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C:  2s12p3 => sp2 + pz

Simple View of Solids

•  a local perspective based on orbitals and bonds

Graphite Diamond

C:  2s12p3 => sp3

NaCl

Na(3s1)+Cl(3p5) => Na+Cl-

•  empirical relation between structure and property

diamond ≈ silicon ≈ germanium ≠ graphite;  NaCl ≈ KCl 
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Band Theory of Solids

•  electron in solids forms itinerant Bloch wave in periodic potential 
•  band insulators: a finite energy gap between occupied and empty states

Topological invariants

Bloch’s theorem:
One-electron wavefunctions in a crystal
(i.e., periodic potential) can be written

where k is “crystal momentum” and u is periodic (the same in every unit cell).

Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 

with periodic boundaries.
As k changes, we map out an “energy band”.  Set of all bands = “band structure”.

The Brillouin zone will play the role of the “surface” as in the previous example,

which will give us the “curvature”.

Good news:
for the invariants in the IQHE and topological insulators,

we need one fact about solids

and one property of quantum mechanics, the Berry phase

ψ(r) = eik·ruk(r)
k : crystal momentum

 : wavefunction within a unit cell

Berry phase in solids
In a solid, the natural parameter space is electron momentum.

The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:

We keep finding more physical properties that are determined 
by these quantum geometric quantities.

The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,

S. S. Chern

F = ∇×A
ψ(r) = eik·ruk(r)
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TKNN, 1982          “first Chern number”

F = ∇×A

H(k) =
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For most solids, locality is restored by transforming Bloch waves to 
Wannier functions, the analog of atomic orbitals in band theory. 

    Wannierization

Band theory: a global structure

The Same or Not The Same

Orbital: local approach

ψk(r) =
�

j

eik·Rjφj(r)

    Det




ψk1(r1) ψk2(r1) ...
ψk1(r2) ψk2(r2) ...

. . .








φ1(r1) φ2(r1) ...
φ1(r2) φ2(r2) ...

. . .



Det=

For most solids, locality is restored in band theory by transforming Bloch waves 
to Wannier functions, the analog of atomic orbitals.
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Topology:  property of a manifold that is insensitive to smooth deformations.

�=

(g=1) (g=0)

Topology 
The study of geometrical properties that are insensitive to smooth deformations

Example:  2D surfaces in 3D

A closed surface is characterized by its genus, g = # holes
g=0 g=1

g is an integer topological invariant that can be expressed in terms of the 
gaussian curvature that characterizes the local radii of curvature

4 (1 )
S

dA g

1 2

1
r r

Gauss Bonnet Theorem :

2

1 0
r 0

0

=

Example: genus (g) is an integer topological invariant of 2D surfaces. 

The Same or Not The Same:  Question of  Topology

Topology of electronic solids:

Question:  are all gapped insulators adiabatically connected? 

uk(r)
To answer this question requires understanding topology of occupied wavefunctions               
             in the Brillouin zone, which form a manifold in Hilbert space. 
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Quantum Hall Effect and Topological States of Matter

arises from the interaction between the elec-
trons’ spin and orbital degrees of freedom (4).
The resulting electronic state is inert in the
bulk like an insulator, but has conducting edge
states. We found that a new topological invari-
ant distinguishes this state from a conventional
insulator and guarantees the presence of those
edge states (5). In the simplest picture, the edge
states are spin-filtered in that electrons with

spin-up propagate in one direc-
tion, whereas electrons with spin-
down propagate in the opposite
direction. In this sense, this
state exhibits a quantum spin
Hall effect.

The quantum spin Hall effect
will be hard to observe in graph-
ene because carbon’s weak spin-
orbit interaction makes the energy
gap quite small and susceptible
to thermal fluctuations. The new
proposal by Bernevig et al. is
exciting because it solves this
problem and provides a feasible
method for observing the quan-

tum spin Hall effect.  They considered a semi-
conductor heterostructure consisting of a thin
layer of HgTe sandwiched between crystals
of CdTe. Their convincing theoretical analy-
sis shows that in an appropriate range of
layer thickness this two-dimensional struc-
ture should exhibit a robust quantum spin
Hall effect. HgTe, CdTe, and their alloys are
a well-studied family of semiconductor

materials with strong spin-orbit interactions.
The proposed device can be made with cur-
rent technology, thanks to decades of experi-
ence in the growth of high-quality semicon-
ductor structures.

In addition to providing a venue for a new
fundamental state of matter, the structure
proposed by Bernevig et al. may be of practi-
cal interest because it provides a method for
the electrical manipulation of spins and spin
currents with little or no dissipation. The
experimental demonstration of the quantum
spin Hall effect would be an important step in
this direction.
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States of matter. (Top) Electrons in an insulator are bound in localized orbitals (left) and have
an energy gap (right) separating the occupied valence band from the empty conduction band.
(Middle) A two-dimensional quantum Hall state in a strong magnetic field has a bulk energy
gap like an insulator but permits electrical conduction in one-dimensional “one way” edge
states along the sample boundary. (Bottom) The quantum spin Hall state at zero magnetic
field also has a bulk energy gap but allows conduction in spin-filtered edge states.

P
hotocopiers and laser printers play an
important role in our day-to-day life,
but we rarely pay attention to how these

devices work. They rely on photoconductors,
which are insulators in the dark but become
conductive under light illumination. About
three decades ago, environmentally more
benign organic photoconductors replaced the
toxic inorganic selenium alloy (1). The photo-
conductors in use today are bilayer systems
consisting of a charge-generating layer and a
charge-transporting layer (1). 

On page 1761 of this issue, Yamamoto et

al. describe a nanometer-scale analog of such

bulk photoconductors. They report well-
defined self-assembled coaxial nanowires, in
which hexabenzocoronene (HBC) layers are
laminated by trinitrofluorenones (TNF) (see
the figure) (2). Like their macroscopic coun-
terparts, these nanowires are insulators in the
dark but generate a photocurrent upon irradia-
tion with ultraviolet or visible light. 

Earlier attempts to create supramolecular
organic photoconductors have mainly focused
on columnar liquid-crystalline materials (3–5).
Müllen and colleagues have shown that HBC-
based columnar liquid crystals can achieve
charge carrier mobilities three orders of magni-
tude higher than those of commercially
available amorphous organic materials (4).
Recently, Percec et al. have reported more com-
plex photoconducting columnar liquid crystals,
in which the active units (carbazoles and TNFs)

are confined in the center of the columns (5).
These studies aim to create a highly organ-

ized, higher-mobility bulk material that can
replace existing low-molecular-weight organic
photoconductors or can be used in other appli-
cations, such as field-effect transistors. In
contrast, the coaxial nanowires described by
Yamamoto et al. are not primarily targeted for
implementation in existing technologies. Rather,
the incentive for this work comes from the
desire to create nanometer-scale functional
supramolecular entities. Such entities are ubiq-
uitous in nature, for example in photosynthesis,
where different self-assembled units interact to
accomplish light harvesting, charge separation,
and water oxidation in the confined space of a
membrane (6). The tubular organization of the
HBC molecules in the system of Yamamoto
et al. (see the figure) has a striking similarity to

Scientists have devised a nanometer-scale

analog of the bulk photoconductors used in

copiers and laser printers.

Generating a Photocurrent on 
the Nanometer Scale
Frank Würthner

CHEMISTRY

The author is at the Institute of Organic Chemistry and the
Wilhelm Conrad Röntgen Research Center of Complex
Material Systems, University of Würzburg, 97074 Würzburg,
Germany. E-mail: wuerthner@chemie.uni-wuerzburg.de
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The Integer Quantum Hall State
2D Cyclotron Motion, Landau Levels

Quantized Hall conductivity :

B

Jy

y xy xJ E
2

xy h
n e

Integer accurate to 10-9

Energy gap, but NOT an insulator

gap cE
E

gap cE

Ex

Hall conductivity is quantized when chemical potential lies within the gap.

σxy=N e2/h   : only a thermodynamic principle can explain this accuracy.   

Hall conductivity is a topological invariant of ground state wavefunction. 
(TKNN, 1982)

Kubo formula:  σxy =
i

2π

�
d2k�µν�∂µuk|∂νuk� = n

(Laughlin)
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Topology and Modern Band Theory

Global structure of band theory has more to offer:

•  topologically distinct from conventional insulators 

•  nontrivial band carries Chern number

•  experimental observation    (Chang et al, 2013)

Breakdown of local approach:  no localized Wannier function

(Haldane, 1987) 

VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane
Department ofPhysics, University of California, San Diego, La Jolla, California 92093

(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.
The model presented here is also interesting in that if

its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).
In the zero-temperature limit, the transverse conduc-

tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.
In the usual QHE, the gap at the Fermi level results

from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.
Semenoff investigated the tight-binding model with

one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.

1988 The American Physical Society 2015

Chern insulator: topological state of matter
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Edge States: Consequence of Topology

Change of topological invariant is accompanied by gap-closing.

arises from the interaction between the elec-
trons’ spin and orbital degrees of freedom (4).
The resulting electronic state is inert in the
bulk like an insulator, but has conducting edge
states. We found that a new topological invari-
ant distinguishes this state from a conventional
insulator and guarantees the presence of those
edge states (5). In the simplest picture, the edge
states are spin-filtered in that electrons with

spin-up propagate in one direc-
tion, whereas electrons with spin-
down propagate in the opposite
direction. In this sense, this
state exhibits a quantum spin
Hall effect.

The quantum spin Hall effect
will be hard to observe in graph-
ene because carbon’s weak spin-
orbit interaction makes the energy
gap quite small and susceptible
to thermal fluctuations. The new
proposal by Bernevig et al. is
exciting because it solves this
problem and provides a feasible
method for observing the quan-

tum spin Hall effect.  They considered a semi-
conductor heterostructure consisting of a thin
layer of HgTe sandwiched between crystals
of CdTe. Their convincing theoretical analy-
sis shows that in an appropriate range of
layer thickness this two-dimensional struc-
ture should exhibit a robust quantum spin
Hall effect. HgTe, CdTe, and their alloys are
a well-studied family of semiconductor

materials with strong spin-orbit interactions.
The proposed device can be made with cur-
rent technology, thanks to decades of experi-
ence in the growth of high-quality semicon-
ductor structures.

In addition to providing a venue for a new
fundamental state of matter, the structure
proposed by Bernevig et al. may be of practi-
cal interest because it provides a method for
the electrical manipulation of spins and spin
currents with little or no dissipation. The
experimental demonstration of the quantum
spin Hall effect would be an important step in
this direction.
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States of matter. (Top) Electrons in an insulator are bound in localized orbitals (left) and have
an energy gap (right) separating the occupied valence band from the empty conduction band.
(Middle) A two-dimensional quantum Hall state in a strong magnetic field has a bulk energy
gap like an insulator but permits electrical conduction in one-dimensional “one way” edge
states along the sample boundary. (Bottom) The quantum spin Hall state at zero magnetic
field also has a bulk energy gap but allows conduction in spin-filtered edge states.

