Exact ground states in three-leg spin tubes

Miklós Lajkó Wigner Research Centre for Physics Institute for Solid State Physics and Optics Budapest

Karlo Penc

Philippe Sindzingre

3th June, 2013

Emergent Quantum Phases in Condensed Matter Workshop

Outline

- Projection based Hamiltonians
- * 2D S=1/2 lattice
- 3-leg spin tubes
- Projection based model on the spin tube
- Numerical results
 - Exact ground states
 - Variational estimates
 - Tuning the interactions

Projection operator approach

$$H_{AKLT} = \sum_{i} \operatorname{Proj}\left(|\mathbf{S}_{i} + \mathbf{S}_{i+1}| = 2\right)$$

$$H_{MG} = \sum_{i} \mathbf{S}_{i} \mathbf{S}_{i+1} + \frac{1}{2} \sum_{i} \mathbf{S}_{i} \mathbf{S}_{i+2}$$

C K Majumdar and D Ghosh, J. Math. Phys. 10, 1388 (1969).

$$H_{AKLT} = \sum_{i} \frac{1}{3} + \frac{1}{2} \mathbf{S}_{i} \mathbf{S}_{i+1} + \frac{1}{6} \left(\mathbf{S}_{i} \mathbf{S}_{i+1} \right)^{2}$$

I Affleck, T Kennedy, E H Lieb, and H Tasaki, Comm. Math. Phys. 115, 477 (1988).

S=1/2 square lattice

$$H = \sum_{\alpha:\Box} \operatorname{Proj} \left\{ S_{\alpha}^{T} = 2 \right\}$$

- L₁xL₂ = N spins ->N/2 singlet bonds, N plaquettes every plaquette should have a singlet
- Many nearest neighbour valence bond covering ground state if L₁ and L₂ are even
- Exact diagonalization: Non-trivial singlet, even triplet ground states, even when L₁ or L₂ are odd (or both!!)

Simplest case: three-leg tube

Three-leg tubes

[(CuCl₂tachH)₃Cl]Cl₂

Cu₃Cl triangles S=1/2 $J_1/J_2 \approx 3.4$

G. Seeber, P. Kögerler, B. M. Kariuki, and L. Cronin, Chem. Commun. (Cambridge) 2004, 1580 (2004)

Three-leg tubes

 Cr^{3+} ions e_g^3 band: S=3/2

Hirotaka Manaka et al., Journal of the Physical Society of Japan, 78(9):093701, 2009.

Three-leg tube + projection operator

2

1.5

E ¹

0.5

0

2

1.5

1

0.5

0

 \odot

0

Е

⊿

 \Diamond

 \diamond

0

 \bigcirc

 $\pi/5$

 \Diamond

2π/9

No nearest neighbour valence bond ground states Exact diagonalization: 0 energy ground states

 $2\pi/5$

4π/9

k

3π/5

⊛

 $6\pi/9$

 $4\pi/5$

◬

◬

◬

 \Diamond

 \bigcirc

8π/9

 \odot

π

 \bigcirc

 \diamond

۵

 A_2

3x10

3x9

Single spin-triangle

$$\mathbf{S}_{1} \cdot \mathbf{S}_{2} + \mathbf{S}_{2} \cdot \mathbf{S}_{3} + \mathbf{S}_{3} \cdot \mathbf{S}_{1} = \frac{1}{2} \left(\mathbf{S}_{1} + \mathbf{S}_{2} + \mathbf{S}_{3} \right)^{2} + \text{const.}$$

$$4x \text{ S}^{\text{TOT}} = \frac{3}{2} \left(\mathbf{S}_{1} + \mathbf{S}_{2} + \mathbf{S}_{3} \right)^{2} + \text{const.}$$

$$4x \text{ S}^{\text{TOT}} = \frac{1}{2} \left(\mathbf{S}_{1} + \mathbf{S}_{2} + \mathbf{S}_{3} \right)^{2} + \text{const.}$$

 $4x S^{TOT}=1/2$

D_3	Ε	$2C_3$	$3C_{2}'$
$egin{array}{c} A_1 \ A_2 \end{array}$	1 1	1 1	1 -1
Ε	2	-1	0

$$\sigma^{\uparrow,l} = + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}}$$
$$\sigma^{\uparrow,r} = + e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}}$$

$$\mathbf{C}_{3}\sigma^{\uparrow,l} = e^{i\frac{2\pi}{3}}\sigma^{\uparrow,l} \qquad \mathbf{C}_{2}\sigma^{\uparrow,l} = -\sigma^{\uparrow,r}$$
$$\mathbf{C}_{3}\sigma^{\uparrow,r} = e^{-i\frac{2\pi}{3}}\sigma^{\uparrow,r} \qquad \mathbf{C}_{2}\sigma^{\uparrow,r} = -\sigma^{\uparrow,l}$$

