Topological Phases in Correlated Materials

Yong Baek Kim University of Toronto

ISSP, University of Tokyo, June 5, 2013

Topological Phases of Matter

How can we characterize them?

What are the "Topological Properties"?

Where can we find them?

Topological Phases of Matter

Cannot be fully characterized by a local order parameter such as magnetization in magnets

Cannot be transformed to "simple phases" via local perturbations/operations without going through phase transitions

Often characterized by a variety of "Topological Properties" or "Non-local Properties" Type I Topological Phases (Gapped Phases) **Topological Phases** No "Path" (Local unitary transformations) without closing the bulk gap (fully characterized by local order "simple phases" parameter/information) Quantum Hall States Spin Liquids

(correlated quantum paramagnetic state)

Type-I Topological Phases (Gapped Phases)

Quantum Hall States

Non-trivial ground state degeneracy:

 $\nu=1/3~$ quantum Hall state has "3" degenerate ground states on torus, but "1" on sphere

Non-trivial boundary states:

Edge state is a chiral Luttinger Liquid

Non-trivial topological invariant: $\sigma_{xy} = \frac{1}{3} \frac{e^2}{h}$

Non-trivial excitations:

Fractionally charged e/3 Laughlin quasi-particles

Type-I Topological Phases (Gapped Phases)Spin LiquidsQuantum Paramagnet $\langle S \rangle = 0$ Correlated insulator with no broken translational symmetry

Resonating Valence Bond state (RVB); Superposition of Valence Bond coverings

P.W.Anderson

Rokhsar-Kivelson

Valence Bond

Construction of a Spin Liquid

- BCS superconductor (L x L lattice)
 average number of electrons per site = one (Half-filled)
 g(r r') \Leftrightarrow Cooper pair wave function
 BCS wave function $|BCS\rangle \propto e^{\sum_{\mathbf{r},\mathbf{r}'} g(\mathbf{r}-\mathbf{r}')c^{\dagger}_{\mathbf{r}\uparrow}c^{\dagger}_{\mathbf{r}'\downarrow}|0\rangle$
- **RVB** wave function $|RVB\rangle = P_G |BCS\rangle \propto \sum_{vb} A_{vb} |vb\rangle$
- P_G exactly one particle per site; freeze charge fluctuations Hubbard $U \rightarrow \infty$ in $Un_{i\uparrow}n_{i\downarrow}$

 $|vb\rangle$ valence bond covering

$$A_{vb} = \prod_{\substack{\text{all valence}\\\text{bond }(\mathbf{r},\mathbf{r}')}} g(\mathbf{r} - \mathbf{r}')$$

No local measurement can distinguish these phases

Short 'Coherence Length' Limit

$$|\text{even}\rangle = \frac{1}{2}(|RVB\rangle + |RVB'\rangle) \qquad |\text{odd}\rangle = \frac{1}{2}(|RVB\rangle - |RVB'\rangle)$$

TWO topologically distinct valence bond coverings

Non-trivial ground state degeneracy

Elementary Excitations

- Elementary excitations in superconductors
 Bogoliubov quasiparticles (zero average charge, S=1/2)
- Elementary excitations in the spin liquid state $P_G (Bogoliubov quasiparticles) = Spinons (Q=0,S=1/2)$
- Fractionalization of electrons !

Non-trivial excitations

Type II "Symmetry-Protected" Topological Phases (Gapped Phases)

"simple phases"

Topological Band Insulator (e.g. time-reversal symmetry)

a Z2 topological invariant

Trivial Band Insulator

Topological Band Insulator

C. L. Kane, E. Mele, L. Fu B. A. Bernevig, T. L. Hughes, X.-L. Qi, S. C. Zhang

2D time reversal invariant band structure has a Z2 topological invariant

Trivial Band Insulator

Topological Band Insulator

Spinkarepit value enfinversio Bepfetiger bandsharith lopposite parcity

3D Topological Band Insulator

In 3D there are four Z_2 invariants: $(\nu; \nu_1 \nu_2 \nu_3)$ characterizing the bulk. These determine how surface states connect.

 $\nu=1$: Strong Topological Insulator

Fermi surface encloses odd number of Dirac points

 $\nu=0:$ Weak Topological Insulator

Fermi surface encloses even number of Dirac points

L. Fu, C. L. Kane J. E. Moore, L. Balents R. Roy Non-trivial boundary states Non-trivial topological invariant Where can we find them ? especially in correlated materials

5d transition metal (Ir) oxides: New Playground

5d TM 3d TM 4f Ln (Fe,Co,Ni,Cu.) (Ce, Pr, Nd...) (Re, Os, Ir, Pt...) Energy(K) **10**⁵ Coulomb U Coulomb U Spin-orbit Coulomb Crystal U field D 104 Crystal Spin-orbit coupling λ field D coupling λ **10**³ Crystal 5d: U ~ 0.5-1 eV Spin-orbit field D 10² coupling λ λ_{SO} ~ 0.5 eV

> Traditional playground for correlated electron physics

101

Honeycomb Iridates (A₂IrO₃) Type-I Topological Phases ?