P
hotocopiers and laser printers play an
important role in our day-to-day life,
but we rarely pay attention to how these

devices work. They rely on photoconductors,
which are insulators in the dark but become
conductive under light illumination. About
three decades ago, environmentally more
benign organic photoconductors replaced the
toxic inorganic selenium alloy (1). The photo-
conductors in use today are bilayer systems
consisting of a charge-generating layer and a
charge-transporting layer (1). 

On page 1761 of this issue, Yamamoto et

al. describe a nanometer-scale analog of such

bulk photoconductors. They report well-
defined self-assembled coaxial nanowires, in
which hexabenzocoronene (HBC) layers are
laminated by trinitrofluorenones (TNF) (see
the figure) (2). Like their macroscopic coun-
terparts, these nanowires are insulators in the
dark but generate a photocurrent upon irradia-
tion with ultraviolet or visible light. 

Earlier attempts to create supramolecular
organic photoconductors have mainly focused
on columnar liquid-crystalline materials (3–5).
Müllen and colleagues have shown that HBC-
based columnar liquid crystals can achieve
charge carrier mobilities three orders of magni-
tude higher than those of commercially
available amorphous organic materials (4).
Recently, Percec et al. have reported more com-
plex photoconducting columnar liquid crystals,
in which the active units (carbazoles and TNFs)

are confined in the center of the columns (5).
These studies aim to create a highly organ-

ized, higher-mobility bulk material that can
replace existing low-molecular-weight organic
photoconductors or can be used in other appli-
cations, such as field-effect transistors. In
contrast, the coaxial nanowires described by
Yamamoto et al. are not primarily targeted for
implementation in existing technologies. Rather,
the incentive for this work comes from the
desire to create nanometer-scale functional
supramolecular entities. Such entities are ubiq-
uitous in nature, for example in photosynthesis,
where different self-assembled units interact to
accomplish light harvesting, charge separation,
and water oxidation in the confined space of a
membrane (6). The tubular organization of the
HBC molecules in the system of Yamamoto
et al. (see the figure) has a striking similarity to

Scientists have devised a nanometer-scale

analog of the bulk photoconductors used in

copiers and laser printers.

Generating a Photocurrent on 
the Nanometer Scale
Frank Würthner

CHEMISTRY

The author is at the Institute of Organic Chemistry and the
Wilhelm Conrad Röntgen Research Center of Complex
Material Systems, University of Würzburg, 97074 Würzburg,
Germany. E-mail: wuerthner@chemie.uni-wuerzburg.de
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Quantum Hall edge states: 

•  one-way moving
•  chiral anomaly 
•  cannot be realized in any 1D wire.

Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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Topological Insulators

• topological distinction requires time-reversal symmetry 
• helical surface states with odd # of Dirac points
• time-reversal anomaly: avoids fermion doubling

topology meets symmetry

Kane & Hasan, RMP 10
Qi & Zhang, RMP 11

π

E

0-π k

↑↓

NEWS & VIEWS

CONDENSED MATTER

An insulator with a twist

Charles L. Kane
is in the Department of Physics and Astronomy, 
University of Pennsylvania, 209 South 33rd Street, 
Philadelphia, Pennsylvania 19104-6396, USA.

e-mail: kane@physics.upenn.edu

T he insulating state is the most basic 
electronic phase of matter. It is 
characterized by an energy gap for 

electronic excitations, which makes it 
electrically inert at low energies. As they 
report in Nature, Hsieh et al.1 have now 
observed a new kind of insulator — dubbed 
a ‘topological insulator’ — that has unique 
conducting states bound to its surface. !ese 
surface states are unlike any other known 
two-dimensional electron system, and 
could be used to test proposed schemes for 
topological quantum computation.

One of the triumphs of quantum 
mechanics in the twentieth century was the 
development of the band theory of solids. 
An insulator has a band structure in which 
occupied and empty bands are separated by 
an energy gap. !e existence of an energy gap, 
however, does not guarantee that a material 
is a simple insulator. A counterexample 
is the two-dimensional integer quantum 
Hall state, which has an energy gap due 
to the quantization of electronic states 
in a magnetic "eld. Despite the gap, this 
state is not a conventional insulator, but 
rather has a quantized Hall conductivity. 
!e classi"cation of distinct insulating 
band structures was pioneered in 1982 by 
!ouless and colleagues2, who showed that 
the quantized Hall conductivity de"nes an 
integer topological invariant. !is invariant 
is insensitive to small changes in the band 
structure, and can only change at a phase 
transition where the energy gap vanishes.

Quantum Hall states require the 
presence of a magnetic "eld, which leads 
to a violation of time-reversal symmetry. 
In the past few years, a new class of time-
reversal-invariant topological insulators, 
which are distinguished by a di#erent 
topological invariant, has been predicted for 
two-dimensional3 and three-dimensional4–6 
crystals. !e two-dimensional state, "rst 
predicted in graphene7, is known as a 
quantum spin Hall insulator. !is state was 

subsequently predicted8 to exist, and was 
then observed9, in HgxCd1−xTe quantum 
wells. In 2007, Liang Fu and I predicted 
that the semiconducting alloy Bi1−xSbx is a 
three-dimensional topological insulator10. 
In their experiment, Hsieh et al.1 probed 
the surface of Bi1−xSbx using angle-resolved 
photoemission spectroscopy, and found the 
signature of the topological insulator state in 
the observed surface states.

A distinctive property of topological 
insulators is the existence of gapless states 
on the sample boundary. Such states always 
occur at the spatial interface between regions 
that are in di#erent topological classes. !is 
is easiest to see by imagining a smooth limit 
where the band structure slowly interpolates 
as a function of position between the two 

sides. Somewhere along the way the energy 
gap has to vanish; otherwise the two sides 
would be in the same class. Gapless states 
are thus bound to the interface. !e surface 
of a crystal can be viewed as an interface 
with the vacuum, which, like a conventional 
insulator, is in the trivial topological class. 
!is guarantees the existence of gapless states 
on the surface (or edge) of a non-trivial 
insulator. !ese states are well known in the 
quantum Hall e#ect, which has gapless one-
dimensional edge states that are unique in 
that they propagate in one direction only. It is 
impossible to have such states in an isolated 
one-dimensional system.

Unlike the quantum Hall e#ect in 
which the topological invariant is an integer, 
the invariant distinguishing a topological 

Experiment has now proved the existence of the predicted three-dimensional ‘topological 
insulator’ in the semiconducting alloy Bi1−xSbx.

Figure 1 The surface of a topological insulator. a,b, The surface in real space (a) and in reciprocal space (b), where 
momentum vectors k in the surface Brillouin zone define Kramers degenerate points, Γ1–4. c,d, Surface state dispersion 
between two Kramers degenerate points: in c, the number of surface states crossing the Fermi energy EF is even, 
whereas in d it is odd. An odd number of crossings leads to topologically protected metallic surface states.
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T he insulating state is the most basic 
electronic phase of matter. It is 
characterized by an energy gap for 

electronic excitations, which makes it 
electrically inert at low energies. As they 
report in Nature, Hsieh et al.1 have now 
observed a new kind of insulator — dubbed 
a ‘topological insulator’ — that has unique 
conducting states bound to its surface. !ese 
surface states are unlike any other known 
two-dimensional electron system, and 
could be used to test proposed schemes for 
topological quantum computation.

One of the triumphs of quantum 
mechanics in the twentieth century was the 
development of the band theory of solids. 
An insulator has a band structure in which 
occupied and empty bands are separated by 
an energy gap. !e existence of an energy gap, 
however, does not guarantee that a material 
is a simple insulator. A counterexample 
is the two-dimensional integer quantum 
Hall state, which has an energy gap due 
to the quantization of electronic states 
in a magnetic "eld. Despite the gap, this 
state is not a conventional insulator, but 
rather has a quantized Hall conductivity. 
!e classi"cation of distinct insulating 
band structures was pioneered in 1982 by 
!ouless and colleagues2, who showed that 
the quantized Hall conductivity de"nes an 
integer topological invariant. !is invariant 
is insensitive to small changes in the band 
structure, and can only change at a phase 
transition where the energy gap vanishes.

Quantum Hall states require the 
presence of a magnetic "eld, which leads 
to a violation of time-reversal symmetry. 
In the past few years, a new class of time-
reversal-invariant topological insulators, 
which are distinguished by a di#erent 
topological invariant, has been predicted for 
two-dimensional3 and three-dimensional4–6 
crystals. !e two-dimensional state, "rst 
predicted in graphene7, is known as a 
quantum spin Hall insulator. !is state was 

subsequently predicted8 to exist, and was 
then observed9, in HgxCd1−xTe quantum 
wells. In 2007, Liang Fu and I predicted 
that the semiconducting alloy Bi1−xSbx is a 
three-dimensional topological insulator10. 
In their experiment, Hsieh et al.1 probed 
the surface of Bi1−xSbx using angle-resolved 
photoemission spectroscopy, and found the 
signature of the topological insulator state in 
the observed surface states.

A distinctive property of topological 
insulators is the existence of gapless states 
on the sample boundary. Such states always 
occur at the spatial interface between regions 
that are in di#erent topological classes. !is 
is easiest to see by imagining a smooth limit 
where the band structure slowly interpolates 
as a function of position between the two 

sides. Somewhere along the way the energy 
gap has to vanish; otherwise the two sides 
would be in the same class. Gapless states 
are thus bound to the interface. !e surface 
of a crystal can be viewed as an interface 
with the vacuum, which, like a conventional 
insulator, is in the trivial topological class. 
!is guarantees the existence of gapless states 
on the surface (or edge) of a non-trivial 
insulator. !ese states are well known in the 
quantum Hall e#ect, which has gapless one-
dimensional edge states that are unique in 
that they propagate in one direction only. It is 
impossible to have such states in an isolated 
one-dimensional system.

Unlike the quantum Hall e#ect in 
which the topological invariant is an integer, 
the invariant distinguishing a topological 

Experiment has now proved the existence of the predicted three-dimensional ‘topological 
insulator’ in the semiconducting alloy Bi1−xSbx.

Figure 1 The surface of a topological insulator. a,b, The surface in real space (a) and in reciprocal space (b), where 
momentum vectors k in the surface Brillouin zone define Kramers degenerate points, Γ1–4. c,d, Surface state dispersion 
between two Kramers degenerate points: in c, the number of surface states crossing the Fermi energy EF is even, 
whereas in d it is odd. An odd number of crossings leads to topologically protected metallic surface states.
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Z2 Topological Invariant & Parity Criterion

(Kane & Mele; LF & Kane; Moore & Balents ...) Explicit formula for topological invariant: 

(−1)ν =
4�

i=1

Pf[w(Γi)]�
det[w(Γi)]

= ±1 wmn = �um(k)|Θ|un(−k)�

•  computation requires a smooth gauge 

•  ab-initio implementation
0

π

π

  π

(Soluyanov & Vanderbilt, Dai et al ...)

