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Triangular {CuII
3Cl} clusters, containing a chloro ligand in an

unprecedented trigonal planar coordination mode, are as-
sembled in a 3-D array by the combination of coordinative and
hydrogen-bonded interactions, which result in magnetically
isolated 1-D chains exhibiting a combination of spin frustration
and spin-chain behaviour.

Polynuclear coordination clusters represent an extraordinarily
expanding and diverse subset of molecules with potential for the
pursuit of interesting and technologically applicable properties.1
Traditionally, cluster synthesis has been achieved using both
rational2 and serendipitous3 approaches, but common to both
approaches is the use of bridging and chelating ligands to
encourage the aggregation of the metal centres.1–3 An interesting
route to the construction of a more diverse set of clusters may be
achieved by ligands that can both be involved in coordinative and
hydrogen bonded interactions simultaneously; thereby providing a
route for the external hydrogen bonding of anions to influence the
structure of the cluster formed.4 For this to be feasible, a rigid
ligand with well defined metal binding sites and hydrogen bond
donor/acceptor sites must be utilised.4

In this context we report the novel {CuII3Cl} triangular cluster
compounds 1 and 2 ([Cl(CuCl2tachH)3]X2, tach = cis,trans-
1,3,5-triamino-cyclohexane, X = Cl in 1 and X = Br in 2),‡5 that
are formed by simultaneous coordinative and hydrogen bonded
interactions facilitated by the utilisation of the trans-tach ligand,
see Fig. 1. As a result of the combination of these interactions, the
triangular clusters are arranged into magnetically isolated infinite
chains, within a 3-D network, that is formed by hydrogen bonded
interactions between triangular {CuII3Cl} cluster units, see Fig. 2.6
These materials exhibit a combination of spin frustration and spin-
chain behaviour.7 Furthermore, the trimeric cluster entities repre-
sent the first examples of a coordination complex to support a m3-
chloro ligand in a trigonal planar coordination mode.8

The trimeric clusters are composed of three [CuCl2tachH]+ units
with each of the copper(II) ions chelated by two cis-positioned N

sites of tach (average Cu–N distance = 2.008 Å). The remaining
two basal sites of the tetragonal-pyramidal Cu coordination
environment are occupied by two terminal chloro ligands (average
Cu–Cl distance = 2.325 Å). The fifth, apical site, is completed by
a trigonal planar m3-chloro ligand, a previously unknown coordina-
tion mode for chloro ligands,8 linking the three [CuCl2tachH]+ units
(average m3-Cl–Cu distance = 2.576 Å). Each cluster is anchored
within an extended 3-D array of 36 hydrogen bonded interactions,
see Fig. 2. Within the crystallographic ab plane, the 2-D network
consists of intra- and intermolecular hydrogen bonded interactions.
The intramolecular interactions consist of H-bonds between
terminal chloro ligands and coordinating amino groups (green
dotted lines, average –NH2…Cl(Cu) distance = 3.385 Å) facilitat-
ing the unusual trigonal planar coordination mode of the central m3-
chloro ligand. Additionally, intermolecular H-bonds are found
between protonated trans-amino groups and either two non-
coordinated chloride (1), or two bromide (2) counter-ions (blue
dotted lines, average –NH3+…X distance = 3.176 Å when X = Cl
and 3.313 Å when X = Br), which are themselves located on
crystallographic 3-fold axes. Furthermore, each cluster is involved
in bifurcated intermolecular hydrogen bonded interactions between
protonated trans-amino groups and terminal chloro ligands (pink
dotted lines, average –NH3+…Cl(Cu) distance = 3.219 Å). In
addition to the extensive hydrogen bonded network within each
layer, the coordinating amino groups and terminal chloro ligands
interconnect the {(m3-Cl)CuII3} triangles of neighbouring layers
with an average Cu–NH2…Cl–Cu distance of 3.299 Å to form 1-D
chains along the c axis (red dotted lines).

Here, the trimeric cluster entities are stacked in a hexagonal
fashion parallel to the crystallographic c axis (Fig. 3), such that the
m3-chloro centres are aligned above each other (inter-layer Cl–Cl
separation: 6.314 Å (1) and 6.326 Å (2) compared to intra-layer Cl–
Cl separations of 12.680 Å (1) and 12.696 Å (2)), while the {(m3-
Cl)CuII3} triangles are rotated by 60° to each other.

† Electronic supplementary information (ESI) available: full synthetic and
analytical details. See http://www.rsc.org/suppdata/cc/b4/b402487g/

Fig. 1 Representations of the triangular clusters present in 1 and 2 (left: stick
representation, the Cu ions are shown as spheres; right: CPK overlay of the
primary coordination sphere). The non-coordinated hydrogen bonded halide
counter-ions are omitted. (Cl: green, N: blue, C: grey, Cu: pink). The H
positions are shown in white except those that are involved in the formation
of the Heisenberg chains, shown in red.

Fig. 2 The central view shows the 2-D network with the hydrogen bonded
halide counter-ions in the centre linking three {CuII3Cl} triangular cluster
units (i) via the different classes of hydrogen bonded interactions (coloured
dotted lines). The left views show the primary coordination sphere around
the hydrogen bonded halides (ii) (halides and nitrogen atoms shown as
CPK); the top view is shown projected onto the ab plane and the bottom
view is perpendicular to the c axis. The right view shows a representation of
the 1-D chains formed between the {CuII3Cl} cluster units that run parallel
to the c axis. H: white, Cl: green, N: blue, C: grey, Cu: pink, Cl/Br sites in
1 and 2, respectively: brown.
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 [(CuCl2tachH)3Cl]Cl2  

Cu3Cl triangles

S=1/2 

J1/J2 ≈ 3.4

Three-leg tubes



Chapter 3 Exact ground states in three-leg spin tubes 15

Figure 3.1: Structure of the the CsCrF4. The Cr
3+

ions are connected by F ions inside a tube,

and the tubes are separated by Cs ions. Image taken form [? ].

Figure 3.2: Structure of the the [(CuCl2tachH)3]Cl2 The Cu ions as large black spheres, the N

atoms as small black spheres, the Cl ions as large grey spheres, the carbon atoms as large white

spheres, and the hydrogen atoms as small white spheres. Solid lines represent covalent bonds,

while the dashed lines stand for hydrogen bonds. Image taken form [? ]

.

Another example is the [(CuCl2tachH)3]Cl2 compound, [? ? ], where the magnetic d9
Cu atoms

have a spin-1/2 degree of freedom, forming Cu3Cl triangles. Cu atoms in neighbouring triangles

are connected via Cu−Cl···H−N−Cu superexchange (the dots denote a hydrogen bond between

the Cl and H atoms). Neighboring triangles in a tube are rotated by 180 degrees compared to

each other, resulting in a triangular structure (see Fig. 3.2). Despite the long exchange route,

experiments show that the superexchange between the triangles is of the same magnitude as the

intra-triangle exchange mediated by chloro-ligands and hydrogen bonds.

From now on we will consider the S=1/2 case, and will give an introduction to the common

properties of these systems.

Three-leg tubes
CsCrF4

Hirotaka Manaka et al.,  Journal of the Physical Society of Japan, 78(9):093701, 2009.

Cr3+ ions eg3 band: S=3/2 



Exact diagonalization: 0 energy 
ground states

No nearest neighbour valence 
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surprising, we find an S=1/2 doublet ground state with 0 energy for tubes of odd length as

well ( See Fig. 3.5). In both cases periodic boundary conditions are considered. The energy

eigenstates can be classified by the irreducible representations of the D3 symmetry group, and

the longitudinal wave vector.
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Figure 3.5: Results of exact diagonalizion for tubes of 10 (a) and 9 (b) triangles. A1, A2 and E
are the three irreducible representations of the D3 symmetry group of a triangle, k is the wave
number in the longitudinal direction. Empty symbols denote singlet (S=0), filled symbols

denote triplet (S=1) states.

