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Transport in strongly-correlated materials

« Strongly-correlated systems often display unconventional
behaviors, rich phase diagrams

e This Is also true for their transport properties:

- Bad metallic behavior at high temperatures with
resistivity incompatible with Drude description

- Fermi liquid only at very low temperatures (if at all)

* Resistivity first measured but last understood!



Mott loffe Regel limit

* Quasiparticle description can only make sense if mean
free path Is longer than the Fermi wavelength

 For a simple quasi 2d geometry with Drude
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e Setting krl = 1 we get a maximum Mott-loffe-Regel
resistivity
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Gunnarsson, Calandra and Han, RMP (2003)
Hussey, Takenaka and Takagi, Phil. Mag. (2004)



A prototypical bad metal: Sr RuO,
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The key guestions

How to describe transport in strongly-correlated metals?

What is T, ? Are there still quasiparticles above T, ?

What happens for T, < T <T,,;? Is a Drude description
still possible even without Landau quasiparticles?

What happens at T,,;? Is there any signal of
disappearing quasiparticles?

Why are these questions interesting?



The simplest model

Hole-doped single-band Hubbard model within DMFT
U = 4D, D = half-bandwidth (typically D ~ 1eV)
Computing transport is very delicate!

- Numerical Renormalization Group
Ljubljana code, http://nrgljubljana.ijs.si

- Continuous-time quantum Monte Carlo both hybridization

and interaction expansion versions + Pade approximants
TRIQS, http://ipht.cea.fr/trigs, Gull et. al, RMP (2011)

Allow to study the full range of temperatures and to
cross-check results

Palsson et al., PRL (1998); Merino and McKenzie, PRB (2000); Limelette et
al., PRL and Science (2003); Grete et al., PRB (2010), ...



Conductivity within DMFT

 The dynamical mean-field theory (DMFT) maps the

original lattice model on a self-consistent quantum
Impurity problem

« Self-energy has no momentum dependence
1 1

e \Vertex corrections vanish

o= 27;;2 /dw( — aggj)) kaA(k,w)va(k,w)
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Three transport regimes

* NoO quasiparticles
above T, 5

e FL below T,

* Big region
with “resilient”
guasiparticles
that are not
Fermi-liquid
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Resistivity versus temperature
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Fermi liquid regime

e« T, =0.050D (a very small scale)

* Proportional to Brinkman-Rice scale oD but with a small

prefactor

« Much smaller than T,
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Resilient quasiparticle regime
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Spectral function intensity maps

It would be very useful to see the dark side of the Fermi surface!



Signatures in optical conductivity

* Merging of Drude
peak and mid-
Infrared peak
at T,

* Redistribution of
spectral weight over
wide range at T,,5

e Only involving up
to mid-infrared
below T,
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Description of transport

« Up to intermediate temperature, transport is controlled by
the temperature dependence of the scattering rate

« At higher temperatures, the scattering rate saturates and
It Is rather the effective carrier number that matters

* Eventually we reach an incoherent regime. Think of it as
carriers in rigid Hubbard bands
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Particle-hole asymmetry

* Longer lifetimes for electron-like excitations
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Consequence for thermopower

« Seebeck coefficient in the resilient QP regime has a
minimum dominated by electron-like quasiparticles
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Summary

Well-defined QP exist above T, all the way upto T,,«
with a resistivity much smaller than the MIR value

In the bad metallic regime above T,,, QP have

disappeared. The system is not really metallic, it
looks more like a doped semiconductor

Spectroscopic signatures (a lot of action on the dark
side of the Fermi surface)

Hole-doped: electron-like excitations are longer-lived

Motivation for the quest of low-T quasiparticles
(maybe relevant for cuprates?)
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