Parity criterion: LF & Kane, PRB 76, 045302 (2007)

•  choose a canonical gauge for inversion-symmetric insulators:  

•  fixed-point formula: 

Ξ = PΘ|ui(k)� = �ijΞ|uj(k)�

(Z2 invariant = parity of occupied bands) (−1)ν =
�

i

�

n

ξ2n(Γi)
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Gap-closing transition is generically described by four-component Dirac theory

Origin of Topological Insulators: Parity Inversion

H = ψ†(−ivF∂jΓjψ +mΓ0)ψ
P T

Γ0 + +
- -Γ1,...4

•  only one mass term is allowed in P and T symmetric materials
•  parity operator = Dirac mass;  parity inversion = mass reversal 
•  TI surface =  massless domain wall fermion

4

the conduction band and valence band touch each other

at two distinct points in the Brillouin zone. Near those

points the electronic dispersion resembles the linear dis-

persion of massless relativistic particles, described by the

Dirac equation (DiVincenzo and Mele, 1984; Semenoff,
1984). The simplest description of graphene employs a

two band model for the pz orbitals on the two equivalent

atoms in the unit cell of graphene’s honeycomb lattice.

The Bloch Hamiltonian is then a 2× 2 matrix,

H(k) = h(k) · �σ, (3)

where �σ = (σx,σy,σz) are Pauli matrices and h(k) =

(hx(k), hy(k), 0). The combination of inversion (P) and

time reversal (T ) symmetry requires hz(k) = 0 be-

cause P takes hz(k) to −hz(−k), while T takes hz(k)
to +hz(−k). The Dirac points occur because the two

component h(k) can have point zeros in two dimensions.

In graphene they occur at two points, K and K�
= −K,

whose locations at the Brillouin zone corners are fixed by

graphene’s rotational symmetry. For small q ≡ k − K,

h(q) = �vFq, where vF is a velocity, so H(q) = �vFq · �σ
has the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P

and T symmetry. By breaking these symmetries the de-

generacy can be lifted. For instance, P symmetry is vi-

olated if the two atoms in the unit cell are inequivalent.

This allows hz(k) to be non zero. If hz(k) is small, then

near K (3) becomes a massive Dirac Hamiltonian,

H(q) = �vFq · �σ +mσz (4)

where m = hz(K). The dispersion E(q) =

±
�
|�vFq|2 +m2 has an energy gap 2|m| . Note that

T symmetry requires the Dirac point at K�
has a mass

m�
= hz(K�

) with the same magnitude and sign, m�
= m.

This state describes an ordinary insulator.

Haldane (1988) imagined lifting the degeneracy by

breaking T symmetry with a magnetic field that is zero

on the average, but has the full symmetry the lattice.

This perturbation allows nonzero hz(k) and introduces a

mass to the Dirac points. However, P symmetry requires

the masses at K and K�
have opposite sign, m�

= −m.

Haldane showed that this gapped state is not an insula-

tor, but rather a quantum Hall state with σxy = e2/h.
This non-zero Hall conductivity can be understood in

terms of (2). For a two level Hamiltonian of the form of

(3) it is well known that the Berry flux(Berry, 1984) is

related to the solid angle subtended by the unit vector

ĥ(k) = h(k)/|h(k)|, so that (2) takes the form

n =
1

4π

�
d2k(∂kx ĥ× ∂ky ĥ) · ĥ. (5)

This simply counts the number of times ĥ(k) wraps

around the unit sphere as a function of k. When the

masses m = m�
= 0 ĥ(k) is confined to the equator

hz = 0, with a unit (and opposite) winding around each

of the Dirac points where |h| = 0. For small but finite m,

|h| �= 0 everywhere, and ĥ(K) visits the north or south

pole, depending on the sign of m. It follows that each

Dirac point contributes ±e2/2h to σxy. In the insulating

state with m = m�
the two cancel, so σxy = 0. In the

quantum Hall state they add.

It is essential that there were an even number of Dirac

points, since otherwise the Hall conductivity would be

quantized to a half integer. This is in fact guaranteed by

the fermion doubling theorem (Nielssen and Ninomiya,

1983), which states that for a T invariant system Dirac

points must come in pairs. We will return to this issue

in section IV, where the surface of a topological insulator

provides a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classifi-

cation of gapped band structures is the existence of gap-

less conducting states at interfaces where the topologi-

cal invariant changes. Such edge states are well known

at the interface between the integer quantum Hall state

and vacuum (Halperin, 1982). They may be understood

in terms of the skipping motion electrons execute as their

cyclotron orbits bounce off the edge (Fig. 2(a)). Impor-

tantly, the electronic states responsible for this motion

are chiral in the sense that they propagate in one di-

rection only along the edge. These states are insensi-

tive to disorder because there are no states available for

backscattering – a fact that underlies the perfectly quan-

tized electronic transport in the quantum Hall effect.
The existence of such “one way” edge states is deeply

related to the topology of the bulk quantum Hall state.

Imagine an interface where a crystal slowly interpolates

as a function of distance y between a quantum Hall state

(n = 1) and a trivial insulator (n = 0). Somewhere

along the way the energy gap has to vanish, because oth-

erwise it is impossible for the topological invariant to

change. There will therefore be low energy electronic

states bound to the region where the energy gap passes

through zero. This interplay between topology and gap-

less modes is ubiquitous in physics, and has appeared in

many contexts. It was originally found by Jackiw and

Rebbi (1976) in their analysis of a 1D field theory. Sim-

ilar ideas were used by Su, Schrieffer and Heeger (1979)

to describe soliton states in polyacetalene.

A simple theory of the chiral edge states based on

Jackiw and Rebbi (1976) can be developed using the two

band Dirac model (4). Consider an interface where the

mass m at one of the Dirac points changes sign as a func-

tion of y. We thus let m → m(y), where m(y) > 0 gives

the insulator for y > 0 and m(y) < 0 gives the quan-

tum Hall state for y < 0. Assume m� > 0 is fixed. The

Schrödinger equation, obtained by replacing q by −i�∇ in

(4), has a simple and elegant exact solution,

ψqx(x, y) ∝ eiqxxe−
� y
0 dy�m(y�)dy�/vF

�
1

1

�
, (6)

Edge States
Gapless states at the interface between topologically distinct phases
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Chiral Dirac fermions are unique 1D states :  

conductance.  Insensitive to disorder, impossible to localize

Fermion Doubling Theorem : 
Chiral Dirac Fermions can not exist in a purely 1D system. 
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From Parity Criterion to Material Prediction

Ls

La

Egap

T L

    Bi-Sb alloy

(LF & Kane 07)Prediction:  Bi-Sb, strained HgTe and etc are 3D topological insulators.
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From Parity Criterion to Material Prediction

Ls

La

Egap

T L

    Bi-Sb alloy

(LF & Kane 07)Prediction:  Bi-Sb, strained HgTe and etc are 3D topological insulators.

Bi-Sb (111) surface 

(Hsieh et al 08)
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From Parity Criterion to Material Prediction

Ls

La

Egap

T L

    Bi-Sb alloy

(LF & Kane 07)Prediction:  Bi-Sb, strained HgTe and etc are 3D topological insulators.

Bi-Sb (111) surface Bi2Te3 (111) surface

(Hsieh et al 08)
(expt: Chen et al 09; 
theory: Zhang et al 09)
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Topology meets Crystallography

Crystal symmetry (point group) is a defining property of periodic solids.  

Question:  for a given crystal symmetry, are there topologically distinct 
types of energy bands with the same symmetry labels?  

e.g., can s- and p-orbitals in diamond lattice generate a band structure 
different from silicon?

Beyond structure-property relation?
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Topological Crystalline Insulators

LF, PRL 106, 106802 (2011).

Topological Crystalline Insulators

Liang Fu

Department of Physics, Harvard University, Cambridge, MA 02138

The recent discovery of topological insulators has revived interest in the band topology of insu-
lators. In this work, we extend the topological classification of band structures to include certain
crystal point group symmetry. We find a class of three-dimensional “topological crystalline insula-
tors” which have metallic surface states with quadratic band degeneracy on high symmetry crystal
surfaces. These topological crystalline insulators are the counterpart of topological insulators in
materials without spin-orbit coupling. Their band structures are characterized by new topological
invariants. We hope this work will enlarge the family of topological phases in band insulators and
stimulate the search for them in real materials.

PACS numbers: 73.20.-r, 73.43.-f

The topology of band structures is important in the

study of topological phases of matter. Historically the

quantization of Hall conductance in the integer quan-

tum Hall effect was explained by the Thouless-Kohmoto-

Nightingale-den Nijs integer (also known as Chern num-

ber) of occupied energy bands[1]. Recently the topolog-

ical classification of spin-orbital coupled band structures

with time reversal symmetry has played a key role in the

theoretical prediction of topological insulators[2–4]. The

subsequent development of topological band theory[5],

combined with realistic band structure calculations, has

proven useful in the material search for topological insu-

lators.

Inspired by the discovery of topological insulators,

the classification of band structures has been extended

to other discrete symmetry classes such as particle-hole

symmetry[6–8], which leads to a rich family of topo-

logical phases such as topological superconductors[6, 9].

More recently, the classification of magnetic insulators

with certain magnetic translation symmetry has been

studied[10, 11]. Finding these phases in real materials

is interesting and challenging.

The purpose of this work is to extend the classifica-

tion of band structures in a different direction—to in-

clude crystal point group symmetries. We introduce the

notion of “topological crystalline insulators”, which can-

not be smoothly connected to a trivial atomic insulator

when time reversal (T ) symmetry and certain point group

symmetry are respected. Unlike time reversal symmetry,

crystal symmetries can be broken by sample surfaces. As

a result, a low-symmetry surface of a topological crys-

talline insulator does not have robust surface states. This

motivates us to study a class of three-dimensional topo-

logical crystalline insulators which have four-fold (C4) or

six-fold (C6) rotational symmetry. As we will show, its

(001) surface, which preserves the rotational symmetry,

supports gapless surface states. These topological crys-

talline insulators are the counterpart of topological in-

sulators in materials without spin-orbit coupling. Instead
electron’s orbital degrees of freedom play a role similar to

spin. Unlike the linearly dispersing Dirac surface states

!
M

Z

A

(a) (b)

FIG. 1: (a) tetragonal lattice with two atoms A and B along
the c-axis in the unit cell; (b) the Brillouin zone and four high
symmetry points.

of topological insulators, the (001) surface states of topo-

logical crystalline insulators have quadratic band degen-

eracy protected by time reversal and discrete rotational

symmetry[12, 13].

The outline of this paper is as follows. First we intro-

duce a simple tight-binding model in a tetragonal crystal

with C4 symmetry. We explicitly show that gapless sur-

face states exist on the (001) crystal face. The topological

stability of surface states suggests a nontrivial phase in

this model. Next we define a new Z2 topological invariant

for generic time reversal invariant band structures with

C4 or C6 symmetry in three dimensions. This estab-

lishes the topological crystalline insulator phase. Finally

we discuss the electronic properties of quadratic surface

bands.

