Quantum Criticality and Orbital-dependent Renormalization of Quasiparticles in $Ca_{2-x}Sr_{x}RuO_{4}$

-Importance of spatial correlation near a magnetic QCP-

Naoya Arakawa

The University of Tokyo

Acknowledgements: Y. Yanase, T. Kariyado, H. Kontani, S. Onari, Y. Yamakawa, ISSP Super Comp.

Contents

- Introduction
 - Electronic structure for Ru oxides; e.g., Sr₂RuO₄
 - Importance of Ru t_{2g} orbitals and Octahedral distortions
 - Heavy fermion behavior in $Ca_{2-x}Sr_xRuO_4$ around x = 0.5
- Method
 - Effective model in the presence of the octahedral rotation
 - Fluctuation-exchange (FLEX) approximation
- Results: Mag. prop.s and Renormalization of QPs
 - Roles of the octahedral rotation
 - Roles of the van Hove singularity (vHs) for the d_{xy} orbital
- Summary and Message

Contents

- Introduction
 - Electronic structure for Ru oxides; e.g., Sr₂RuO₄
 - Importance of Ru t_{2g} orbitals and Octahedral distortions
 - Heavy fermion behavior in $Ca_{2-x}Sr_xRuO_4$ around x = 0.5
- Method
 - Effective model in the presence of the octahedral rotation
 - Fluctuation-exchange (FLEX) approximation
- Results: Mag. prop.s and Renormalization of QPs
 - Roles of the octahedral rotation
 - Roles of the van Hove singularity (vHs) for the d_{xy} orbital
- Summary and Message

Electronic structure for Ru oxides; e.g., Sr₂RuO₄

Y. Maeno et al., Nature(London), 372, 532 (1994).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

► Cond. bands: Antibonding orbitals between Ru t_{2g} and O 2p

• quasi 2D γ -FS and quasi 1D α/β -FS:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► Cond. bands: Antibonding orbitals between Ru t_{2g} and O 2p

• quasi 2dim. γ -FS and quasi 1dim. α/β -FS:

・ロッ ・聞 ・ ・ ヨッ ・

Right fig. (ARPES): A. Damascelli et al., PRL 85, 5194 (2000).

Importance of Ru t_{2g} orbitals and Octahedral distortions

e.g. Ca_{2-x}Sr_xRuO₄

e.g., see S. Nakatsuji et al., PRL 90, 137202 (2003); O. Friedt et al., PRB 63, 174432 (2001)

Cf. Wrong proposal by μ SR: $m_{
m AF} \sim 0.25 \mu_{
m B}$ at x = 1.5

- \rightarrow This should be understood as short-range order.
 - : Elastic neutron: $m_{\rm AF} = 0$ at x = 1.5

Heavy fermion behavior in $Ca_{2-x}Sr_{x}RuO_{4}$ around x = 0.5Q. WHAT is more important in enhancing m^{*} than the location of the vHs?

e.g. Ca_{2-x}Sr_xRuO₄

	x = 2	$1.5 > x \ge 0.5$	$0.5 > x \ge 0.2$	$0.2 > x \ge 0$		
RuO ₆		¢ rotation	<pre></pre>	ϕ $0.4 \times = 0.5$ 0.65 0.7 9 0.7 9		
vHs	60meV	-20meV @x=0.5		x=2.0 → x=0.5		
γ_{e}	$37.5 \text{mJ/mol} \text{K}^2$	255 mJ/mol K ² @x=0.5	χ (men	100 nu/mol)		
e.g., see S. Nakatsuji <i>et al.</i> , PRL 90 , 137202 (2003); O. Friedt <i>et al.</i> , PRB 63 , 174432 (2001) Cf. Case of La-doped Sr ₂ RuO ₄ : $\gamma_{e} \approx 50 \text{mJ/mol} \text{ K}^2$						

N. Kikugawa et al., PRB 70, 060508(R) (2004)

▶ Proposal of Orbital-selective MT for $d_{xz/yz}$ around x = 0.5

▶ Proposal of Orbital-selective MT for $d_{xz/yz}$ around x = 0.5

Its inconsistency with ARPES and Optical measurements

)_{x104}

2.5

x=2.00

2.0

(a) 3.0

еV

L. de' Medici et al., PRL (2011)

(ロ) (部) (E) (E)

æ

L. de' Medici et al., PRL (2011)

▶ Proposal of "Hund's metal" in Sr_2RuO_4 ; U = 2.3eV

J [eV]	$m^*/m_{\rm LDA} _{xy}$	$m^*/m_{\text{LDA}} _{xz}$	T_{xy}^* [K]	T_{xz}^* [K]
0.0, 0.1	1.7	1.7	>1000	>1000
0.2	2.3	2.0	300	800
0.3	3.2	2.4	100	300
0.4	4.5	3.3	60	150

J. Mravlje et al., PRL (2011)

(ロ) (部) (E) (E)