Honeycomb Lattice of Ir⁴⁺ Na₂ rO₃ 5d transition metal oxides lr Edge-Sharing **Ir** Oxygen Octahedra Na-+ × Na

Plane perpendicular to the [111] direction

5d orbitals of Ir⁴⁺: large spin-orbit coupling

 $Ir^{4+} = [Xe] 4f^{14} 5d^5$

B.J.Kim, C. Kim, J.H.Park, T.W.Noh, G.Cao et al., PRL 101, 076402 (2008)

B.J.Kim, H.Takagi, et al, Science 323, 1329 (2009)

Crystal Field

Spin-Orbit Coupling

$$|\uparrow_{j}\rangle = \frac{1}{\sqrt{3}}(i|xz,\downarrow_{s}\rangle + |yz,\downarrow_{s}\rangle + |xy,\uparrow_{s}\rangle)$$
$$|\downarrow_{j}\rangle = -\frac{1}{\sqrt{3}}(i|xz,\uparrow_{s}\rangle - |yz,\uparrow_{s}\rangle + |xy,\downarrow_{s}\rangle)$$

$$\mathcal{P}_{t2g}\mathbf{L}_{\ell=2}\mathcal{P}_{t2g} = -\mathbf{L}_{\ell=1}^{\text{eff}}$$

Strong Coupling Limit Considering only the Kitaev Model ? Super-exchange processes

Oxygen Octahedra

Isotropic Heisenberg Exchange suppressed

Strong Coupling Limit the Kitaev Model ?

Including Hund's coupling and projecting to J_{eff}=1/2 manifold

Isotropic Heisenberg Exchange suppressed G. Jackeli and G. Khaliullin, PRL 102, 256403 (2009)

Strong Coupling Limit the Kitaev Model ?

Including Hund's coupling and projecting to J_{eff}=1/2 manifold

$$\mathcal{H}_{ij}^{(\gamma)} = -JS_i^{\gamma}S_j^{\gamma} \qquad \gamma = x, y, z$$

Exactly Solvable

Quantum Spin Liquid Ground State

Spin-1/2 Spinons are Majorana Fermions (anti-particles to themselves)

G. Jackeli and G. Khaliullin, PRL 102, 256403 (2009)

Pyrochlore Iridates (A₂Ir₂O₇) Type-II Topological Phases ?

Pyrochlore Iridates A₂Ir₂O₇

A= Y, Ho, Dy, Tb, Gd, Eu, Sm, Nd, Pr

A=Y, Ln and Ir reside on the inter-penetrating two pyrochlore lattices (cubic, FCC Bravais lattice)

D. Yanagishima and Y. Maeno, JPSJ 70, 2880 (2001)K. Matsuhira et al JPSJ 76, 043706 (2007)

A₂Ir₂O₇ Metal to Insulator Transition ?

K. Matsuhira et al JPSJ 76, 043706 (2007)

Also Earlier Data from Y. Maeno's Group (2001)

A₂Ir₂O₇ Metal to Insulator Transition ?

5d orbitals of Ir⁴⁺: large spin-orbit coupling

 $Ir^{4+} = [Xe] 4f^{14} 5d^5$

Construct tight binding model for J_{eff}=1/2 + Hubbard U

Crystal Field

Spin-Orbit Coupling

$$|\uparrow_{j}\rangle = \frac{1}{\sqrt{3}}(i|xz,\downarrow_{s}\rangle + |yz,\downarrow_{s}\rangle + |xy,\uparrow_{s}\rangle)$$
$$|\downarrow_{j}\rangle = -\frac{1}{\sqrt{3}}(i|xz,\uparrow_{s}\rangle - |yz,\uparrow_{s}\rangle + |xy,\downarrow_{s}\rangle)$$

 $\mathcal{P}_{t2g}\mathbf{L}_{\ell=2}\mathcal{P}_{t2g} = -\mathbf{L}_{\ell=1}^{\text{eff}}$

Generic Phase Diagram

W. Witczak-Krempa, Y. B. Kim (2012)

WSM = Weyl Semi-Metal

Semi-metal with 3D Dirac points in the bulk

Effect of Interaction: Hartree-Fock

Magnetic Insulator

Weyl Semi-Metal

Semi-Metal

W. Witczak-Krempa, Y. B. Kim, PRB 85, 045124 (2012)

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

9

Integer Quantum Hall state: C=I

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Integer Quantum Hall state: C=I

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Integer Quantum Hall state: C=I