Since the construction of the nearest neighbor valence bond coverings can’t explain these ground

states, we need to find a new approach. The introduction of a K� term allows us to study the

limiting cases of weakly coupled triangles. The model we consider is

H = K�
L�

i=1

Pi + K�
L�

i=1

3�

j=1

R(i, j)(i+1, j)(i+1, j+1)(i, j+1), (3.7)

with R(i, j)(i+1, j)(i+1, j+1)(i, j+1) acting on the square plaquettes as explained before, and Pi acting

on the triangles, projecting onto the states where the total spin of the triangle is 3/2. Pi =

(4S�i · S
�
i − 3)/12, where S�i =

�3
j=1 Si, j is the total spin operator of the ith triangle. Changing

K� basically changes the intra-triangle coupling allowing us to tune the system between the two

weakly coupled limits. By α denoting a four site plaquette, Rα can be written as

Rα = (Sα · Sα)(Sα · Sα − 2)/24 (3.8)

3x10

3x9

H =
�

α:�
Proj

�
S

T
α = 2

�
Three-leg tube + projection operator
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We consider a 3–leg spin–1/2 ladder with periodic boundary conditions (a spin tube) with a

Hamiltonian given by two projection operators, one on the triangles, and the other on the square

plaquettes on the side of the tube, that can be written in terms of Heisenberg and four spin ring

exchange interactions. Depending on the relative strength of these two operators, we identify 3

phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact dimerized ground

state wave function with a gapped spectrum can be given as an alternation of spin and chirality

valence bonds between nearest triangles; (ii) for ferromagnetic exchanges on the triangle we recover

the phase of the spin–3/2 Heisenberg chain; (iii) between these two phases a gapless incommensurate

phase exists. Furthermore, we explicitly construct an exact ground state wave function with two

deconfined domain walls and gapless excitation spectrum at the quantum phase transition point

between the incommensurate and dimerized phase.

PACS numbers: 75.10.Jm, 75.10.Kt , 75.30.Kz

The projection operator approach to spin models pro-
vided significant results on the ground state properties
of quantum magnets. Examples include the Majumdar–
Ghosh Hamiltonian [1], a spin–1/2 antiferromagnetic
Heisenberg chain where the two exact ground state wave
functions are given by a product of purely nearest-
neighbor valence bonds (pairs of S=1/2 spins forming
a singlet) with a gapped excitation spectrum, in accor-
dance with the Lieb–Schultz–Mattis theorem[2]. The ex-
act “valence bond solid” ground state in the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model[3] with gapped ex-
citations is an explicit realization of Haldane’s conjecture
for S = 1 Heisenberg chains[4]. Further examples include
the two–dimensional Shastry–Sutherland model[5] which
has been realized in SrCu2(BO3)2 [6]. In the pyrochlore
lattice, Yamashita and Ueda have introduced a model
with a macroscopically degenerate ground state [7]. In
all these cases the Hamiltonian is a sum of projection op-
erators [8] and positive semidefinite by construction, so
that any state that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin–1/2
spins arranged in a 3 leg spin tube (see Fig. 1). The
model is given by

H =K�

L�

i=1

Pi +K�
L�

i=1

3�

j=1

R(i,j)(i+1,j)(i+1,j+1)(i,j+1)

(1)

which describes a spin–tube with L triangles and peri-
odic boundary conditions (the indices i and j are de-
fined mod L and mod 3, respectively). The projector
Pi = (4S̃i · S̃i− 3)/12, where S̃i =

�3
j=1 S(i,j) is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3/2, and 0 if the total spin is 1/2. The pro-
jection Rα acts on the squares that are on the surface of
the tube. We denote Sα =

�
(i,j)∈α S(i,j) as the sum of

the spin operators belonging to the α square plaquette,
then Rα = (Sα · Sα)(Sα · Sα − 2)/24 projects onto the
subspace of states where the total spin of the plaquette
α is 2, and gives 0 if the total spin of the square pla-
quette is 0 or 1 (i.e. if a pair of spins on the α square
form a singlet). We set K� = 1 in the following. Spin
tubes are interesting not only as they are the next step in
complexity after spin ladders, but also since there exist
experimental realizations, such a [(CuCl2 tachH)3Cl]Cl2
[9, 10].

Our motivation comes from the recent work of Batista
and Trugman, where they have considered the Hamil-
tonian that is a sum of the Rα operators over all the
squares of the square lattice [11, 12]. They have shown
that a class of states consisting of nearest neighbor va-
lence bond coverings, where each square plaquette shares
a valence bond, are exact ground states. Wrapping up
the square lattice with period 3 in one direction we get
the spin tube, and allowing the tuning of the Heisenberg
exchange on the triangles we get our model (1).

We have exactly diagonalized (ED) the Hamilto-
nian (1) numerically for small systems of up to 12 trian-
gles (36 sites) with both even and odd number of trian-
gles. A typical K� = 0 spectrum is shown in Fig. 2. We
find states with 0 energy in the spin–singlet sector, one at
k = 0 and two at k = π. Similarly, for odd number of tri-
angles we find that there is a 0 energy spin–1/2 doublet at
k = 0. Since we cannot cover the spin tube with valence
bonds so that every square plaquette contains one, the
appearance of 0 energy eigenstates is unexpected since
it would mean that they have zero projections with all
of the projection operators in the Hamiltonian. Thus it
cannot be a static covering of valence bonds. Even more
striking is the appearance of the 0 energy ground state
for the tubes with odd number of triangles, as in this case

Three-leg tube + projection operator

Rα = Proj
�
ST
α = 2

�
Pi = Proj

�
S�
i = 3/2

�
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where Sα =
�

(i, j)∈α Si, j is the total spin operator of the plaquette. As it can be seen, the expansion

contains four-spin terms as well. If we expand the full Hamiltonian, it has the form

H =

L�

i=1

3�

j=1

�
J⊥Si, j · Si, j+1 + J1Si, j · Si+1, j

+ J2

�
Si, j · Si+1, j+1 + Si, j · Si+1, j−1

�

+ JRE

�
(Si, j · Si+1, j)(Si, j+1 · Si+1, j+1)

+ (Si, j · Si, j+1)(Si+1, j · Si+1, j+1)

+(Si, j · Si+1, j+1)(Si, j+1 · Si, j+1)

��
,

(3.9)

where the intra-triangle J⊥ = 5K�/6 + 2K�/3, the inter-triangle J1 = 5K�/6 and J2 = 5K�/12,

and the four-spin interaction JRE = K�/3. We set K� = 1 in the following.

The four spin term is similar to a ring-exchange interaction discussed in Chapter 1 (see Eq.

(1.3) and Fig. 1.1), which describes the cyclic permutation of spins around a four-site plaquette,

except here all 3 terms have positive signs. For the conventional ring-exchange two of the three

terms have positive sign, the third has negative depending on the path of the exchange. If we

add all three possible paths of the ring exchange we get the JRE term in (3.9).

3.3.2 Spin-chiral effective model in the K� → ∞ limit

In the K� � 1 limit, the low energy physics is described by the spin-chiral states |σ, τ� defined

in Eq. (3.4), and the effective Hamiltonian has the form

H
� =

5

9

L�

i=1

�
3

4
+ σ̂i · σ̂i+1

� �
1 + τ̂+i τ̂

−
i+1
+ τ̂−i τ̂

+
i+1

�
, (3.10)

where σ̂i act on the spin-1/2 and τ̂±i act on the chirality (pseudospin–1/2) degrees of freedom.

From exact diagonalization of the Hamiltonian (3.10) we learn that the excitations are gapped

and the system has a doubly degenerate ground state. This ground state can be given analytically

as well.