크

L. de' Medici et al., PRL (2011)

▶ Proposal of "Hund's metal" in Sr_2RuO_4 ; U = 2.3eV

J [eV]	$m^*/m_{\rm LDA} _{xy}$	$m^*/m_{\rm LDA} _{xz}$	T_{xy}^* [K]	T_{xz}^* [K]
0.0, 0.1	1.7	1.7	>1000	>1000
0.2	2.3	2.0	300	800
0.3	3.2	2.4	100	300
0.4	4.5	3.3	60	150

J. Mravlje et al., PRL (2011)

- Its inconsistency with experimental results
 - ► Exp. for $Ca_{2-x}Sr_xRuO_4(x < 2)$: $\binom{m_{xy}^*/m_{xy}}{m_{xy}} \gg \binom{m_{xz/yz}^*/m_{xz/yz}}{m_{xz/yz}}$

• Gutzwiller analysis for x = 0.5: $(m_{xy}^*/m_{xy}) < (m_{xz/yz}^*/m_{xz/yz})$

Gutzwiller analysis: N. Arakawa and M. Ogata, PRB 86, 125126 (2012)

Heavy fermion behavior in $Ca_{2-x}Sr_xRuO_4$ around x = 0.5

Q. WHAT is more important in enhancing m^* than the location of the vHs?

e.g. Ca_{2-x}Sr_xRuO₄

N. Kikugawa et al., PRB 70, 060508(R) (2004) < => < =>

크

Contents

- Introduction
 - Electronic structure for Ru oxides; e.g., Sr₂RuO₄
 - Importance of Ru t_{2g} orbitals and Octahedral distortions
 - Heavy fermion behavior in $Ca_{2-x}Sr_xRuO_4$ around x = 0.5
- Method
 - Effective model in the presence of the octahedral rotation
 - FLEX approximation
- Results: Mag. prop.s and Renormalization of QPs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Roles of the octahedral rotation
- Roles of the vHs for the d_{xy} orbital
- Summary and Message

Effective model in the presence of the octahedral rotation

Details→ N. Arakawa and M. Ogata, PRB 86, 125126 (2012)

- Main changes induced by the octahedral rotation:
 - Reduction of the NN hopping int.s (mainly for d_{xy})
 - Downwards shift for d_{xy} due to $t_{xy,x^2-y^2}^{AB}(\phi)$

Treatment of electron correlation: FLEX approximation

$$\hat{H} = \sum_{k}' \sum_{a,b=1}^{3} \sum_{I,I'=A,B} \epsilon_{ab}^{II'}(k,\phi) \hat{c}_{kaI}^{\dagger} \hat{c}_{kbI'} + U \sum_{i,a} \hat{n}_{ia\uparrow} \hat{n}_{ia\downarrow} + U' \sum_{i} \sum_{a>b} \hat{n}_{ia} \hat{n}_{ib}$$

(日) (圖) (필) (필) (필) (필)

$$-J_{\rm H}\sum_{i}\sum_{a>b}(2\hat{s}_{ia}\cdot\hat{s}_{ib}+\frac{1}{2}\hat{n}_{ia}\hat{n}_{ib})+J'\sum_{i}\sum_{a>b}\hat{c}^{\dagger}_{ia\uparrow}\hat{c}^{\dagger}_{ia\downarrow}\hat{c}_{ib\downarrow}\hat{c}_{ib\uparrow}$$

- Merits of the FLEX approx.:
 - To partially take account of the mode-mode coupling
 - To satisfy several conservation laws automatically
 - \rightarrow Possible to discuss properties at low T near a QCP!

Treatment of electron correlation: FLEX approximation

$$\hat{H} = \sum_{k}' \sum_{a,b=1}^{3} \sum_{I,I'=A,B} \epsilon_{ab}^{II'}(k,\phi) \hat{c}_{kaI}^{\dagger} \hat{c}_{kbI'} + U \sum_{i,a} \hat{n}_{ia\uparrow} \hat{n}_{ia\downarrow} + U' \sum_{i} \sum_{a>b} \hat{n}_{ia} \hat{n}_{ib}$$

$$-J_{\rm H}\sum_{i}\sum_{a>b}(2\hat{s}_{ia}\cdot\hat{s}_{ib}+\frac{1}{2}\hat{n}_{ia}\hat{n}_{ib})+J'\sum_{i}\sum_{a>b}\hat{c}^{\dagger}_{ia\uparrow}\hat{c}^{\dagger}_{ia\downarrow}\hat{c}_{ib\downarrow}\hat{c}_{ib\uparrow}$$