Tight-Binding Model: Consider a tetragonal lat-

tice with a unit cell of two inequivalent atoms A and B
along c-axis, as shown in Fig.1a. The 3D crystal can

be viewed as a stack of bilayer square lattices in the ab
plane. We now introduce a tight-binding model to de-

scribe the band structure of electron’s p orbitals (or d
orbitals, see the next paragraph). In particular, we are

interested in the energy bands derived from px and py or-

bitals. We assume that these bands do not overlap with

the pz bands, and construct a tight-binding model from

Wannier functions with the same symmetry as px and py
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a model of px and py orbitals in tetragonal lattice with C4 symmetry

E

2

orbitals. The Hamiltonian H consists of intra-layer hop-

ping H
A
and H

B
, as well as inter-layer hopping H

AB
:

H =

�

n

H
A
n +H

B
n +H

AB
n ,

H
a
n =

�

i,j

t
a
(ri − rj)

�

α,β

c
†
aα(ri, n)e

ij
α e

ij
β caβ(rj , n),

H
AB
n =

�

i,j

t
�
(ri − rj)[

�

α

c
†
Aα(ri, n)cBα(rj , n) + h.c.]

+ t
�
z

�

i

�

α

[c
†
Aα(ri, n)cBα(ri, n+ 1) + h.c.] (1)

Here each site is specified by (n, r, a): n labels the bi-

layer unit cell along c-axis; r = (x, y) labels the ab-plane

coordinate; a = A,B labels the sublattice. α,β label the

px, py orbital. Two types of p-orbital hopping terms ap-

pear in H. The intra-layer hopping in H
a
is of σ-bonding

type: it depends on the relative orientation of p-orbital

and the hopping direction eij = (ri − rj)/|ri − rj |. The

inter-layer hopping in H
AB

is orbital-independent. Writ-

ten in this form, the tight-binding Hamiltonian mani-

festly preserves crystal symmetries. The hopping ampli-

tudes t
a
, t

�
and t

�
z between two sites depend on their

ab-plane distance ri − rj . Throughout this work, we as-

sume spin-orbit coupling is negligible, so that electron’s

spin index is omitted.

We emphasize that the form of the Hamiltonian H is

entirely determined by crystal symmetry. Because dxz,yz

orbitals transform in the same way as px,y orbitals un-

der C4, (1) also applies to materials with these d-orbital.

Therefore (1) is potentially revelant to a large class of

materials including transition metal compounds with t2g

orbitals near Fermi energy.

To obtain a minimal model for topological crystalline

insulators, we include the nearest and next-nearest neigh-

bor intra-layer hoppings in H
a
with the amplitude t

a
1 and

t
a
2 , as well as nearest and next-nearest neighbor inter-

layer hoppings in H
AB

with the amplitude t
�
1 and t

�
2.

The corresponding Bloch Hamiltonian H(k) is obtained
by Fourier transform:

H(k) =

�
H

A
(k) H

AB
(k)

H
AB†

(k) H
B
(k)

�

H
a
(k) = 2t

a
1

�
cos kx 0

0 cos ky

�

+ 2t
a
2

�
cos kx cos ky sin kx sin ky

sin kx sin ky cos kx cos ky

�
,

H
AB

(k) = [t
�
1 + 2t

�
2(cos kx + cos ky) + t

�
ze

ikz ]I. (2)

The band structure is shown in Fig.2a for the following

set of parameters: t
A
1 = −t

B
1 = 1, t

A
2 = −t

B
2 = 0.5, t

�
1 =

2.5, t
�
2 = 0.5, t

�
z = 2. We have checked that the energy

gap is finite everywhere in the Brillouin zone. As long as

the energy gap does not close, the system remains in the

same topological class within a finite parameter range.

E

Γ M A Z Γ

E0

4

-4

M—

X—Γ—

4

0

-4

(a)

(b)

Γ— M— X— Γ—

FIG. 2: (a) bulk band structure of the tight binding model
along high symmetry lines; (b) surface states with quadratic
band touching exist on (001) face. The tight-binding param-
eters are shown in the text below Eq.(2).

To study surface states, we solve H in a slab geome-

try. We find that the existence of gapless surface states

crucially depend on the surface termination. Consider

the high symmetry (001) surface, which preserves the C4

symmetry. Here surface states exist and transverse the

whole energy gap as shown in Fig.2, leading to a 2D

surface metal. Note that surface states are doubly de-

generate at M̄ = (π,π): one in px orbital and the other

in py orbital. Because M̄ is a fixed point under four-fold

rotation, the doublet form a two-dimensional irreducible

real representation of C4 symmetry, as a result of time

reversal symmetry for electrons without spin-orbit cou-

pling (i.e., spinless fermions). Surface band dispersion

near M̄ can be obtained from k · p theory. We introduce

a pseudospin σz = ±1 to label the px and py orbital of

the doublet. In this basis, C4 rotation is represented by

e
iσyπ/4 and time reversal operator T is represented by

complex conjugation. Up to a gauge transformation, the

form of the k ·p Hamiltonian H is dictated by symmetry:

H(kx, ky) =
k
2

2m0
+

k
2
x − k

2
y

2m1
σz +

kxky

2m2
σx. (3)

Perturbations which break either C4 or T symmetry can

open up an energy gap and destroy the protected sur-

face states. This can be seen explicitly by adding a C4-

breaking termM1kxσy+M2σz or a T -breaking termMσy

•  trivial phase = occupied states on a given sublattice
•  a nontrivial phase: characterized by a new Z2 invariant (orientability)
•  protected metallic states on symmetry-preserving surfaces

=> proves the existence of topological crystalline insulators
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FIG. 1: (a)The bulk Brillouin zone and projection to [110]

and [111] direction. It is clear that all the momenta in the

ΓL1L2 plane of the bulk Brillouin zone are kept invariant

under the mirror operation about the {11̄0} plane in the real

space. Another tow mirror-invariant K planes are labeled

by P1 and P2, which are projected to Γ̄K̄ and Γ̄Ȳ for [110]

and [111] surface, respectively. (b) the band structure for the

[110] surface. (c, d) the band structure of {111} surface for Te

termination and Sn termination, respectively. The insets in

(b, c, d) schematically show the corresponding Fermi surfaces

Dirac velocity at Γ̄ is found to be xxx cm/s, whereas the

surface band dispersion at M̄ is anisotropic and strongly

particle-hole asymmetric. Similarly, Te-terminated sur-

face also has four branches of Dirac fermions. How-

ever, the Dirac points are buried in the conduction band,

and there are other coexisting midgap states. To avoid

these unimportant complications, we will consider Sn-

terminated surface in the rest of this paper.

The Dirac surface states shown here are spin-polarized.

Fig.2 shows the expectation value of spin at different mo-

menta over the Fermi surfaces. The Fermi surface near

Γ̄ is nearly isotropic with a small hexagonal warping[26].

The Fermi surface near M̄ is elliptical due to the lower

symmetry. The in-plane spin components of all the four

Fermi surfaces show a vortex configuration, with the

counterclockwise chirality. This leads to a 2D Dirac sys-

tem with a net chirality.

The existence of these Dirac surface states follow from

the unusual orbital ordering at four L points in SnTe, in

which the valence (conduction) band edge is composed of

Sn (Te) orbital[8]. Such an ordering is opposite to that

of an ionic insulator, in which the valence (conduction)

band is derived from the anion (cation) orbital. This or-

bital inversion leads to the four branches of massless 2D

Dirac fermions on the (111) surface shown in Fig.1. The

locations of these Dirac fermions are precisely given by

the projection of L1, ..., L4 onto the (111) surface Bril-

louin zone, with L1 → Γ̄ and Lj → M̄j , j = 2, 3, 4.

The (111) surface states with four Dirac fermions are

topologically protected by crystalline symmetry rather

than time-reversal symmetry. In particular, in the pres-

ence of reflection symmetry with respect to the mirror

plane, these surface states cannot be removed. This can

be understood from surface band dispersion along the

mirror-invariant line Γ̄−M̄ − Γ̄. There are four branches

of surface states on this line, all of which are eigenstates

of mirror symmetry. Since the mirror eigenvalue of a

spin-1/2 electron is directly related to its spin, the spin

polarization of surface states on the line Γ̄M̄ is guaran-

teed to be in-plane and perpendicular to the momentum,

as our calculation shows (Fig.2). Moreover, since the

spin textures of Dirac pockets at Γ̄ and M̄ have the same

chirality, the two branches of surface bands moving in

the same direction have the same mirror eigenvalue, and

any two counter-propagating states have opposite mirror

eigenvalues. Provided that mirror symmetry is present, it

is impossible to couple counter-propag
ating surface states

and open up a gap. The locking between electron’s di-

rectionality and mirror eigenvalue is a unique property of

surface states of TCI stemming from its bulk topological

invariant, and cannot appear in any 2D material[8].

Some essential features of surface states can be under-

stood from the continuum k ·p Hamiltonian for the bulk:

H = mσz + v(kxsy − kysx)σx + vzkzσy. (1)

H describes the conduction and valence bands near L

points. Here kz is along the ΓL direction, and kx is along

the (11̄0) axis of reflection. The Pauli matrices si corre-

sponds to j = 1/2 spin degrees of freedom, and σz = ±1

corresponds to the p-orbital of Sn and Te respectively[8].

m < 0 corresponds to the inverted band ordering. The

k · p parameters are well-established in the literature:

v = ..., vz = ..., and m = ....

Surface states at Γ̄ can be obtained by solving eigen-

value problem at kx = ky = 0:

(−ivσy∂z +mσz)ψ(z) = Eψ(z), (2)

subject to an appropriate boundary condition for Dirac

fermions. Due to time-reversal symmetry, there is a one-

parameter family of allowed values for two-component

wavefunction at the boundary:

ψ(z = 0) =

�
cos

θ
2

sin
θ
2

�
(3)

up to a normalization constant. Here the parameter θ

specifies the relative amplitude of Sn and Te orbitals at

the surface. By solving equation (2) with the boundary

condition (3), we obtain the energy of the Dirac point

E0 at Γ̄ measured from the middle of the band gap:

E0 = m cos θ. The surface state penetration length is

given by vz/(m sin θ) = vz/
�

m2 − E
2
0 . The parameter

θ depends on both the band structure and the boundary

condition. From fitting E0 with surface states obtained

in tight-binding calculation, we estimate that the Dirac

point energy E0 � m/2 is located halfway in between

•  IV-VI rocksalt semiconductors: 
    SnTe, PbTe, PbSe  

•  TCI phase in SnTe protected by 
    (110) mirror symmetry

Γ X

E

ARTICLE   NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1969

NATURE COMMUNICATIONS | 3:982 | DOI: 10.1038/ncomms1969 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

A comprehensive theory of disordered topological crystalline  
insulators is in progress.