The spin term

�
3

4
+ σ̂i · σ̂i+1

�
gives 0 if the spin degrees of freedom form a singlet, (|↑i↓i+1� −

|↓i↑i+1�), and 1 if the spins form a triplet. The chirality term

�
1 + τ̂+i τ̂

−
i+1
+ τ̂−i τ̂

+
i+1

�
gives 0 if

the chiralities form a singlet (|liri+1� − |rili+1�), ti gives 1 for the |lili+1� and |riri+1� states, and 2

for |liri+1� + |rili+1�. Since the original Hamiltonian (3.7) is a sum of projections, H � has only

non-negative eigenvalues, so a state of alternating spin and chirality singlets is a ground state

of H � with 0 energy (see Fig. 3.6). There are two such ground states, denoted by

���ΨGS,1
�

and
���ΨGS,2

�
, breaking the translational invariance of the system.

J⊥ = 5K�/6 + 2K�/3

J1 = 5K�/6
J2 = 5K�/12

JRE = K�/3
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i i+1 i+2 i+3i−1i−2

Figure 3.6: Schematic drawing of the translational invariance breaking ground states of the

spin-chiral effective modelH �. The small dots inside the circles denote spin-1/2 sites, the lines

stand for the valence bonds. The coloured arcs between two levels denote a chirality singlet

|lr� − |rl�. These states are exact ground states of the original model for all K� ≥ 0 as well.

Kolezhuk et al. [61] also found the ground states

���ΨGS,1
�
,
���ΨGS,2

�
, when studying a more general

spin-orbital model, which gives (3.10) as a special case. Similar ground states were also found

by [60], who considered a model with J⊥, J1 and an additional interaction between next nearest

triangles. In that case the exact ground states can be given as spin and chirality singlets formed

between the same triangles.

3.3.3 Exact ground states for the projection based Hamiltonian on the tube

Considering

���ΨGS,1
�

and

���ΨGS,2
�

in the full Hilbert space of the Hamiltonian (3.7) reveals that

these states are not only ground states of the K� → ∞ effective model, but of the originalH for

all K� ≥ 0
1
. It is easy to see, that all the Pi projections are satisfied, since each triangle have

a total spin of 1/2. As for the R
(i, j)(i+1, j)(i+1, j+1)(i, j+1)

,

���ΨGS,1
�

and

���ΨGS,2
�

are superpositions of

static valence bond coverings, but interestingly, none of these coverings satisfy all the plaquettes

simultaneously by themselves, yet somehow their superposition does.

(i,3)

(i+1,1)

(i+3,1)

(i+2,1)

(i+4,1)

(i+1,2)

(i+1,3)(i,2)

(i,1)

Figure 3.7: The spin tube with a snapshot of valence bond covering from the dimerized spin–

chiral exact ground state. There is a spin singlet between triangles i+ 1 and i+ 2, i+ 3 and i+ 4

and so on. A chirality singlet is present between triangles i and i + 1, i + 2 and i + 3 and so

on. The shaded plaquettes are not satisfied in this particular configuration, and only quantum

resonance with other configurations will make all the plaquettes satisfied.

1
We note that

���ΨGS,1
�

and

���ΨGS,2
�

are eigenstates of (3.7) for all K�, but they are ground states only for K� ≥ 0

K∆ ≫1

Weakly coupled triangles

Chapter 3 Exact ground states in three-leg spin tubes 20

where Sα =
�

(i, j)∈α Si, j is the total spin operator of the plaquette. As it can be seen, the expansion

contains four-spin terms as well. If we expand the full Hamiltonian, it has the form

H =

L�

i=1

3�

j=1

�
J⊥Si, j · Si, j+1 + J1Si, j · Si+1, j

+ J2

�
Si, j · Si+1, j+1 + Si, j · Si+1, j−1

�

+ JRE

�
(Si, j · Si+1, j)(Si, j+1 · Si+1, j+1)

+ (Si, j · Si, j+1)(Si+1, j · Si+1, j+1)

+(Si, j · Si+1, j+1)(Si, j+1 · Si, j+1)

��
,

(3.9)

where the intra-triangle J⊥ = 5K�/6 + 2K�/3, the inter-triangle J1 = 5K�/6 and J2 = 5K�/12,

and the four-spin interaction JRE = K�/3. We set K� = 1 in the following.

The four spin term is similar to a ring-exchange interaction discussed in Chapter 1 (see Eq.

(1.3) and Fig. 1.1), which describes the cyclic permutation of spins around a four-site plaquette,

except here all 3 terms have positive signs. For the conventional ring-exchange two of the three

terms have positive sign, the third has negative depending on the path of the exchange. If we

add all three possible paths of the ring exchange we get the JRE term in (3.9).

3.3.2 Spin-chiral effective model in the K� → ∞ limit

In the K� � 1 limit, the low energy physics is described by the spin-chiral states |σ, τ� defined

in Eq. (3.4), and the effective Hamiltonian has the form

H
� =

5

9

L�

i=1

�
3

4
+ σ̂i · σ̂i+1

� �
1 + τ̂+i τ̂

−
i+1
+ τ̂−i τ̂

+
i+1

�
, (3.10)

where σ̂i act on the spin-1/2 and τ̂±i act on the chirality (pseudospin–1/2) degrees of freedom.

From exact diagonalization of the Hamiltonian (3.10) we learn that the excitations are gapped

and the system has a doubly degenerate ground state. This ground state can be given analytically

as well.

The spin term

�
3

4
+ σ̂i · σ̂i+1

�
gives 0 if the spin degrees of freedom form a singlet, (|↑i↓i+1� −

|↓i↑i+1�), and 1 if the spins form a triplet. The chirality term

�
1 + τ̂+i τ̂

−
i+1
+ τ̂−i τ̂

+
i+1

�
gives 0 if

the chiralities form a singlet (|liri+1� − |rili+1�), ti gives 1 for the |lili+1� and |riri+1� states, and 2

for |liri+1� + |rili+1�. Since the original Hamiltonian (3.7) is a sum of projections, H � has only

non-negative eigenvalues, so a state of alternating spin and chirality singlets is a ground state

of H � with 0 energy (see Fig. 3.6). There are two such ground states, denoted by

���ΨGS,1
�

and
���ΨGS,2

�
, breaking the translational invariance of the system.

0 for spin singlet 0 for chirality singlet
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We consider a 3–leg spin–1/2 ladder with periodic boundary conditions (a spin tube) with a

Hamiltonian given by two projection operators, one on the triangles, and the other on the square

plaquettes on the side of the tube, that can be written in terms of Heisenberg and four spin ring

exchange interactions. Depending on the relative strength of these two operators, we identify 3

phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact dimerized ground

state wave function with a gapped spectrum can be given as an alternation of spin and chirality

valence bonds between nearest triangles; (ii) for ferromagnetic exchanges on the triangle we recover

the phase of the spin–3/2 Heisenberg chain; (iii) between these two phases a gapless incommensurate

phase exists. Furthermore, we explicitly construct an exact ground state wave function with two

deconfined domain walls and gapless excitation spectrum at the quantum phase transition point

between the incommensurate and dimerized phase.