- Merits of the FLEX approx.:
 - To partially take account of the mode-mode coupling
 - To satisfy several conservation laws automatically
 - \rightarrow Possible to discuss properties at low T near a QCP!
- ► FLEX approx. for $\Phi_{\text{LW}}[\hat{G}]$ consisting of el-h bubbles and ladders 1. $\hat{G}(k) = \hat{G}^{0}(k) + \hat{G}^{0}(k)\hat{\Sigma}(k)\hat{G}(k)$ 2. $\hat{\chi}(q) = -\frac{T}{N}\sum_{k}\hat{G}(k)\hat{G}(k+q)$ 3. $\hat{\chi}^{\text{S}}(q) = (\hat{1} - \hat{\chi}(q)\hat{\Gamma}^{\text{S}})^{-1}\hat{\chi}(q), \ \hat{\chi}^{\text{C}}(q) = (\hat{1} - \hat{\chi}(q)\hat{\Gamma}^{\text{C}})^{-1}\hat{\chi}(q)$ 4. $\hat{V}(q) = \frac{3}{2}\hat{\Gamma}^{\text{S}}\hat{\chi}^{\text{S}}(q)\hat{\Gamma}^{\text{S}} + \frac{1}{2}\hat{\Gamma}^{\text{C}}\hat{\chi}^{\text{C}}(q)\hat{\Gamma}^{\text{C}} + (\frac{3}{2}\hat{\Gamma}^{\text{S}} + \frac{1}{2}\hat{\Gamma}^{\text{C}}) - \hat{\Gamma}^{\uparrow\downarrow}\hat{\chi}(q)\hat{\Gamma}^{\uparrow\downarrow}$ 5. $\hat{\Sigma}(k) = \frac{T}{N}\sum_{q}\hat{V}(q)\hat{G}(k-q)$

< □ > < @ > < 注 > < 注 > ... 注

T. Takimoto et al., PRB (2004); H. Ikeda et al., PRB (2010)

Contents

- Introduction
 - Electronic structure for Ru oxides; e.g., Sr₂RuO₄
 - Importance of Ru t_{2g} orbitals and Octahedral distortions
 - Heavy fermion behavior in $Ca_{2-x}Sr_xRuO_4$ around x = 0.5
- Method
 - Effective model in the presence of the octahedral rotation
 - FLEX approximation
- Results: Mag. prop.s and Renormalization of QPs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Roles of the octahedral rotation
- Roles of the vHs for the d_{xy} orbital
- Summary and Message

Roles of the rotation in Mag. prop.s

- ► IC FM spin fluc.s \nearrow , related with two dominant fluc.s for x = 2
- Flat q dep. of $\hat{\chi}^{\mathrm{S}}(q, 0)$ (a) $x=2^{3}$ $\phi=0^{\circ}$ (b) x=0.5 $\phi=15^{\circ}$

Cf. RPA for x = 2: T. Nomura and K. Yamada, JPSJ (2000); FLEX for x = 2: Y. Yanasa and M. Ogata, JPSJ (2003) 🦿 🔍

Roles of the rotation in Renormalization of QPs

Roles of the vHs in Mag. prop.s

IC FM spin fluc.s: dominant

200

Roles of the vHs in Renormalization of QPs

• Slight deviation of vHs \rightarrow Enhancement of $\frac{m_{xy}^2}{m_{xy}}$

Q. WHAT is more important in enhancing m^* than the location of the vHs? A. Flat q dep. of $\hat{\chi}^{\rm S}(q, 0)$.

Summary and Message

- Roles of the octahedral rotation:
 - ▶ IC FM spin fluc.s \nearrow , related with dominant fluc.s for x = 2
 - Flat $oldsymbol{q}$ dep. of $\hat{\chi}^{\mathrm{S}}(oldsymbol{q}, \mathsf{0})$
 - Enhancement of $\frac{m_{xy}^*}{m_{xy}}$ and $\frac{m_{xz/yz}^*}{m_{xz/yz}}$
 - Enhancement of $\frac{m_{xy}^*}{m_{xy}^*}$

•
$$\frac{m_{xy}^*}{m_{xy}} > \frac{m_{xz/yz}^*}{m_{xz/yz}}$$
 for all $\frac{J_{\rm H}}{U}$

- Roles of the vHs for the d_{xy} orbital:
 - IC FM spin fluc.s: dominant
 - ▶ Flat $m{q}$ dep. of $\hat{\chi}^{\mathrm{S}}(m{q},0)$ due to the slight deviation of vHs
 - $\frac{m_{xy}^*}{m_{xy}} \nearrow$ due to the slight deviation of vHs

•
$$\frac{m_{xy}^*}{m_{xy}} > \frac{m_{xz/yz}^*}{m_{xz/yz}}$$
 for all $\frac{J_{\rm H}}{U}$

Q. WHAT is more important in enhancing m^* than the location of the vHs? A. Flat q dep. of $\hat{\chi}^{\rm S}(q, 0)$.

900

Effects of $J_{\rm H}$ on Mag. prop.s

- x = 2: Monotonic enhancement, i.e. enhancement of spin fluc.s
- ► x = 0.5: Monotonic enhancement around q = (0, 0) and Nonmonotonic enhancement around $q = (\pi, 0)$

Cf. For spin-orbital combined fluc., see Y. Yamashita and K. Ueda, PRB (2003).