On the experimental side, the surface states of SnTe we predicted 
can be readily detected in angle-resolved photoemission spectros-
copy and tunnelling spectroscopy experiments. !e underlying 
mirror Chern number can be deduced from the spin polarization of 
surface states30. Moreover, SnTe-based thin "lms and superlattices 
have remarkably high mobility, exceeding 2500 cm2 /Vs at room 
temperature31,32, which provide a promising platform for device 
applications.

Finally, we relate our work to a wider class of materials, including 
PbTe and PbSe. Although both are topologically trivial at ambient 
pressure, our "rst-principles calculation (Fig. 2c) shows that decreas-
ing the lattice constant by 2% inverts the band gap and drives PbTe 
into a topological crystalline insulator. !is band inversion is real-
ized under moderate pressure (around 3 GPa in PbTe and 2 GPa in 
PbSe24,22). Alternatively, one can achieve the topological regime by 
growing these materials on substrates with smaller lattice constants. 
As a precedent, high-quality PbTe quantum wells have been fabri-
cated and exhibit ballistic transport33,34. It is also known that the 
alloys Pb1 − xSnxTe and Pb1 − xSnxSe undergo band inversion as Sn 
composition increases35,36, so that they become topological crystal-
line insulators on the inverted side.

We brie$y comment on how our work relates to early pioneer-
ing "eld-theoretic studies, which predicted the existence of two 
dimensional massless Dirac fermions at the interface of PbTe and 
SnTe37,38, or domain wall of PbTe39. Our work has made it clear that 
only interfaces symmetric about the {110} mirror plane have pro-
tected gapless states, which are solely derived from the topological 
crystalline insulator SnTe and exist even when PbTe is removed. In 
light of ther topological nature, which we identi"ed, SnTe material 
class in IV–VI semiconductors is likely to lead a new generation of 
topological materials.

Methods
Tight binding model. !e tight-binding model for SnTe is constructed from the 
Wannier functions of the conduction and valence bands, which are primarily  
three p-orbitals of Sn and Te atoms. !e Hamiltonian Htb is given by

H m

t
j

j
j j

j j
jj j

tb = ( 1) ( ) ( )

( )
,

, ( , ),

r

r r

c r c r

c r

†

† d̂d d c r

c r c r s

rr rr

r

ˆ

†

j

j
j j j

h c

i

( ) . .

( ) ( ) .
, ,

Here r labels the site, j = 1,2 labels the Sn or Te atom,  = ,  labels electron’s spin. 
!e components of vectors c† and c correspond to the three p-orbitals. In the 
Hamiltonian (equation (8)), m is the on-site potential di%erence between Sn and 
Te; t12 = t21 is the nearest-neighbour hopping amplitude between Sn and Te; t11 and 
t22 are the next nearest-neighbour hopping amplitudes within a sublattice; d̂rr  is 
the unit vector connecting site r to r . !e second line thus represents -bond hop-
ping (head-to-tail) of the p-orbitals. !e 1,2 term is L·s atomic spin-orbit coupling, 
where Lj = i jkl is the orbital angular momentum in p-orbital basis. !e bulk and 
surface bands of the above tight-binding Hamiltonian nicely reproduce the essen-
tial features of the "rst-principles calculation, and additional terms such as -bond 
hopping of the p-orbitals can be added to improve the "t.

!e e%ect of a structural distortion in which atoms are displaced by u can be 
captured by adding the modulated hopping

t h c
( , ),

1 2( ) ( ) . .
r r

rrc r d u c r 

to the tight binding model. 
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Band Inversion between SnTe and PbTe

x
xc ~0.35

Egap

PbTeSnTe 

Band gap of Pb1-xSnxTe:

•  even number of band inversion at four L points

•  neither SnTe nor PbTe is topological insulator

(Dimmock, Melngailis & Strauss, 1966)

0.29eV0.18eVband gap: 

(LF & Kane, PRB 07)
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Origin of Band Inversion

Sn or Pb:

Te: 

Energy level diagram at L:

px,y,z
px,y

px,y,z

pz

pz

px,y

(ii)

+
-

+

-

(i) on-site energy + p-orbital hopping spin-orbit coupling

•  two types of band ordering at L:  
    normal = ionic insulator (trivial);        inverted = topologically nontrivial ? 

-
+

“normal” “inverted”

Eg>0 Eg<0

(ionicity) (covalency)
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Mirror Symmetry and Topology 

k.p theory: H = mσz + v(kxsy − kysx)σx + vzkzσy

on kx=0 plane: H(kx = 0) = mσz − vkysxσx + vzkzσy

When (110) mirror symmetry is present, band inversion cannot be avoided and 
involves a change of band topology.  

!"#

!$#

!%#

&'##

&(##

&)##

&*##

•  kx=0 plane is invariant under reflection w.r.t (110) 

•  two sets of bands with opposite mirror eigenvalues 
   (sx =1 and -1)

•  Chern number defined for each band separately
(Teo, LF & Kane,  PRB 08)

Band inversion at L1 and L2 changes Chern number of each band by ±2.
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SnTe versus PbTe

2

Here k1, k2, k3 form an orthogonal system with k3 along
ΓL and k1 along (110); σz = ±1 corresponds to the
p-orbital on the cation (Sn or Pb) and anion (Te) re-
spectively; s3 = ±1 labels the total angular momentum
j = ±1/2 along ΓL. A positive m means that the con-
duction and valence bands at L are respectively derived
from the cation and anion, and vice versa for negative
m. The form of H in Eq.(1) is uniquely determined
by the D3d point group symmetries which leave an L

point invariant[12]. In particular, reflection about the
[110] mirror plane is represented by M = −is1. On the
mirror-invariant plane ΓL1L2 (k1 = 0), H reduces to
H0 = mσz − vk2s1σx+ v3k3σy. Due to mirror symmetry,
H0 decomposes into the s1 = 1 (M = −i) and s1 = −1
(M = i) subspaces:

H
±
0 = mσz ∓ vk2σx + v3k3σy, (2)

each of which describes a 2D massive Dirac fermion.
In going from PbTe to SnTe (increasing x in

Pb1−xSnxTe), the cation/anion character of the conduc-
tion/valence bands becomes switched at L, which in the
k · p theory corresponds to m → −m. The sign reversal
of m at one L point changes the Chern number of the
s1 = ±1 subspace by ±1, and hence the mirror Chern
number changes by one. Furthermore, L1 and L2 are
related by a two-fold rotation around the (11̄0) axis. Un-
der this rotation, both the spin polarization s1 and the
orientation of the ΓL1L2 plane are flipped. As a result,
the Berry curvatures at L1 and L2 are related by

F+i(L1) = −F−i(L2), F−i(L1) = −F+i(L2). (3)

so that

(F+i − F−i)|L1 = (F+i − F−i)|L2 , (4)

i.e., both L1 and L2 contribute equally to the change in
mirror Chern number. The net result is that the band in-
version changes the mirror Chern number for the ΓL1L2

plane by two. This means that in the presence of the
[110] mirror symmetry, SnTe and PbTe are topologically
distinct.

In order to determine which of the two is topo-
logically nontrivial, we analyze their band structures
obtained from first-principles density functional the-
ory calculations[13–15] using the generalized gradient
approximation[16]. The results we obtain are consistent
with several previous studies[17–20]. In particular, it is
generally agreed that the band ordering at L point is
correct at the total-energy optimized volume.

Based on two first-principles findings, we now demon-
strate that, of the two materials, SnTe is the topologically
nontrivial one. First, the conduction and valence bands
of PbTe throughout the Brillouin zone are primarily de-
rived from the p-orbitals of Pb and Te atoms respectively
(Fig.2b). This suggests that PbTe is smoothly connected
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FIG. 2: Electronic structures and band-gap evolution of
SnTe and PbTe: The electronic band structures of SnTe and
PbTe are shown in a and b, respectively. The size of the red
dots represents the fraction of electronic charge residing on
Te atoms. The exchange of the band character at L point
as highlighted in the grey area indicates the intrinsic band
inversion of SnTe. The band gap energy as a function of
the lattice constants is shown in c. The negative gap area
indicates the topological crystalline insulator phase.

to the atomic limit, in which Pb orbitals are empty and
Te orbitals filled due to their on-site energy difference.
In contrast, the orbitals in the band structure of SnTe
are switched near L points: the conduction band edge
is derived from Te and the valence band edge from Sn
(Fig.2a). Therefore SnTe has an intrinsically inverted
band structure (m < 0). Our conclusion is further sup-
ported by the dependence of the band gap on the lattice
constant obtained in first-principles calculations (Fig.2c)
and measured via pressure coefficients[21]. As the lat-
tice constant increases, the band gap of PbTe increases
monotonically, whereas that of SnTe decreases to zero
and then re-opens. This gap closing signals a topological
phase transition, in which SnTe at ambient pressure is a
topological crystalline insulator with the aforementioned
mirror Chern number nM = 2.

The nonzero nM in SnTe dictates the existence of sur-
face states on any crystal surface which is symmetric
about the [110] mirror plane (or its equivalents). Two
common surface terminations satisfying this condition
are [001] and [111]. Using bulk-boundary correspon-
dence, we now infer the topology of these surface bands.
For the [001] surface, the plane ΓL1L2 in the bulk Bril-
louin zone projects onto the symmetry line Γ̄X̄1 in the

•  PbTe = ionic insulator Pb2+Te2-:   trivial    

•  SnTe is inherently inverted:  topological crystalline insulator  

•: weight of 
Te orbitals 

Orbital analysis 
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•  similar band inversions occur in Pb1-xSnxSe, and under pressure/strain. 

   agrees with temperature and pressure dependence of band gap in SnTe, 
   but opposite to PbTe
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Te orbitals !lled due to their on-site energy di"erence. In contrast, 
the orbitals in the band structure of SnTe are switched near L points: 
the conduction band edge is derived from Te and the valence band 
edge from Sn (Fig. 2a). #erefore, SnTe has an intrinsically inverted 
band structure (m < 0). Our conclusion is further supported by the 
dependence of the band gap on the lattice constant obtained in 
!rst-principles calculations (Fig. 2c) and measured via pressure co-
e$cients24. As the lattice constant increases, the band gap of PbTe 
increases monotonically, whereas that of SnTe decreases to zero and 
then re-opens. #is gap closing signals a topological phase transi-
tion, in which SnTe at ambient pressure is a topological crystalline 
insulator with the aforementioned mirror Chern number nM = −2. 
#e sign of nM has been discussed in detail in ref. 9.