PACS numbers: 75.10.Jm, 75.10.Kt , 75.30.Kz

The projection operator approach to spin models pro-
vided significant results on the ground state properties
of quantum magnets. Examples include the Majumdar–
Ghosh Hamiltonian [1], a spin–1/2 antiferromagnetic
Heisenberg chain where the two exact ground state wave
functions are given by a product of purely nearest-
neighbor valence bonds (pairs of S=1/2 spins forming
a singlet) with a gapped excitation spectrum, in accor-
dance with the Lieb–Schultz–Mattis theorem[2]. The ex-
act “valence bond solid” ground state in the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model[3] with gapped ex-
citations is an explicit realization of Haldane’s conjecture
for S = 1 Heisenberg chains[4]. Further examples include
the two–dimensional Shastry–Sutherland model[5] which
has been realized in SrCu2(BO3)2 [6]. In the pyrochlore
lattice, Yamashita and Ueda have introduced a model
with a macroscopically degenerate ground state [7]. In
all these cases the Hamiltonian is a sum of projection op-
erators [8] and positive semidefinite by construction, so
that any state that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin–1/2
spins arranged in a 3 leg spin tube (see Fig. 1). The
model is given by

H =K�

L�

i=1

Pi +K�
L�

i=1

3�

j=1

R(i,j)(i+1,j)(i+1,j+1)(i,j+1)

(1)

which describes a spin–tube with L triangles and peri-
odic boundary conditions (the indices i and j are de-
fined mod L and mod 3, respectively). The projector
Pi = (4S̃i · S̃i− 3)/12, where S̃i =

�3
j=1 S(i,j) is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3/2, and 0 if the total spin is 1/2. The pro-
jection Rα acts on the squares that are on the surface of
the tube. We denote Sα =

�
(i,j)∈α S(i,j) as the sum of

the spin operators belonging to the α square plaquette,
then Rα = (Sα · Sα)(Sα · Sα − 2)/24 projects onto the
subspace of states where the total spin of the plaquette
α is 2, and gives 0 if the total spin of the square pla-
quette is 0 or 1 (i.e. if a pair of spins on the α square
form a singlet). We set K� = 1 in the following. Spin
tubes are interesting not only as they are the next step in
complexity after spin ladders, but also since there exist
experimental realizations, such a [(CuCl2 tachH)3Cl]Cl2
[9, 10].

Our motivation comes from the recent work of Batista
and Trugman, where they have considered the Hamil-
tonian that is a sum of the Rα operators over all the
squares of the square lattice [11, 12]. They have shown
that a class of states consisting of nearest neighbor va-
lence bond coverings, where each square plaquette shares
a valence bond, are exact ground states. Wrapping up
the square lattice with period 3 in one direction we get
the spin tube, and allowing the tuning of the Heisenberg
exchange on the triangles we get our model (1).

We have exactly diagonalized (ED) the Hamilto-
nian (1) numerically for small systems of up to 12 trian-
gles (36 sites) with both even and odd number of trian-
gles. A typical K� = 0 spectrum is shown in Fig. 2. We
find states with 0 energy in the spin–singlet sector, one at
k = 0 and two at k = π. Similarly, for odd number of tri-
angles we find that there is a 0 energy spin–1/2 doublet at
k = 0. Since we cannot cover the spin tube with valence
bonds so that every square plaquette contains one, the
appearance of 0 energy eigenstates is unexpected since
it would mean that they have zero projections with all
of the projection operators in the Hamiltonian. Thus it
cannot be a static covering of valence bonds. Even more
striking is the appearance of the 0 energy ground state
for the tubes with odd number of triangles, as in this case

Ground states of       for all K∆ ≥0H
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Fig 3.7 shows a typical valence bond covering building up these spin-chiral ground states. As it

can be seen, the plaquettes belonging to a spin singlet (e.g. between triangles i + 1 and i + 2 or

between i+3 and i+4) are all satisfied in each covering in the superposition, but one of the three

plaquettes belonging to a chirality singlet are seemingly not (e.g. plaquettes between triangles i

and i+ 1 or between i+ 2 and i+ 3). This contradiction can be resolved if we recall that valence

bond coverings are usually non-orthogonal, and the subset of these states is overcomplete
2
. The

simplest illustration is the set of |νσ, j� states on a single triangle with a free spin σ at site j and

a valence bond between the other two sites, as defined in (3.5). These three

���νσ, j
�

states on a

triangle are linearly dependent, namely

���νσ,1
�
+
���νσ,2
�
+
���νσ,3
�
= 0. (3.11)

This equation provides an explanation to our problem. It tells us that if we can’t see a valence

bond, it doesn’t mean it is not there. In other words, it is not necessary for each plaquette to

have a valence bond explicitly in each covering building up the ground state. We can exploit the

linear dependency of the

���νσ, j
�

to redefine the |σ, τ� states using only

���νσ,1
�

and

���νσ,2
�
:

|σi, τi� =
�
1 − e±

4πi
3

�
|νσ,1i � +

�
e±

2πi
3 − e±

4πi
3

�
|νσ,2i � (3.12)

Using this expansion a chirality singlet between the ith and i + 1
th

triangles is |liri+1� − |rili+1� =����νσi,1
i ν

σi+1,2
i+1

�
−
����νσi,2

i ν
σi+1,1
i+1

�
(see Fig. 3.8). One can see that the plaquette between the legs j = 2

and j = 3 and the plaquette between legs j = 1 and j = 3 contain a singlet bond in both terms.

This means that these plaquettes are both satisfied. If we use

���νσ,2
�

and

���νσ,3
�

in the expansion

of |σi, τi�, we can see that the plaquette between legs j = 1 and j = 2 is also satisfied.

(i,1)

(i+1,1)

(i,2)

(i+1,1)

(i,1)

(i+1,2)

(i+1,3)

(i,3)

(i+1,2)

(i+1,3)

(i,3)

(i,2)

Figure 3.8: |νσi,1
i ν

σi+1,2
i+1
� − |νσi,2

i ν
σi+1,1
i+1
�, the expansion of a chirality singlet section of the spin-

chiral ground states

���ΨGS,1
�

and

���ΨGS,2
�
, if the |σ, τ� states are expanded as in (3.12). The

plaquettes between legs j=2 an j=3, and between j=1 and j=3 are clearly satisfied. A similar

picture can be drawn if we use

���νσ,2
�

and

���νσ,3
�

in the expansion of |σi, τi� only the seemingly

unsatisfied plaquettes will be elsewhere, thus we can prove that all plaquettes are always satis-

fied.

To summarize, the contradiction between the existence of 0 energy ground states of the Batista-

Trugman model (Eq. (2.9) or (3.7) with K� = 0) on the tube, and the fact that no static valence

bond covering ground state exists for the three-leg tube can be resolved if we consider that

2
We call a subset of states (highly) overcomplete, if the number of states is (much) larger than the number of

linearly independent states in the subset.

Dimerized ground states at K∆ = 0
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3
2

�

for odd length: 
Eg> 0, gapless

Majumdar-Ghosh:

Tubes of odd length, K∆ = 0
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surprising, we find an S=1/2 doublet ground state with 0 energy for tubes of odd length as

well ( See Fig. 3.5). In both cases periodic boundary conditions are considered. The energy

eigenstates can be classified by the irreducible representations of the D3 symmetry group, and

the longitudinal wave vector.
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Figure 3.5: Results of exact diagonalizion for tubes of 10 (a) and 9 (b) triangles. A1, A2 and E
are the three irreducible representations of the D3 symmetry group of a triangle, k is the wave
number in the longitudinal direction. Empty symbols denote singlet (S=0), filled symbols

denote triplet (S=1) states.