Three-leg tube + projection operator

$$\mathcal{H} = K_{\triangle} \sum_{i=1}^{L} P_i + K_{\Box} \sum_{i=1}^{L} \sum_{j=1}^{3} R_{(i,j)(i+1,j)(i+1,j+1)(i,j+1)}$$

$$P_i = \operatorname{Proj}\left\{S_i^{\triangle} = 3/2\right\} \qquad \qquad R_{\alpha} = \operatorname{Proj}\left\{S_{\alpha}^T = 2\right\}$$

$$\mathcal{H} = \sum_{i=1}^{L} \sum_{j=1}^{3} \left\{ J_{\perp} \mathbf{S}_{i,j} \cdot \mathbf{S}_{i,j+1} + J_1 \mathbf{S}_{i,j} \cdot \mathbf{S}_{i+1,j} \right. \\ \left. + J_2 \left(\mathbf{S}_{i,j} \cdot \mathbf{S}_{i+1,j+1} + \mathbf{S}_{i,j} \cdot \mathbf{S}_{i+1,j-1} \right) \right. \\ \left. + J_{\text{RE}} \left[\left(\mathbf{S}_{i,j} \cdot \mathbf{S}_{i+1,j} \right) (\mathbf{S}_{i,j+1} \cdot \mathbf{S}_{i+1,j+1} \right) \right. \\ \left. + \left(\mathbf{S}_{i,j} \cdot \mathbf{S}_{i,j+1} \right) (\mathbf{S}_{i+1,j} \cdot \mathbf{S}_{i+1,j+1} \right) \right. \\ \left. + \left(\mathbf{S}_{i,j} \cdot \mathbf{S}_{i+1,j+1} \right) (\mathbf{S}_{i,j+1} \cdot \mathbf{S}_{i,j+1} \right) \right] \right\},$$

Weakly coupled triangles

$$\mathcal{H} = K_{\Delta} \sum_{i=1}^{L} P_i + K_{\Box} \sum_{i=1}^{3} \sum_{j=1}^{3} R_{(i,j)(i+1,j)(i+1,j+1)(i,j+1)}$$

$$K_{\Delta} \gg 1$$

$$\mathcal{H}' = \frac{5}{9} \sum_{i=1}^{L} \left(\frac{3}{4} + \hat{\sigma}_i \cdot \hat{\sigma}_{i+1}\right) \left(1 + \hat{\tau}_i^{\dagger} \hat{\tau}_{i+1}^{-} + \hat{\tau}_i^{-} \hat{\tau}_{i+1}^{+}\right),$$

0 for spin singlet 0 for chirality singlet

$$\mathbf{1} = \frac{1}{2} \sum_{i=1}^{L} \left(\frac{3}{4} + \hat{\sigma}_i \cdot \hat{\sigma}_{i+1}\right) \left(1 + \hat{\tau}_i^{\dagger} \hat{\tau}_{i+1}^{-} + \hat{\tau}_i^{-} \hat{\tau}_{i+1}^{+}\right),$$

0 for spin singlet 0 for chirality singlet

$$\mathbf{1} = \frac{1}{2} \sum_{i=1}^{L} \left(\frac{3}{4} + \hat{\sigma}_i \cdot \hat{\sigma}_{i+1}\right) \left(1 + \hat{\tau}_i^{\dagger} \hat{\tau}_{i+1}^{-} + \hat{\tau}_i^{-} \hat{\tau}_{i+1}^{+}\right),$$

0 for spin singlet 0 for chirality singlet

Ground states of \mathcal{H} for all $K_{\Delta} \ge 0$

Dimerized ground states at $K_{\Delta} = 0$

Tubes of odd length, $K_{\Delta} = 0$

$$\mathcal{H}_{1dw}(k) = \begin{pmatrix} \frac{10}{3} (1 - a_L \cos k) & -\frac{10}{\sqrt{3}} (\cos k - a_L) \\ -\frac{10}{\sqrt{3}} (\cos k - a_L) & 10 (1 - a_L \cos k) \end{pmatrix} \qquad 2.$$
$$a_L = 2^{3-L} \qquad \mathsf{E}^{1.2}$$

$$E_1^{\pm}(k) = \frac{5}{36} \left(4 \pm \sqrt{10 + 6\cos 2k} \right)$$

0.1

0

Tubes of even length, $K_{\Delta} = 0$

deconfined two domain wall ground state with 0 energy for finite L Tuning away from $K_{\Delta} = 0$

$$\mathcal{H} = K_{\triangle} \sum_{i=1}^{L} P_i + K_{\Box} \sum_{i=1}^{L} \sum_{j=1}^{3} R_{(i,j)(i+1,j)(i+1,j+1)(i,j+1)} \qquad P_i = \operatorname{Proj}\left\{S_i^{\triangle} = 3/2\right\}$$

Tuning away from $K_{\Delta} = 0$

Spin-3/2 correlation functions

Conclusions

 $\mathcal{H} = K_{\triangle} \sum_{i=1}^{L} P_i + K_{\Box} \sum_{i=1}^{L} \sum_{j=1}^{3} R_{(i,j)(i+1,j)(i+1,j+1)(i,j+1)}$

 $K_{\Delta} \ge 0$, two exact ground states

1 exact ground state with gapless spectrum at a quantum phase transition point ($K_{\Delta} = 0$)

Phys. Rev. Lett 108, 017205/1-5 (2012)

Thank you for your attention

Intermediate phase

effect of open boundary condition

J.-B. Fouet, A. Läuchli, S. Pilgram, R. M. Noack, and F. Mila PHYSICAL REVIEW B 73, 014409

T. Sakai, M. Sato, K. Okamoto, K. Okunishi, and C. Itoi, J. Phys. Condens. Matter 22, 403201 (2010).