Surface states of SnTe. #e non-zero mirror Chern number in 
SnTe dictates the existence of surface states on any crystal surface  
symmetric about the {110} mirror planes. #ree common surface 
terminations satisfying this condition are: {001}, which is sym-
metric about two equivalent {110} mirror planes; {111}, which is 
symmetric about three equivalent { }110  mirror planes; and {110}, 
which is symmetric about the { }110  mirror plane. According to the 
bulk-boundary correspondence, we now infer the topology of these 
surface bands. For the {001} surface, the plane L1L2 in the bulk 
Brillouin zone projects onto the symmetry line X1 in the surface 
Brillouin zone, with both L1 and L2 projecting onto X1. #e mir-
ror Chern number nM = −2 dictates that there must exist two pairs 
of counter-propagating, spin-polarized surface states with opposite 
mirror eigenvalues along the line X X1 1. By rotational sym-
metry, such surface states also appear along the line X X2 2 .  

But they are absent along any other mirror-invariant line. #e  
crossing of two mirror branches creates an anisotropic two- 
dimensional Dirac point with di"erent velocities along the  
parallel and perpendicular direction. #erefore, the {001} surface 
states have four Dirac points located on the four equivalent X  
lines. Similar considerations apply to the other two surfaces. For the 
{111} surface, the plane L1L2 projects onto the line M ; so there 
are two Dirac points along each of the three equivalent lines M .  
For the {110} surface, the plane L1L2 projects onto the line X ,  
on which there are two Dirac points. In all cases, surface states  
of SnTe have an even number of Dirac points, which can be eas-
ily distinguished from Z2 topological insulators having an odd  
number. Our theoretical prediction of these surface states is the 
main result of this work.

Using !rst-principles calculations, we now explicitly demon-
strate the above surface states in a slab geometry along the [001] 
axis. Results for other surfaces will be published elsewhere. As pre-
dicted by the above topological band theory, two surface bands with 
opposite mirror eigenvalues are found to cross each other and form 
a Dirac point on the line X  (Fig. 3a). #e Dirac velocity is found 
to be 1.7×105 m/s in the X  direction. Interestingly, these surface 
states exhibit a Lifshitz transition—a change of Fermi surface topol-
ogy as a function of Fermi energy. Figure 3b shows a set of Fermi 
surfaces at di"erent energies. As the Fermi energy decreases from 
the Dirac point towards the valence band, the Fermi surface initially  
consists of two disconnected hole pockets outside X ; the two  
pockets then touch each other and reconnect to form a large hole 
and a small electron pocket, both centred at X .
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Figure 2 | Electronic structures and band-gap evolution of SnTe and PbTe. 
The electronic band structures of SnTe and PbTe are shown in (a) and (b), 
respectively. The size of the red dots represents the fraction of electronic 
charge residing on Te atoms. The exchange of the band character at L point 
as highlighted in the grey area indicates the intrinsic band inversion of 
SnTe. The band-gap energy as a function of the lattice constants is shown 
in (c). The negative gap area indicates the topological crystalline insulator 
phase.
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Figure 3 | The [001] surface states of SnTe. (a) band dispersion and 
(b) Fermi surface. Note that in between  and X  two surface bands with 
opposite mirror eigenvalues cross the Fermi energy, in agreement with 
nM = −2. (c) a set of Fermi surfaces at different energies, exhibiting a 
Lifshitz transition.

Inverted Band in SnTe

Band gap vs. lattice constant:

•  inverted gap decreases to zero as lattice constant increases: 
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Topological Surface States
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(c.f. Volkov & Pankratov 1985)Field-theoretic study of domain wall states:

SnTe (001) surface:

2D massless Dirac fermion mass domain all

m(x)!

E(k) E(k) E(k) 
      

1 “+” 1 = ?

  band inversion at both L1 and L2

treats four valleys independently, 
misses key effects at lattice scale      
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overlapping Dirac fermions

SnTe (001) Surface States

  gapped surface two new Dirac nodes 
away from X points

•  mirror symmetry forbids hybridization along ΓX direction: 
    key to topological crystalline insulator

field theory without symmetry     with mirror symmetry
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3

surface Brillouin zone, with both L1 and L2 projecting
onto X̄1. nM = 2 dictates that along the line X̄1−Γ̄−X̄1

there must exist two pairs of counter-propagating chiral
surface states with opposite mirror eigenvalues. By rota-
tional symmetry, such surface modes also appear along
the line X̄2 − Γ̄ − X̄2. But they are absent along any
other mirror-invariant line. Since the crossing of two
mirror branches forms a Dirac point, the [001] surface
states have four Dirac points on the four equivalent Γ̄X̄
lines. Similar considerations apply to the [111] surface.
For this surface, the ΓL1L2 plane projects onto the high-
symmetry line Γ̄M̄ . Therefore two surface modes exist
along the three equivalent lines M̄ − Γ̄− M̄ . In contrast
to Z2 topological insulators, the Dirac points here are lo-
cated at an even number of non-time-reversal-invariant
momenta. Our theoretical prediction of these surface
states in SnTe is the main result of this work.

The above surface states are explicitly demonstrated in
a slab geometry along the (001) axis using first-principles
calculations. As predicted by the mirror Chern number
nM = 2, two surface bands with opposite mirror eigen-
values cross each other to form a Dirac point on the line
Γ̄ and X̄ (Fig.3a). The Dirac velocity is found to be
1.7 × 105m/s in the Γ̄X̄ direction. Interestingly, these
surface states exhibit a Lifshitz transition—a change of
Fermi surface topology as a function of Fermi energy.
Fig.3b shows a set of Fermi surfaces at different energies.
As the Fermi energy is lowered from the Dirac point, the
Fermi surface near X̄ undergoes a Lifshitz transition: two
disconnected Fermi surfaces outside X̄ touch each other
and reconnect to form one large and one small pocket,
both enclosing X̄.

In order to understand both the connection between
the bulk and surface bands and the effect of potential
perturbations at a microscopic level, we introduce a sim-
plified tight-binding model for SnTe. This model is con-
structed from the Wannier functions of the conduction
and valence bands, which are primarily three p-orbitals
of Sn and Te atoms. The Hamiltonian Htb is given by

Htb = m

�

j

(−1)j
�

r,α

c†jα(r) · cjα(r)

+
�

j,j�

tjj�
�

(r,r�),α

c†jα(r) · d̂rr� d̂rr� · cj�α(r
�) + h.c.

+
�

j

iλj

�

r,α,β

c†jα(r)× cjβ(r) · sαβ . (5)

Here r labels the site, j = 1, 2 labels the Sn or Te atom,
α =↑, ↓ labels electron’s spin. d̂rr� is the unit vector con-
necting site r to r�. The components of vectors c† and
c correspond to the three p-orbitals. In the Hamiltonian
(5), m is the on-site potential difference between Sn and
Te; t12 = t21 is the nearest-neighbor hopping amplitude
between Sn and Te; t11 and t22 are the next nearest-
neighbor hopping amplitudes within a sublattice; the λ1,2

term is L·s atomic spin-orbit coupling. The bulk and sur-
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%
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&

FIG. 3: The [001] surface states of SnTe: (a) band disper-
sion and (b) Fermi surface. Note that in between Γ̄ and X̄
two surface bands with opposite mirror eigenvalues cross the
Fermi energy, in agreement with nM = 2. (c) a set of Fermi
surfaces at different energies, exhibiting a Lifshitz transition.

face bands of the above tight-binding Hamiltonian nicely
reproduce the essential features of the first-principles cal-
culation.
Using this tight-binding model, we now study the elec-

tronic properties of the (001) surface states under var-
ious perturbations. The four Dirac points located at
kj

, j = 1, ...4 are related by the four-fold rotation C4.
For convenience, we choose a basis for each Dirac dou-
blet ψα(kj),α = ± which satisfies

C4 : ψα(k
j) → e

−iαπ/4ψα(k
j+1). (6)

In this basis, the k · p Hamiltonians at four Dirac points
take an identical form with the same chirality:

Hsf = v⊥k1s2 − v�k2s1, (7)

Here k1 and k2 form a local right-handed coordinate sys-
tem centered at each kj , with k2 parallel to kj . Provided
mirror symmetry is present (k1 → −k1, s2 → −s2), the
Dirac points can move along the Γ̄X̄ line, but cannot
annihilate with each other.

Perturbations which break mirror symmetries can gen-
erate mass terms mjs3 at the four Dirac points kj and
open up gaps. The nature of the resulting gapped phase
is determined by the relative signs of mj , which in turn
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ious perturbations. The four Dirac points located at
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, j = 1, ...4 are related by the four-fold rotation C4.
For convenience, we choose a basis for each Dirac dou-
blet ψα(kj),α = ± which satisfies
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j) → e
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j+1). (6)

In this basis, the k · p Hamiltonians at four Dirac points
take an identical form with the same chirality:

Hsf = v⊥k1s2 − v�k2s1, (7)

Here k1 and k2 form a local right-handed coordinate sys-
tem centered at each kj , with k2 parallel to kj . Provided
mirror symmetry is present (k1 → −k1, s2 → −s2), the
Dirac points can move along the Γ̄X̄ line, but cannot
annihilate with each other.

Perturbations which break mirror symmetries can gen-
erate mass terms mjs3 at the four Dirac points kj and
open up gaps. The nature of the resulting gapped phase
is determined by the relative signs of mj , which in turn

 001 surface states consist of four Dirac cones located away from X

•  spin-momentum locking with same chirality: cannot be realized in 2D

•  Fermi surface topology change (Lifshitz transition) at higher energy 

•  Van-Hove singularity: possible interaction-driven phenomena 

Prediction:  Topological Surface States

Monday, June 3, 2013



LETTERS
PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI: 10.1038/NMAT3449

Topological crystalline insulator states
in Pb1−xSnxSe
P. Dziawa1, B. J. Kowalski1, K. Dybko1, R. Buczko1, A. Szczerbakow1, M. Szot1, E. Łusakowska1,
T. Balasubramanian2, B. M.Wojek3, M. H. Berntsen3, O. Tjernberg3* and T. Story1*
Topological insulators are a class of quantum materials in
which time-reversal symmetry, relativistic effects and an
inverted band structure result in the occurrence of electronic
metallic states on the surfaces of insulating bulk crystals.
These helical states exhibit a Dirac-like energy dispersion
across the bulk bandgap, and they are topologically protected.
Recent theoretical results have suggested the existence of
topological crystalline insulators (TCIs), a class of topological
insulators in which crystalline symmetry replaces the role of
time-reversal symmetry in ensuring topological protection1,2.
In this study we show that the narrow-gap semiconductor
Pb1−xSnxSe is a TCI for x = 0.23. Temperature-dependent
angle-resolved photoelectron spectroscopy demonstrates that
thematerial undergoes a temperature-driven topological phase
transition from a trivial insulator to a TCI. These experimental
findings add a new class to the family of topological insulators,
and we anticipate that they will lead to a considerable
body of further research as well as detailed studies of
topological phase transitions.