Since the construction of the nearest neighbor valence bond coverings can’t explain these ground

states, we need to find a new approach. The introduction of a K� term allows us to study the

limiting cases of weakly coupled triangles. The model we consider is

H = K�
L�

i=1

Pi + K�
L�

i=1

3�

j=1

R(i, j)(i+1, j)(i+1, j+1)(i, j+1), (3.7)

with R(i, j)(i+1, j)(i+1, j+1)(i, j+1) acting on the square plaquettes as explained before, and Pi acting

on the triangles, projecting onto the states where the total spin of the triangle is 3/2. Pi =

(4S�i · S
�
i − 3)/12, where S�i =

�3
j=1 Si, j is the total spin operator of the ith triangle. Changing

K� basically changes the intra-triangle coupling allowing us to tune the system between the two

weakly coupled limits. By α denoting a four site plaquette, Rα can be written as

Rα = (Sα · Sα)(Sα · Sα − 2)/24 (3.8)
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Figure 3.9: Energy levels as we change K� for tubes of different length (a) L=10,(b) L=12,(c)

L=6. (d) The number of S=3/2 levels for the 3x6 tube. The crossings in the energy spectrum

and the jumps in the number of S=3/2 triangles corresponds to the appearance of pairs of

domain walls into the spin-chiral order.
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(b)

ii−1
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Figure 3.10: Single domain walls in tubes of odd length with periodic boundary conditions

at K� = 0. (a) If we break the dimerized order at a spin singlet, the domain wall is a S=3/2

triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and

���η↑i+1

�
. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:

�
ησk
���H
���ησk
�
=

5

6
(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=

5

18
(1 − aL cos k)

�
ξσk
���H
���ησk
�
= −5

√
3 (cos k − aL) ,

(3.13)
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We consider a 3–leg spin–1/2 ladder with periodic boundary conditions (a spin tube) with a

Hamiltonian given by two projection operators, one on the triangles, and the other on the square

plaquettes on the side of the tube, that can be written in terms of Heisenberg and four spin ring

exchange interactions. Depending on the relative strength of these two operators, we identify 3

phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact dimerized ground

state wave function with a gapped spectrum can be given as an alternation of spin and chirality

valence bonds between nearest triangles; (ii) for ferromagnetic exchanges on the triangle we recover

the phase of the spin–3/2 Heisenberg chain; (iii) between these two phases a gapless incommensurate

phase exists. Furthermore, we explicitly construct an exact ground state wave function with two

deconfined domain walls and gapless excitation spectrum at the quantum phase transition point

between the incommensurate and dimerized phase.

PACS numbers: 75.10.Jm, 75.10.Kt , 75.30.Kz

The projection operator approach to spin models pro-
vided significant results on the ground state properties
of quantum magnets. Examples include the Majumdar–
Ghosh Hamiltonian [1], a spin–1/2 antiferromagnetic
Heisenberg chain where the two exact ground state wave
functions are given by a product of purely nearest-
neighbor valence bonds (pairs of S=1/2 spins forming
a singlet) with a gapped excitation spectrum, in accor-
dance with the Lieb–Schultz–Mattis theorem[2]. The ex-
act “valence bond solid” ground state in the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model[3] with gapped ex-
citations is an explicit realization of Haldane’s conjecture
for S = 1 Heisenberg chains[4]. Further examples include
the two–dimensional Shastry–Sutherland model[5] which
has been realized in SrCu2(BO3)2 [6]. In the pyrochlore
lattice, Yamashita and Ueda have introduced a model
with a macroscopically degenerate ground state [7]. In
all these cases the Hamiltonian is a sum of projection op-
erators [8] and positive semidefinite by construction, so
that any state that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin–1/2
spins arranged in a 3 leg spin tube (see Fig. 1). The
model is given by

H =K�

L�

i=1

Pi +K�
L�

i=1

3�

j=1

R(i,j)(i+1,j)(i+1,j+1)(i,j+1)

(1)

which describes a spin–tube with L triangles and peri-
odic boundary conditions (the indices i and j are de-
fined mod L and mod 3, respectively). The projector
Pi = (4S̃i · S̃i− 3)/12, where S̃i =

�3
j=1 S(i,j) is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3/2, and 0 if the total spin is 1/2. The pro-
jection Rα acts on the squares that are on the surface of
the tube. We denote Sα =

�
(i,j)∈α S(i,j) as the sum of

the spin operators belonging to the α square plaquette,
then Rα = (Sα · Sα)(Sα · Sα − 2)/24 projects onto the
subspace of states where the total spin of the plaquette
α is 2, and gives 0 if the total spin of the square pla-
quette is 0 or 1 (i.e. if a pair of spins on the α square
form a singlet). We set K� = 1 in the following. Spin
tubes are interesting not only as they are the next step in
complexity after spin ladders, but also since there exist
experimental realizations, such a [(CuCl2 tachH)3Cl]Cl2
[9, 10].

Our motivation comes from the recent work of Batista
and Trugman, where they have considered the Hamil-
tonian that is a sum of the Rα operators over all the
squares of the square lattice [11, 12]. They have shown
that a class of states consisting of nearest neighbor va-
lence bond coverings, where each square plaquette shares
a valence bond, are exact ground states. Wrapping up
the square lattice with period 3 in one direction we get
the spin tube, and allowing the tuning of the Heisenberg
exchange on the triangles we get our model (1).

We have exactly diagonalized (ED) the Hamilto-
nian (1) numerically for small systems of up to 12 trian-
gles (36 sites) with both even and odd number of trian-
gles. A typical K� = 0 spectrum is shown in Fig. 2. We
find states with 0 energy in the spin–singlet sector, one at
k = 0 and two at k = π. Similarly, for odd number of tri-
angles we find that there is a 0 energy spin–1/2 doublet at
k = 0. Since we cannot cover the spin tube with valence
bonds so that every square plaquette contains one, the
appearance of 0 energy eigenstates is unexpected since
it would mean that they have zero projections with all
of the projection operators in the Hamiltonian. Thus it
cannot be a static covering of valence bonds. Even more
striking is the appearance of the 0 energy ground state
for the tubes with odd number of triangles, as in this case
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Figure 3.9: Energy levels as we change K� for tubes of different length (a) L=10,(b) L=12,(c)

L=6. (d) The number of S=3/2 levels for the 3x6 tube. The crossings in the energy spectrum

and the jumps in the number of S=3/2 triangles corresponds to the appearance of pairs of

domain walls into the spin-chiral order.
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Figure 3.10: Single domain walls in tubes of odd length with periodic boundary conditions

at K� = 0. (a) If we break the dimerized order at a spin singlet, the domain wall is a S=3/2

triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and

���η↑i+1

�
. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:

�
ησk
���H
���ησk
�
=

5

6
(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=

5

18
(1 − aL cos k)

�
ξσk
���H
���ησk
�
= −5

√
3 (cos k − aL) ,

(3.13)

Tubes of odd length, K∆ = 0
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where aL = 8/2L
vanishes for L→ ∞. Similarly, the overlaps in finite systems are

�
ησk
���ησk
�
= (1 − aL cos k)

�
ξσk
���ξσk
�
= 1

�
ξσk
���ησk
�
= 0.

(3.14)

Since these domain wall states are not orthonormal, a generalized eigenvalue problem has to be

solved to get the variational energies in the single domain wall subspace,




�
ησk
���H
���ησk
� �
ησk
���H
���ξσk
�

�
ξσk
���H
���ησk
� �
ξσk
���H
���ξσk
�


���Ψ±

1DW
(k)

�
= E±

1DW
(k)




�
ησk
���ησk
� �
ησk
���ξσk
�

�
ξσk
���ησk
� �
ξσk
���ξσk
�


���Ψ±

1DW
(k)

�
.

(3.15)

This gives the variational energy for the propagating domain wall in the infinite system as

E±
1DW

(k) =
5

36

�
4 ±
√

10 + 6 cos 2k
�
, (3.16)

which is a gapless spectrum at k = 0 and π. Moreover, for tubes of finite length E−
1DW(k = 0) = 0

which corresponds to the 0 energy ground state found by exact diagonalization
3
. This ground

state can be written as

���Ψ−
1DW

(k = 0)

�
=
√

3

���ξσk=0

�
+
���ησk=0

�
.
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Figure 3.11: The variational one domain wall excitation in the infinite limit (solid line), and

the corresponding excitations of finite system found by exact diagonalization(open symbols)

for tubes of odd length.

