GPa were measured in a dilution refrigerator.
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FIG. 2. Locating the metal-insulator transition, TMI . The
color coding is the same as in Fig. 1. The transition does not
have a strong signature in ρ(T ), however panel (a) shows that
there is a marked change in slope of log(ρ) vs. T near 100 K
at all pressures, while panel (b) shows that the onset of this
behaviour can be found, for all pressures below 7.88 GPa, in
a sharp downturn in ∂ρ/∂T . As a guide to the eye we have
shown plausible extrapolations of the high-temperature slope,
and the slope immediately below 100 K. At each pressure we
have placed TMI at the mid-point between the onset of the
downturn and the temperature at which the these extrapola-
tions meet; while the error bars (see Fig. 4) extend to these
two temperatures. The inset of (b) zooms in on ∂ρ/∂T near
100 K for 3.49 GPa. In (a) some curves are offset vertically
for clarity.

RESULTS

Our resistivity data, from 300 to 2K at nine different
pressures from 2.06 to 12.15GPa, are presented in Fig. 1.
The quantitative effects of increasing the pressure from 2
to 12 GPa are dramatic: the room temperature resistivity
falls by a factor of 60, while the 2 K resistivity falls by a
factor of 500. Qualitatively, the slope of the resistivity,
∂ρ(T )/∂T , for T > 100 K changes from negative (non-
metallic) at low pressure to positive (metallic) at 10 and
12 GPa. At lower temperature, in contrast, the slope
of the resistivity is negative at all pressures, but it is
nearly 1000 times larger at 2.06 GPa than at 12.15 GPa.
We elaborate on the low temperature resistivity in the
Discussion, and show that the low pressure curves have
a temperature dependent gap that closes between 6 and
8 GPa.

The metal-insulator transition, which occurs at 120 K
at ambient pressure, does not show up clearly in the raw
resistivity. This is also the case at ambient pressure [8].
However, Fig. 2 shows that, for low pressures, the slope
of log(ρ(T )) vs T changes near 100 K. This change ap-
pears to be quite abrupt in the 3.49 GPa and the 4.61
GPa curves, both in Fig. 2(a) and in the raw data (Fig.
1(b)). This change in slope is more clearly seen in plots of

Eu2Ir2O7



Spin-Orbit + Interactions + Frustration
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