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Surface State: Fermi arcs at the surface BZ

A pair of Weyl fermion points related by inversion; carry opposite chirality

$$\mathcal{H} = \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{k} \ \sigma_i \qquad c = \operatorname{sign}(\mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3) = \pm 1$$

Effect of Interaction: Hartree-Fock

Magnetic Insulator

Weyl Semi-Metal

Semi-Metal

W. Witczak-Krempa, Y. B. Kim, PRB 85, 045124 (2012)

Minimal Hamiltonian: Luttinger Model

 $\vec{k}\cdot\vec{p}~$ expansion near Γ

$$\mathcal{H}_0(k) = \alpha_1 k^2 + \alpha_2 (\vec{k} \cdot \vec{J})^2 + \alpha_3 (k_x^2 J_x^2 + k_y^2 J_y^2 + k_z^2 J_z^2)$$
$$= \frac{k^2}{2\tilde{M}_0} + \frac{(\frac{5}{4}k^2 - \vec{k} \cdot \vec{J})^2}{2m} - \frac{(k_x^2 J_x^2 + k_y^2 J_y^2 + k_z^2 J_z^2)}{2M_c}$$

$$ec{J}=(J_x,J_y,J_z)$$
 are J=3/2,4 x 4 matrices

Quadratic band touching of two B. J. Yang, Y. B. Kim doubly-degenerate bands (2010)

$$\begin{aligned} & \text{Time-Reversal Symmetry Breaking} \\ H_{\text{field}} &= C_1 (H_x J_x + H_y J_y + H_z J_z) + C_2 (H_x J_x^3 + H_y J_y^3 + H_z J_z^3) \\ & = U_1 (\{k_x, k_y\} V_z + \{k_y, k_z\} V_y + \{k_z, k_x\} V_y) \\ & + D_2 (J_x J_y J_z + J_z J_y J_x) \\ & V_x &\equiv \{(J_y^2 - J_z^2) J_x\}, V_y &\equiv \{(J_z^2 - J_x^2) J_y\}, V_z &\equiv \{(J_x^2 - J_y^2) J_z\} \end{aligned}$$

T. Hsieh, L. Fu (2012) E. G. Moon, C. Xu, Y. B. Kim, L. Balents (2012)

Both types of perturbations can generate Weyl fermions

Time-Reversal Symmetry Breaking and Strain

$$\mathcal{H}' = -\delta(J_z^2 - \frac{5}{4}) - H(\cos(\theta)J_z + \sin(\theta)J_z^3),$$

E. G. Moon, C. Xu, Y. B. Kim, L. Balents, arXiv:1212.1168

Long-range Coulomb interaction

Relevant in RG sense near the non-interacting limit

 $\varepsilon = 4 - d$ expansion leads to non-trivial interacting (isotropic) fixed point

Non-Fermi Liquid scaling in physical quantities

$$z \approx 1.8 \qquad C_v \sim T^{d/z} \approx T^{1.7} \qquad \chi \sim a + bT^{0.5}$$

$$\chi_3 = \left. \frac{\partial^3 M}{\partial H^3} \right|_{H=0} \sim T^{-1.7} \qquad \sigma(\omega, T) \sim T^{1/z} \mathcal{F}(\omega/T) \qquad \sigma_{xy} \sim M^{0.51}$$

E. G. Moon, C. Xu, Y. B. Kim, L. Balents, arXiv:1212.1168

$Pr_2Ir_2O_7$

Large anomalous Hall effect with "small" magnetization

Large χ_3

he suscep-F scheme 0.77 K) to mot be as Beyond Single-Particle Picture Cluster Dynamical Mean-Field Theory (CDMFT)

Interaction Effect in CDMFT

$$H = \sum_{\langle \mathbf{R}i, \mathbf{R}'i' \rangle, \sigma\sigma'} ([T_o]_{\sigma\sigma'}^{ii'} + [T_d]_{\sigma\sigma'}^{ii'}) c_{\mathbf{R}i\sigma}^{\dagger} c_{\mathbf{R}'i'\sigma'} - \mu \sum_{\mathbf{R}i, \sigma} c_{\mathbf{R}i\sigma}^{\dagger} c_{\mathbf{R}i\sigma} + U \sum_{\mathbf{R}i} n_{\mathbf{R}i\uparrow} n_{\mathbf{R}i\downarrow}$$