As we mentioned before, in a single domain wall state, all plaquettes are satisfied except the

ones which have sites in the triangle at the center of the domain wall(i.e. the ith triangle in

case of

���ξσi
�

or

����ησj
�
). However, for

√
3

���ξσi
�
+
���ησi+1

�
all three plaquettes between the ith and

i+1
th

triangle become satisfied. This ”resonance” allows us to build up the |Ψ1DW� ground state,

making plaquettes satisfied step by step.

3
The energy of a variational state is always larger than the ground state energy, EGS < �Ψ| H |Ψ�. So, if we find a

variational state with the same energy as the ground state, it will be, in fact a ground state of the full Hamiltonian.

aL = 23−L

H1dw(k) =

�
10
3 (1− aL cos k) − 10√

3
(cos k − aL)

− 10√
3
(cos k − aL) 10 (1− aL cos k)

�

E±
1 (k) =

5

36

�
4±

√
10 + 6 cos 2k

�
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For tubes of even length domain walls can be introduced in pairs. The two domain wall states

can be identified by exact diagonalization. Fig. 3.12 shows the types of two domain wall states.

As it turns out, the origin of the domain walls is the promotion of a chirality singlet to a triplet,

which is then separated into two parts. The variational Hamiltonian over the two domain wall

states can be given for arbitrary length, the overlaps and Hamiltonian matrix element between

the two domain wall states can be found in Appendix A.

i+1

(d)

(e)

(f)

i−1i−2

(a)

(b)

(c)

i+3i+2i

Figure 3.12: Relevant two domain wall configurations in the spin singlet sector for L even. In

(a) the small ellipse denotes a chirality triplet (|rl�+ |lr�), that breaks up into two domain walls.

(c), (e) and (f) are generally given as |ξ↑i η
↓
j − ξ

↓
i η
↑
j�, |η

↑
i η
↓
j − η

↓
i η
↑
j�, and |ξ↑i ξ

↓
j − ξ

↓
i ξ
↑
j �, where the

domain walls can be arbitrarily separated. (b) and (d) shows overlapping domain walls, (b) is

actually |ξ↑i ξ
↓
i+1
− ξ↓i ξ

↑
i+1
�, (d) corresponds to |η↑i η

↓
i+1
− η↓i η

↑
i+1
�, where the chirality configuration

is |llrr� − |rrll�. Arrows connect states between which the Hamiltonian HK∆=0 has a nonzero

matrix element, the position of the arrows corresponds to the position of Rα projections relevant

in the overlap.

The low energy variational excitation spectrum is shown in Fig. 3.13. The independent two

domain wall continuum is gapless in the infinite system. In the singlet sector (i.e. when the

spins of the two domain walls form a singlet) a bound state appears which touches the lower

edge of the continuum at k = 0 and π. The domain wall - domain wall correlation function

verifies that the bound state is indeed built out of close domain wall terms (See Fig. 3.14).

At k = π the variational approach gives a 0 energy state for finite systems already. This state

corresponds to the third ground state found by exact diagonalization, and can be described as
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two deconfined domain walls, the domain wall - domain wall correlation function shows no

decay, i.e. the weight of the different terms does not depend on the distance of the domain walls.

The explicit form of the two domain wall exact ground state can be found in Appendix A.

Here we should take a moment to compare these findings with the Majumdar-Ghosh model

discussed in Sec. 2.1. In both cases dimerized exact ground states were found. However, in

our case the domain wall excitations give a gapless spectrum, while for the Majumdar-Ghosh

model, two domain wall excitations are gapped (see Fig. 2.1). The presence of a bound state is

also a common feature, although it only appears near k = π/2 in the Majumdar-Ghosh model,

while in our case bound state appears right at k = 0 and π.

These results are also interesting from the aspect of RVB states. In the infinite limit the two

domain wall continuum becomes gapless in both the singlet and triplet sector. This suggests

that the infinite system has a short range resonating valence bond ground state, with gapless

excitations.

3.5 Lieb-Schultz-Mattis theorem applied to three-leg spin tube

The Lieb-Schultz-Mattis theorem [37] states that one-dimensional spin systems with SU(2) and

translational invariant Hamiltonians, short range interactions and half-integer spin in the unit

cell either have gapless excitations or degenerate ground states in the thermodynamic limit. The

proof of the theorem is constructive, it states the for a given ground state |Ψ0� by applying the

unitary transformation

U2π = exp




i
2π

L

�

l,n

lS z
l,n




(3.17)

Tubes of even length, K∆ = 0

deconfined two domain  wall
ground state with 0 energy

for finite L
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Figure 3.10: Single domain walls in tubes of odd length with periodic boundary conditions

at K� = 0. (a) If we break the dimerized order at a spin singlet, the domain wall is a S=3/2

triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and

���η↑i+1

�
. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:

�
ησk
���H
���ησk
�
=

5

6
(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=

5

18
(1 − aL cos k)

�
ξσk
���H
���ησk
�
= −5

√
3 (cos k − aL) ,

(3.13)
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We consider a 3–leg spin–1/2 ladder with periodic boundary conditions (a spin tube) with a

Hamiltonian given by two projection operators, one on the triangles, and the other on the square

plaquettes on the side of the tube, that can be written in terms of Heisenberg and four spin ring

exchange interactions. Depending on the relative strength of these two operators, we identify 3

phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact dimerized ground

state wave function with a gapped spectrum can be given as an alternation of spin and chirality

valence bonds between nearest triangles; (ii) for ferromagnetic exchanges on the triangle we recover

the phase of the spin–3/2 Heisenberg chain; (iii) between these two phases a gapless incommensurate

phase exists. Furthermore, we explicitly construct an exact ground state wave function with two

deconfined domain walls and gapless excitation spectrum at the quantum phase transition point

between the incommensurate and dimerized phase.

PACS numbers: 75.10.Jm, 75.10.Kt , 75.30.Kz

The projection operator approach to spin models pro-
vided significant results on the ground state properties
of quantum magnets. Examples include the Majumdar–
Ghosh Hamiltonian [1], a spin–1/2 antiferromagnetic
Heisenberg chain where the two exact ground state wave
functions are given by a product of purely nearest-
neighbor valence bonds (pairs of S=1/2 spins forming
a singlet) with a gapped excitation spectrum, in accor-
dance with the Lieb–Schultz–Mattis theorem[2]. The ex-
act “valence bond solid” ground state in the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model[3] with gapped ex-
citations is an explicit realization of Haldane’s conjecture
for S = 1 Heisenberg chains[4]. Further examples include
the two–dimensional Shastry–Sutherland model[5] which
has been realized in SrCu2(BO3)2 [6]. In the pyrochlore
lattice, Yamashita and Ueda have introduced a model
with a macroscopically degenerate ground state [7]. In
all these cases the Hamiltonian is a sum of projection op-
erators [8] and positive semidefinite by construction, so
that any state that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin–1/2
spins arranged in a 3 leg spin tube (see Fig. 1). The
model is given by

H =K�

L�

i=1

Pi +K�
L�

i=1

3�

j=1

R(i,j)(i+1,j)(i+1,j+1)(i,j+1)

(1)

which describes a spin–tube with L triangles and peri-
odic boundary conditions (the indices i and j are de-
fined mod L and mod 3, respectively). The projector
Pi = (4S̃i · S̃i− 3)/12, where S̃i =

�3
j=1 S(i,j) is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3/2, and 0 if the total spin is 1/2. The pro-
jection Rα acts on the squares that are on the surface of
the tube. We denote Sα =

�
(i,j)∈α S(i,j) as the sum of

the spin operators belonging to the α square plaquette,
then Rα = (Sα · Sα)(Sα · Sα − 2)/24 projects onto the
subspace of states where the total spin of the plaquette
α is 2, and gives 0 if the total spin of the square pla-
quette is 0 or 1 (i.e. if a pair of spins on the α square
form a singlet). We set K� = 1 in the following. Spin
tubes are interesting not only as they are the next step in
complexity after spin ladders, but also since there exist
experimental realizations, such a [(CuCl2 tachH)3Cl]Cl2
[9, 10].