The discovery of topological insulators is one of the most

important recent developments in condensed-matter physics
3–9

. In

these new quantum materials, time-reversal symmetry and strong

relativistic (spin–orbit) effects require that the bulk insulating states

are accompanied by metallic helical Dirac-like electronic states

on the surface of the crystal. These surface states are encoded

in topologically non-trivial wavefunctions of valence electrons

and robustly resist non-magnetic disorder. The three-dimensional

(3D) topological insulators Bi2Se3, Bi2Te3 and Bi1−xSbx, along

with their 2D counterparts, which consist of HgTe/Hg1−xCdxTe

quantum wells, are considered to be model systems for this

class of materials
3–8

. New quantum magnetotransport, magneto-

optical and thermoelectric effects are expected in these materials,

and the heterostructures composed of topological insulators and

superconductors or ferromagnets
3–6

.

In the search for new topological insulator materials, the

IV–VI semiconductors
10–12

PbTe, PbSe and SnTe, as well as their

substitutional solid solutions, Pb1−xSnxTe and Pb1−xSnxSe, have

already been studied. However, these materials have been identified

as trivial insulators in the topological classification of materials
9
.

Several routes have been proposed to overcome this limitation by

removing the fourfold valley degeneracy, for example, by applying

uniaxial strain
9
or exploiting the anisotropic energy quantization of

electrons confined at an interface
13
.

Recent theoretical studies have proposed the idea of a new class

of topological insulators, namely, TCIs, in which specific crystalline

symmetries warrant the topological protection of metallic surface

states
1,2
. The first material that has been theoretically identified as

1Institute of Physics, Polish Academy of Sciences, 02-668Warsaw, Poland, 2MAX-lab, Lund University, 22100 Lund, Sweden, 3Materials Physics, KTH
Royal Institute of Technology, 16440 Kista, Sweden. *e-mail: oscar@kth.se; story@ifpan.edu.pl.
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Figure 1 | Pb1−xSnxSe alloys as TCIs. The composition dependence of the
bandgap of Pb1−xSnxSe at various temperatures. The experimental data at
T= 300, 195 and 77K are from infrared absorption studies, and the p–n
junction laser emission studies of ref. 15. The dashed line for very low
temperatures is an extrapolation based on both the known bandgap of
PbSe (Eg =0.165 eV at T=4K) and the composition dependence
parameter dEg/dx= −0.89 eV (ref. 15). Positive bandgaps correspond to
topologically trivial materials with PbTe-like or PbSe-like band symmetries.
The materials with negative bandgaps (the yellow region) are TCIs, with
the bulk bandgap being open but having the (SnTe-like) inverted symmetry
of the conduction and valence bands2. The yellow-hatched region shows
the composition and temperature ranges in which the TCI states exist in
the Pb1−xSnxSe alloy at ambient pressure. The insets show the band
structure with bulk (solid lines) and surface (broken lines) contributions. L+

6
and L−

6 denote the symmetry of bands at the L points of the Brillouin zone.

a TCI is SnTe (ref. 2). Unfortunately, SnTe crystals are known to

be heavily p-type, owing to an exceptionally high concentration of

electrically active Sn vacancies. The TCI states are not occupied
14

and thus are difficult to observe experimentally. Conversely, in

the Pb1−xSnxTe and Pb1−xSnxSe alloys, the chemical potential can

easily be tuned during the crystals’ growth or annealing to yield
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Observation of a topological crystalline insulator
phase and topological phase transition in
Pb1! xSnxTe
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A topological insulator protected by time-reversal symmetry is realized via spin–orbit inter-

action-driven band inversion. The topological phase in the Bi1! xSbx system is due to an odd

number of band inversions. A related spin–orbit system, the Pb1! xSnxTe, has long been

known to contain an even number of inversions based on band theory. Here we experi-

mentally investigate the possibility of a mirror symmetry-protected topological crystalline

insulator phase in the Pb1! xSnxTe class of materials that has been theoretically predicted to

exist in its end compound SnTe. Our experimental results show that at a finite Pb composition

above the topological inversion phase transition, the surface exhibits even number of spin-

polarized Dirac cone states revealing mirror-protected topological order distinct from that

observed in Bi1! xSbx. Our observation of the spin-polarized Dirac surface states in the

inverted Pb1! xSnxTe and their absence in the non-inverted compounds related via a topo-

logical phase transition provide the experimental groundwork for opening the research on

novel topological order in quantum devices.
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Experimental realization of a topological
crystalline insulator in SnTe
Y. Tanaka1, Zhi Ren2, T. Sato1*, K. Nakayama1, S. Souma3, T. Takahashi1,3, Kouji Segawa2

and Yoichi Ando2*
A topological insulator is an unusual quantum state of
matter, characterized by the appearance, at its edges or on
its surface, of a gapless metallic state that is protected
by time-reversal symmetry1,2. The discovery of topological
insulators has stimulated the search for other topological
states protected by other symmetries3–7, such as the recently
predicted8 topological crystalline insulator (TCI) in which the
metallic surface states are protected by the mirror symmetry
of the crystal. Here we present experimental evidence for the
TCI phase in tin telluride (SnTe), which has been predicted to be
a TCI (ref. 9). Our angle-resolved photoemission spectra show
the signature of a metallic Dirac-cone surface band, with its
Dirac point slightly away from the edge of the surface Brillouin
zone in SnTe. Such a gapless surface state is absent in a cousin
material, lead telluride, in linewith the theoretical prediction.

The surface state of three-dimensional (3D) topological insula-
tors is characterized by a spin non-degenerate Dirac-cone energy
dispersion protected by time-reversal symmetry. In topological
insulators, the time-reversal symmetry plays a key role in charac-
terizing the topological properties such as the quantum spin Hall
effect, the dissipation-less spin current and the magnetoelectric
effect10–13. In contrast, in TCIs, the metallic surface states are
protected by the mirror symmetry (reflection symmetry) of the
crystal8. The TCIs are characterized by a new topological invariant
called the mirror Chern number, instead of the Z2 invariant in
topological insulators. Intuitively, the existence of mirror sym-
metry allows one to divide the Hilbert space into left and right,
and considering only one of them can single out a non-trivial
topology that is otherwise cancelled and undetected. Therefore,
even when an insulator is trivial in the topological insulator sense,
it can still be non-trivial in the TCI sense when it possesses a
mirror symmetry and its mirror Chern number is non-zero8,9.
Indeed, it was recently shown9 that such a situation is realized
in an insulating crystal having the rock-salt structure (in which
the {001}, {110} and {111} surfaces have mirror symmetry with
respect to the (110) mirror plane, see Fig. 1a) when a band in-
version occurs at the high-symmetry L points of the bulk Bril-
louin zone; intriguingly, it was further predicted9, on the basis of
tight-binding calculations, that a narrow-gap iv–vi semiconductor
SnTe is such a TCI, whereas the isostructural PbTe is not. It
is thus of particular importance to experimentally examine the
possibility of the TCI phase in these semiconductors, to establish
the concept of this new topological state of matter and possibly
to find topological phenomena beyond the framework of known
topological materials.

1
Department of Physics, Tohoku University, Sendai 980-8578, Japan,

2
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka

567-0047, Japan,
3
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In our angle-resolved photoemission spectroscopy (ARPES)
experiment, we paid particular attention to the momentum space
around the X̄ point of the surface Brillouin zone corresponding
to a projection of the L point of the bulk Brillouin zone where a
direct bulk bandgap resides14–16 and the appearance of topological
surface states is predicted9; note that the (110) mirror plane is
projected to the �̄X̄ high-symmetry line in the surface Brillouin
zone (Fig. 1a). Our extensive ARPESmeasurements of the occupied
states suggest that the bulk-band maximum is indeed located
around the X̄ point (see Supplementary Fig. S1). As shown in
Fig. 1b, the ARPES intensity at the Fermi level (EF) measured with
the photon energy hν = 21.2 eV on the (001) surface exhibits a
bright intensity pattern centred around the X̄ point and is elongated
along the �̄X̄ direction. The band dispersion along two selected
cuts (red arrows in Fig. 1b) exhibits a linearly dispersive feature
crossing EF, as shown in Fig. 1c,d. The top of this Dirac-like band is
located not at the X̄ point but at a point slightly away from it (called
here the �̄ point), as one can infer from the band dispersion along
the �̄X̄ cut (Fig. 1e,f) showing the band maxima on both sides of
the X̄ point (�̄1 and �̄2 for the first and second surface Brillouin
zones, respectively). Such a characteristic M-shaped dispersion is
not expected from the bulk-band calculations at any kz (wave vector
perpendicular to the surface) values14–16, but is predicted for the
surface band9 (Supplementary Information), suggesting that the
observedDirac-like band originates from the surface states.

To further examine whether the Dirac-like band is of surface
or bulk origin, we have carried out an ARPES measurement along
the cut crossing the �̄ point for various photon energies. As one
immediately recognizes in Fig. 1g–j, the energy position of the band
is stationary with respect to the hν variation. In fact, when we plot
the extracted dispersions for different photon energies in the same
panel, they overlap each otherwithin the experimental uncertainties
of ∼0.05 eV (near EF) to ∼0.1 eV (at higher binding energy, EB),
demonstrating the surface origin of the Dirac-like band. Note that
the broadening of the spectra on the right-hand side of the branch
at higher EB evident in Fig. 1h–j is probably due to a mixture of
the bulk state whose energy position changes with hν, although
the bulk state is obviously very broad and we could not clearly
resolve its dispersion.

We note that, because as-grown crystals of SnTe tend to show
a heavily hole-doped nature16–18, a key to the present observation
of the Dirac-like band was to reduce hole carriers in the crystal
by minimizing Sn vacancies during the growth procedure. In
fact, the Dirac-like surface state was not resolved in the previous
ARPES study16, mainly owing to the heavily hole-doped nature
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(see Supplementary Information for details).
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One may argue that in SnTe the well-known rhombohedral
distortion19 would break the mirror symmetry with respect to the
(110) plane and destroy the signature of the Dirac-cone surface
states. However, one can safely exclude this possibility in the
present experiment, because the rhombohedral phase transition
temperature is known to be strongly dependent on the carrier
density19 and in our samples the transition occurs well below
30K (the temperature of our ARPES measurements), which
is corroborated by the absence of a kink in the temperature
dependence of the resistivity (see Supplementary Fig. S6). In
addition, the (001) surface of the cubic structure has two
mirror planes, and the rhombohedral distortion breaks the mirror
symmetry of only one of those two mirror planes. This means
that two of the original four Dirac cones remain gapless in the
rhombohedral phase; furthermore, as the rhombohedral distortion
in SnTe is weak (it induces only 1.6% displacement of the atomic
positions19), the expected result is an opening of a small gap
at the Dirac point in the other two Dirac cones. Therefore, the
small rhombohedral distortion, even when it happens, will not
significantly change the surface state spectrum.