Cluster (Tetrahedron) with N_c=4

Bath Sites with Nb=8

A. Go, W. Witczak-Krempa, G.S.Jeon, K. Park, Y.B.Kim, PRL (2012)

Green's function criteria for inversion correlated topological phases symmetry

$$\hat{G}^{-1}(\omega, \Gamma_i) |\alpha(\omega, \Gamma_i)\rangle = \mu_{\alpha}(\omega, \Gamma_i) |\alpha(\omega, \Gamma_i)\rangle$$

$$\hat{P} |\alpha(\omega, \Gamma_i)\rangle = \eta_{\alpha} |\alpha(\omega, \Gamma_i)\rangle$$

$$\hat{\Gamma}_i : \text{TRIM (time reversative invariant momentum)}$$

$$\hat{P} |\alpha(\omega, \Gamma_i)\rangle = \eta_{\alpha} |\alpha(\omega, \Gamma_i)\rangle$$

 $\eta_{\alpha} = \pm 1$ Parity Eigenvalue

$$(-1)^{\Delta} = \prod_{\text{R-zero}} \eta_{\alpha}^{1/2}$$

R-zero $\Leftrightarrow \mu_{\alpha}(0, \mathbf{k}) > 0$

 $\Delta=0,1$

 $\Delta = 1$: Correlated Topological Insulator

Z. Wang, X.-L.Qi, and S.-C. Zhang, arXiv: 1201.6431 (2012)

Green's function criteria for inversion correlated topological phases symmetry

$$(-1)^{\Delta} = \prod_{\text{R-zero}} \eta_{\alpha}^{1/2}$$

R-zero $\Leftrightarrow \mu_{\alpha}(0, \mathbf{k}) > 0$

$$\begin{array}{ll} \text{Magneto-Electric} & \mathbf{P} = \theta \frac{\alpha}{(2\pi)^2} \mathbf{B} & \mathcal{L}_{\theta} = \theta \frac{\alpha}{(2\pi)^2} \mathbf{E} \cdot \mathbf{B} \\ & \text{effect} & \end{array}$$

For TI,
$$\Delta=1$$
 $heta=\pi$

Z. Wang, X.-L.Qi, and S.-C. Zhang, arXiv: 1201.6431 (2012)

A. Go, W. Witczak-Krempa, G.S.Jeon, K. Park, Y.B.Kim, PRL 109, 066401 (2012)

TWS: Topological Weyl Semimetal

AI: Axion Insulator $\Delta = 1$ $\theta = \pi$ Magnetic Order $\mathbf{P} = \theta \frac{\alpha}{(2\pi)^2} \mathbf{B}$ $\mathcal{L}_{\theta} = \theta \frac{\alpha}{(2\pi)^2} \mathbf{E} \cdot \mathbf{B}$ Inversion Symmetry

TWS: Topological Weyl Semimetal

AI: Axion Insulator $\Delta = 1$ $\theta = \pi$ Magnetic Order Gapped surface state Magneto-Electric Effect

possibility discussed in X. Wan, et al, PRB 83, 205101 (2011)

TWS: Topological Weyl Semimetal

AI: Axion Insulator $\Delta = 1$ $\theta = \pi$ Magnetic Order Correlation in the cluster important; non-existent in HF

possibility discussed in X. Wan, et al, PRB 83, 205101 (2011)

Connection to Experiments

muSR: Magnetic Order ?

S. Zhao, D. E. MacLaughlin, S. Nakatsuji et al, (2011)

$Eu_2Ir_2O_7$

Eu³⁺ is non-magnetic Magnetic moments from $|r^{4+}|$ $T_M = 120K$

Neutron (elastic/inelastic) Non-magnetic muSR A-site $Eu_2Ir_2O_7$ Yes (< 120K) ? (single crystal) S. Zhao, D. MacLaughlin, Nakatsuji et al, (2011) $< 0.5 \mu_B$ $Y_2Ir_2O_7$ Yes (< 150K) M.C. Shapiro, I. R. Fisher et al, (2012) S. M. Disseler et al, (2012) S. M. Disseler et al, (2012) Magnetic A-site Nd³⁺ ordered ? K. Tomiyasu, K. Yamada et al, (2011) Damped (< 8K) $Nd_2Ir_2O_7$ Not detected S. M. Disseler et al, (2012) J=9/2 S. M. Disseler et al, (2012)

Yb₂**I**r₂**O**₇ J=7/2

Yes (< 130K) 5. M. Disseler et al, (2012)

 $< 0.5 \mu_B$ S. M. Disseler et al, (2012)

Elastic Resonant X-ray Scattering

H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J. Ishikawa, E. O'Farrell, S. Nakatsuji (2013)

$Eu_2Ir_2O_7$

q=0 magnetic order confirmed

But need inelastic resonant X-ray scattering to directly prove the all-in/all-out order

Finite Temperature (Hartree-Fock)

,

High Pressure Experiment


```
Eu_2Ir_2O_7
```

```
F. F. Tafti,
J. J. Ishikawa,
A. McCollam,
S. Nakatsuji,
S. R. Julian,
2012
```

Spin-Orbit + Interactions + Frustration Exotic Phases of Matter !