Our motivation comes from the recent work of Batista
and Trugman, where they have considered the Hamil-
tonian that is a sum of the Rα operators over all the
squares of the square lattice [11, 12]. They have shown
that a class of states consisting of nearest neighbor va-
lence bond coverings, where each square plaquette shares
a valence bond, are exact ground states. Wrapping up
the square lattice with period 3 in one direction we get
the spin tube, and allowing the tuning of the Heisenberg
exchange on the triangles we get our model (1).

We have exactly diagonalized (ED) the Hamilto-
nian (1) numerically for small systems of up to 12 trian-
gles (36 sites) with both even and odd number of trian-
gles. A typical K� = 0 spectrum is shown in Fig. 2. We
find states with 0 energy in the spin–singlet sector, one at
k = 0 and two at k = π. Similarly, for odd number of tri-
angles we find that there is a 0 energy spin–1/2 doublet at
k = 0. Since we cannot cover the spin tube with valence
bonds so that every square plaquette contains one, the
appearance of 0 energy eigenstates is unexpected since
it would mean that they have zero projections with all
of the projection operators in the Hamiltonian. Thus it
cannot be a static covering of valence bonds. Even more
striking is the appearance of the 0 energy ground state
for the tubes with odd number of triangles, as in this case

Tuning away from K∆ = 0

Pi = Proj
�
S�
i = 3/2

�

first order second order



Chapter 3 Exact ground states in three-leg spin tubes 24

-15

-10

-5

 0

E

3x10
A1
A2

-15

-10

-5

 0

-0.3 -0.2 -0.1 0 0.1

E

K∆

3x12
A1
A2

-10

-5

 0

E

3x6
A1
A2
E

 0

 1

 2

 3

 4

 5

-0.3 -0.2 -0.1  0  0.1

 〈Σ Pi〉 

K∆

(a)

(b)

(c)

(d)

Figure 3.9: Energy levels as we change K� for tubes of different length (a) L=10,(b) L=12,(c)

L=6. (d) The number of S=3/2 levels for the 3x6 tube. The crossings in the energy spectrum

and the jumps in the number of S=3/2 triangles corresponds to the appearance of pairs of

domain walls into the spin-chiral order.

i−2 i+3i+2

(b)

ii−1

(a)

i+1
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at K� = 0. (a) If we break the dimerized order at a spin singlet, the domain wall is a S=3/2

triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and

���η↑i+1

�
. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:

�
ησk
���H
���ησk
�
=

5

6
(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=

5

18
(1 − aL cos k)

�
ξσk
���H
���ησk
�
= −5

√
3 (cos k − aL) ,

(3.13)
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triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and
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. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:
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=
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(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=
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We consider a 3–leg spin–1/2 ladder with periodic boundary conditions (a spin tube) with a

Hamiltonian given by two projection operators, one on the triangles, and the other on the square

plaquettes on the side of the tube, that can be written in terms of Heisenberg and four spin ring

exchange interactions. Depending on the relative strength of these two operators, we identify 3

phases: (i) for strongly antiferromagnetic exchange on the triangles, an exact dimerized ground

state wave function with a gapped spectrum can be given as an alternation of spin and chirality

valence bonds between nearest triangles; (ii) for ferromagnetic exchanges on the triangle we recover

the phase of the spin–3/2 Heisenberg chain; (iii) between these two phases a gapless incommensurate

phase exists. Furthermore, we explicitly construct an exact ground state wave function with two

deconfined domain walls and gapless excitation spectrum at the quantum phase transition point

between the incommensurate and dimerized phase.

PACS numbers: 75.10.Jm, 75.10.Kt , 75.30.Kz

The projection operator approach to spin models pro-
vided significant results on the ground state properties
of quantum magnets. Examples include the Majumdar–
Ghosh Hamiltonian [1], a spin–1/2 antiferromagnetic
Heisenberg chain where the two exact ground state wave
functions are given by a product of purely nearest-
neighbor valence bonds (pairs of S=1/2 spins forming
a singlet) with a gapped excitation spectrum, in accor-
dance with the Lieb–Schultz–Mattis theorem[2]. The ex-
act “valence bond solid” ground state in the Affleck–
Kennedy–Lieb–Tasaki (AKLT) model[3] with gapped ex-
citations is an explicit realization of Haldane’s conjecture
for S = 1 Heisenberg chains[4]. Further examples include
the two–dimensional Shastry–Sutherland model[5] which
has been realized in SrCu2(BO3)2 [6]. In the pyrochlore
lattice, Yamashita and Ueda have introduced a model
with a macroscopically degenerate ground state [7]. In
all these cases the Hamiltonian is a sum of projection op-
erators [8] and positive semidefinite by construction, so
that any state that has 0 energy is an exact ground state.

Here we extend this approach to a model of spin–1/2
spins arranged in a 3 leg spin tube (see Fig. 1). The
model is given by

H =K�

L�

i=1

Pi +K�
L�

i=1

3�

j=1

R(i,j)(i+1,j)(i+1,j+1)(i,j+1)

(1)

which describes a spin–tube with L triangles and peri-
odic boundary conditions (the indices i and j are de-
fined mod L and mod 3, respectively). The projector
Pi = (4S̃i · S̃i− 3)/12, where S̃i =

�3
j=1 S(i,j) is the spin

operator on the ith triangle, gives 1 if the triangle has a
total spin of 3/2, and 0 if the total spin is 1/2. The pro-
jection Rα acts on the squares that are on the surface of
the tube. We denote Sα =

�
(i,j)∈α S(i,j) as the sum of

the spin operators belonging to the α square plaquette,
then Rα = (Sα · Sα)(Sα · Sα − 2)/24 projects onto the
subspace of states where the total spin of the plaquette
α is 2, and gives 0 if the total spin of the square pla-
quette is 0 or 1 (i.e. if a pair of spins on the α square
form a singlet). We set K� = 1 in the following. Spin
tubes are interesting not only as they are the next step in
complexity after spin ladders, but also since there exist
experimental realizations, such a [(CuCl2 tachH)3Cl]Cl2
[9, 10].

Our motivation comes from the recent work of Batista
and Trugman, where they have considered the Hamil-
tonian that is a sum of the Rα operators over all the
squares of the square lattice [11, 12]. They have shown
that a class of states consisting of nearest neighbor va-
lence bond coverings, where each square plaquette shares
a valence bond, are exact ground states. Wrapping up
the square lattice with period 3 in one direction we get
the spin tube, and allowing the tuning of the Heisenberg
exchange on the triangles we get our model (1).

We have exactly diagonalized (ED) the Hamilto-
nian (1) numerically for small systems of up to 12 trian-
gles (36 sites) with both even and odd number of trian-
gles. A typical K� = 0 spectrum is shown in Fig. 2. We
find states with 0 energy in the spin–singlet sector, one at
k = 0 and two at k = π. Similarly, for odd number of tri-
angles we find that there is a 0 energy spin–1/2 doublet at
k = 0. Since we cannot cover the spin tube with valence
bonds so that every square plaquette contains one, the
appearance of 0 energy eigenstates is unexpected since
it would mean that they have zero projections with all
of the projection operators in the Hamiltonian. Thus it
cannot be a static covering of valence bonds. Even more
striking is the appearance of the 0 energy ground state
for the tubes with odd number of triangles, as in this case

K∆ ≥ 0, two exact ground states 
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state of rings at the boundary jump from predominantly S
=1/2 to predominantly S=3/2. This phenomenon will be
discussed in Sec. III C.

A. Local spin on a ring

The first-order character is best seen in the ground-state
expectation value !PS=1/2

i " of the previously defined projector
#3$, which is a purely local quantity defined on a single tri-
angle i.21 We have computed this expectation value as a
function of J2. The results are shown in Fig. 2, which dis-
plays the projector in the middle of the tube at i=L /2. For
weak coupling J2 /J1!1, the expectation value is close to 1,
for strong coupling J2 /J1"1, it is close to zero. The expec-
tation value clearly jumps at a value J2c= #1.219±0.003$J1
indicating a first-order phase transition which is magnified in
the inset of Fig. 2.

Several comments are in order. Figure 2 displays results
obtained with both DMRG and ED. To check the importance
of boundary effects #see Sec. III C$, DMRG was performed
with two types of boundary conditions: the standard open
boundary conditions #OBC$, and the ferromagnetic boundary
conditions #FBC$, where we put a ferromagnetic coupling
J1=−10 on the two triangles at the boundary of the tube,
thereby strongly favoring the S=3/2 state. For the ED re-
sults, periodic boundary conditions were applied. The curves
for the three kinds of boundary conditions differ only near
the first-order transition, and the differences decrease with
the increasing length of the tube. In the ED, we additionally
observe that for system sizes L=4p+2 the ground state
changes the momentum sector at the transition from k=0 for
weak coupling to k=# for strong coupling. This is another
fingerprint of a first-order transition.

B. Dimerization

The first-order character of the phase transition is also
clearly apparent in inter-ring correlations. As an example, we
investigate the local dimerization defined as

Di = #− 1$i#Si · Si+1 − Si+1 · Si+2$ .

This dimerization can be viewed as the order parameter of
the symmetry-broken weak coupling phase. It is also present
in the spin-chirality model discussed in Sec. II B for which
the dimerization opens a spin gap.4–6 Since we work with
open boundary conditions, the quantity Di varies with the
ring position i. Figure 3 shows the order parameter OD#L$
= !DL/2" #the dimerization in the middle of the tube$ for dif-
ferent system sizes L. Two sharp transitions are observed, the
first one around J2=J2c and the second one at a higher value
J2 /J1%1.47. However, finite-size scaling shows that the or-
der parameter OD#L$ remains finite only for J2$J2c in the
thermodynamic limit. The first transition, the disappearance
of the dimerization, corresponds to the phase transition to a
S=3/2 phase on the rings. The second transition is a bound-
ary effect discussed in the next section.

C. Boundary excitations

Boundary spin-1 /2 degrees of freedom in open spin S
=3/2 chains have been predicted theoretically in Ref. 22,
and were later confirmed in DMRG studies of unfrustrated23

and frustrated24 spin S=3/2 chains.
In our model we find these edge states as well for suffi-

ciently large J2 /J1. However, approaching the first-order
transition coming from J2%J2c, there is a second class of
edge states, which are related to a kind of nucleation of the
dimerized S=1/2 phase at the boundaries. These edge states
are different from those discussed above, as they now origi-
nate from the S=1/2 subspace of a ring, and therefore also
include a chirality degree of freedom.

This is most clearly seen in the spatial dependence of the
correlation functions considered in the two subsections
above. The upper panel of Fig. 4 shows the space depen-
dence of the projector !PS=1/2

i " and the lower panel of the
nearest-neighbor spin correlation !Si ·Si+1" for different val-

FIG. 2. #Color online$ Expectation value of the projector PS=1/2
L/2

in the bulk as a function of J2 /J1 for different lengths and boundary
conditions #see text$. The jump at J2 /J1%1.22 is a clear indication
of a first-order transition.

FIG. 3. #Color online$ Dimerization at the center of the tube OD
as a function of J2 /J1 for L=50 #black squares$ and 100 #red
circles$. The vertical line represents the disappearance of the true
order parameter. The dimerization above this line vanishes after
proper finite-size scaling.
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J

J’

Fig. 1. Quantum spin tube with the triangular lattice structure.

α: for α ! 1, the system consists of weakly coupled triangles, while for α " 1 the
system is basically described by the rhombus lattice (if α → ∞, the model has no
frustration, which is equivalent to the square lattice with the modulated boundary
condition along the rung direction). Thus we can naively expect that the quantum
phase transition occurs between “weakly coupled triangular phase” and “rhombus
lattice phase”.2) In order to see the quantum phase transition of (1.1), we investigate
the low energy excitations (chiefly singlet-triplet spin gap) of (1.1) with the density
matrix renormalization group (DMRG) and the exact diagonalization. We then find
that the spin gapped phase is realized for α < 1.2 and the gapless rhombus lattice
phase, which is adiabatically connected with the α → ∞ limit, may appear for
α > 1.2. In addition we mention an unusual size dependence of the spin gap with
the open boundary system (for the leg direction) for α = 1.0.

§2. Spin gap

0 1 2
0

0.2

0.4

J’

∆/J’

L=54

L=36

singlet−triplet gap (open boundary)

Fig. 2. Singlet-triplet spin gap for L = 36 and
54 systems of J = 1 with the free boundary
condition. In the figure, the magnitude of
the gap is normalized by J ′.

In order to calculate the spin gap,
we have performed the finite size DMRG
up to L = 144. Here, we remark
that the renormalization process of the
DMRG is performed with a unit of three
spins of a triangle. This is because
the symmetry of the single triangle is
essential for the formation of the spin
gap.3),4)

Before proceeding to the detailed
analysis of the gap, we show the outline
of the α-dependence of the spin gap for
a finite size system. Figure 2 shows the
α-dependence of the singlet-triplet gap
for L = 36 and 54 systems with the free
boundary. Then we can expect the spin
gap for α < 1.2; we note that a precise
size extrapolation yields the finite value
of the spin gap in the bulk limit, which
will be discussed in the next section. We

can also see that the spin gap jumps twice at α % 1.2 and 1.5, and shows subtle

T. Sakai, M. Sato, K. Okamoto, K. Okunishi, and C. Itoi, J. Phys. 
Condens. Matter 22, 403201 (2010).

effect of open boundary condition
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Figure 3.9: Energy levels as we change K� for tubes of different length (a) L=10,(b) L=12,(c)

L=6. (d) The number of S=3/2 levels for the 3x6 tube. The crossings in the energy spectrum

and the jumps in the number of S=3/2 triangles corresponds to the appearance of pairs of

domain walls into the spin-chiral order.

i−2 i+3i+2

(b)

ii−1

(a)

i+1

Figure 3.10: Single domain walls in tubes of odd length with periodic boundary conditions

at K� = 0. (a) If we break the dimerized order at a spin singlet, the domain wall is a S=3/2

triangle(denoted by

���ξ↑i
�
, and drawn as a hexagon in the figure) connected by valence bonds to

the the neighboring triangles. (b) If the order is broken at a chirality singlet the domain wall

is a S=1/2 triangle which forms a |lll� + |rrr� chirality structure with the neighboring triangles,

we show

���η↑i+1

�
. In both cases the ellipses show the part of the one domain wall states where the

plaquettes are not satisfied with respect to HK�=0. The arrow emphasizes that the Hamiltonian

HK�=0 has a nonzero matrix element between

���ξ↑i
�

and

���η↑i+1

�
. The domain walls always contain

an unpaired spin (denoted by small arrow).

The Hamiltonian (3.7) has the following non-zero matrix elements in Fourier space at K� = 0:

�
ησk
���H
���ησk
�
=

5

6
(1 − aL cos k)

�
ξσk
���H
���ξσk
�
=

5

18
(1 − aL cos k)

�
ξσk
���H
���ησk
�
= −5

√
3 (cos k − aL) ,

(3.13)

dimerized, 
gapped

no
 gap

no
 gap

S=3/2

Intermediate phase