To further elucidate the topology of the Dirac cone in detail, we
have determined the whole band dispersion in the 2D momentum
space. By selecting a specific photon energy (hν = 92 eV), owing
to the matrix-element effects, we found it possible to pick up the
dispersion of a single Dirac cone centred at the �̄2 point (�̄2
Dirac cone) while suppressing the intensity of the �̄1 Dirac cone.
Figure 2a–e shows the near-EF ARPES intensity measured along
several cuts (A–E) around the �̄2 point. Along cut A (Fig. 2a), the
surface band has its top at an EB of 0.45 eV. On moving from cut A
to E, the band maximum (white arrow) approaches EF (cuts A–B),
passes EF (cut C), and then disperses back again towards higher
EB (cuts D–E). This result establishes the cone-shaped dispersion
of the Dirac-like band in the 2D momentum space as in three-
dimensional topological insulators1,2 and graphene20. In passing, we
have surveyed electronic states throughout the Brillouin zone and
found no evidence for other metallic surface states (Supplementary
Fig. S1) and thus conclude that the surface electronic states consist
of four Dirac cones in the first surface Brillouin zone. This indicates
that this material is not a topological insulator but is a TCI owing
to an even number of band-inversion points9 that is reflected in the
number of Dirac cones.

As shown in the ARPES-intensity contour plots in Fig. 2g for
several EB slices, the Dirac cone in SnTe is anisotropic and slightly
elongated along the �̄X̄ direction, and its topology shows a Lifshitz
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projection on the (001) surface Brillouin zone (black). Selected high-symmetry points are denoted by capital letters. The lines a and b correspond to the

data shown in a and b, respectively.

it is therefore expected to contribute to spin-polarization effects
and backscattering protection of the TCI surface states in these
materials, as is observed in conventional topological insulators.

To verify the applicability of the TCI concept to the Pb1−xSnxTe
and Pb1−xSnxSe substitutional alloys, we theoretically studied
their electronic structures and their band inversions when x = xc.
Tight-binding calculations were performed for (001)-oriented 280-
monolayer-thick crystal slabs of PbTe, SnTe and Pb1−xSnxTe alloys,
with the Sn content varying across xc. The tight-binding parameters
for PbTe and SnTe were taken from ref. 17. The analysis of the
substitutional alloys (0 < x < 1) was performed using the virtual
crystal approximation (VCA), which provides a good description
of the band inversion18,19. In contrast to SnTe, which has the
same structure as rock salt, SnSe crystallizes in an orthorhombic
structure, and the tight-binding parameters for rock-salt SnSe
crystals are not known. Still, in the Sn content range x ≤ 0.4, the
alloys Pb1−xSnxTe and Pb1−xSnxSe share the same rock-salt crystal
structure, and their electronic bands have a notably similar symme-
try. The band-structure parameters exhibit the same dependence
on temperature, pressure and chemical composition. Therefore, all
of the qualitative conclusions of the theoretical analysis carried out
for the Pb1−xSnxTe alloy remain valid for the Pb1−xSnxSe alloy.

The results of the tight-binding calculations for Pb1−xSnxTe
are presented in Fig. 2 for a Sn content of x = 0.2, 0.381, 0.6
and 1. The k = 0 value corresponds to the X point of the
surface Brillouin zone (the projection of the L(111) points in the
bulk crystal onto the (001) surface, see Fig. 3d). For the critical
composition xc =0.381 (Fig. 2b), the crystal bandgap in Pb1−xSnxTe
is still slightly open owing to the finite thickness of the slab
(the confinement effect) as verified by a thickness-dependence
analysis shown in Supplementary Section S5. Surface states with
dispersion curves notably separated from the dominant bulk lines

have been identified. For SnTe (x = 1, Fig. 2d), our calculations
confirm the key theoretical finding reported previously; that is,
the presence of surface states crossing the bandgap along the
X−� direction2. The qualitative difference observed between the
Pb1−xSnxTe alloy with x = 0.2 (Fig. 2a) and x = 0.6 (Fig. 2c) is the
same difference that is expected in a temperature-range-controlled
band-inversion experiment using Pb0.77Sn0.23Se, that is, a transition
from a 100meV bandgap to a 100meV inverted bandgap. We
note that the dispersive surface states exist for crystals with a Sn
content below, as well as above, the critical composition xc. The
surface states are observed at the edges of both the valence and
the conduction bands. However, only for crystals with an inverted
band ordering (x > xc) we observe the TCI electronic states closing
the bandgap in the X− � direction. Therefore, our calculations
confirm that the TCI states are present in the Pb1−xSnxTe and
Pb1−xSnxSe alloys when the tin content x > xc, that is, when there is
an inverted band ordering such as the one found in SnTe (ref. 2).We
note that this conclusion was reached in the VCA and is expected to
be valid for physical effects involving extended Bloch-like 2D and
3D electronic states. A detailed analysis of the influence of local
nanoscale electronic disorder, inevitably present in substitutional
alloys, on the TCI states (for example, possible opening of the gap
at theDirac point) is a new intriguing theoretical challenge.

ARPES is a powerful technique for directly probing the
electronic structure of solids. Owing to its surface sensitivity, this
technique is particularly well suited for studying surface states,
and it can therefore be used to verify the existence of TCI
surface states in Pb1−xSnxSe. Figure 3 shows the results from the
ARPES measurements performed using photons with an energy
of 10.5 eV and at various temperatures on the (001) surface of a
Pb0.77Sn0.23Se monocrystal (for crystal growth details, see Methods
and Supplementary Section S1). In Fig. 3a, energy–momentum
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surface Brillouin zone, with both L1 and L2 projecting
onto X̄1. nM = 2 dictates that along the line X̄1−Γ̄−X̄1

there must exist two pairs of counter-propagating chiral
surface states with opposite mirror eigenvalues. By rota-
tional symmetry, such surface modes also appear along
the line X̄2 − Γ̄ − X̄2. But they are absent along any
other mirror-invariant line. Since the crossing of two
mirror branches forms a Dirac point, the [001] surface
states have four Dirac points on the four equivalent Γ̄X̄
lines. Similar considerations apply to the [111] surface.
For this surface, the ΓL1L2 plane projects onto the high-
symmetry line Γ̄M̄ . Therefore two surface modes exist
along the three equivalent lines M̄ − Γ̄− M̄ . In contrast
to Z2 topological insulators, the Dirac points here are lo-
cated at an even number of non-time-reversal-invariant
momenta. Our theoretical prediction of these surface
states in SnTe is the main result of this work.

The above surface states are explicitly demonstrated in
a slab geometry along the (001) axis using first-principles
calculations. As predicted by the mirror Chern number
nM = 2, two surface bands with opposite mirror eigen-
values cross each other to form a Dirac point on the line
Γ̄ and X̄ (Fig.3a). The Dirac velocity is found to be
1.7 × 105m/s in the Γ̄X̄ direction. Interestingly, these
surface states exhibit a Lifshitz transition—a change of
Fermi surface topology as a function of Fermi energy.
Fig.3b shows a set of Fermi surfaces at different energies.
As the Fermi energy is lowered from the Dirac point, the
Fermi surface near X̄ undergoes a Lifshitz transition: two
disconnected Fermi surfaces outside X̄ touch each other
and reconnect to form one large and one small pocket,
both enclosing X̄.

In order to understand both the connection between
the bulk and surface bands and the effect of potential
perturbations at a microscopic level, we introduce a sim-
plified tight-binding model for SnTe. This model is con-
structed from the Wannier functions of the conduction
and valence bands, which are primarily three p-orbitals
of Sn and Te atoms. The Hamiltonian Htb is given by

Htb = m

�

j

(−1)j
�

r,α

c†jα(r) · cjα(r)

+
�

j,j�

tjj�
�

(r,r�),α

c†jα(r) · d̂rr� d̂rr� · cj�α(r
�) + h.c.

+
�

j

iλj

�

r,α,β

c†jα(r)× cjβ(r) · sαβ . (5)

Here r labels the site, j = 1, 2 labels the Sn or Te atom,
α =↑, ↓ labels electron’s spin. d̂rr� is the unit vector con-
necting site r to r�. The components of vectors c† and
c correspond to the three p-orbitals. In the Hamiltonian
(5), m is the on-site potential difference between Sn and
Te; t12 = t21 is the nearest-neighbor hopping amplitude
between Sn and Te; t11 and t22 are the next nearest-
neighbor hopping amplitudes within a sublattice; the λ1,2

term is L·s atomic spin-orbit coupling. The bulk and sur-

!"!#

$

%

 -7meV

-56meV
X

&

FIG. 3: The [001] surface states of SnTe: (a) band disper-
sion and (b) Fermi surface. Note that in between Γ̄ and X̄
two surface bands with opposite mirror eigenvalues cross the
Fermi energy, in agreement with nM = 2. (c) a set of Fermi
surfaces at different energies, exhibiting a Lifshitz transition.

face bands of the above tight-binding Hamiltonian nicely
reproduce the essential features of the first-principles cal-
culation.
Using this tight-binding model, we now study the elec-

tronic properties of the (001) surface states under var-
ious perturbations. The four Dirac points located at
kj

, j = 1, ...4 are related by the four-fold rotation C4.
For convenience, we choose a basis for each Dirac dou-
blet ψα(kj),α = ± which satisfies

C4 : ψα(k
j) → e

−iαπ/4ψα(k
j+1). (6)

In this basis, the k · p Hamiltonians at four Dirac points
take an identical form with the same chirality:

Hsf = v⊥k1s2 − v�k2s1, (7)

Here k1 and k2 form a local right-handed coordinate sys-
tem centered at each kj , with k2 parallel to kj . Provided
mirror symmetry is present (k1 → −k1, s2 → −s2), the
Dirac points can move along the Γ̄X̄ line, but cannot
annihilate with each other.

Perturbations which break mirror symmetries can gen-
erate mass terms mjs3 at the four Dirac points kj and
open up gaps. The nature of the resulting gapped phase
is determined by the relative signs of mj , which in turn
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measurements are performed in the spin-resolved momentum
distribution curve mode25,26, which measures the spin-resolved
intensity and net spin polarization at a fixed binding energy along
a certain momentum space cut direction (detailed in the Methods
section). As shown in Fig. 4a, our spin-resolved measurements
are performed along the mirror line (!G! !X! !G) direction, as
the electronic and spin structure along this direction is most
critically relevant to the predicted TCI phase15. Considering that
the natural Fermi level of our x¼ 0.4 samples are very close to the
Dirac point (which is spin degenerate), the spin polarization of
the surface states are measured at 60meV below the Fermi level
to gain proper contrast, namely SR-Cut 1 in Fig. 4a. As shown in
the net spin polarization measurement of SR-Cut 1 in Fig. 4c, in
total four spins pointing in the (±) in-plane tangential direction
are revealed for the surface states along the mirror line direction.
This is well consistent with the observed two surface state cones
(four branches in total) near an !X point along the mirror line
direction. To compare and contrast the spin polarization beha-
viour of the surface states (SR-Cut 1) with that of the bulk states,
we perform spin-resolved measurement SR-Cut 2 at EB¼ 0.70 eV,
where the bulk valence bands are prominently dominated.

Indeed, in contrast to SR-Cut 1 reflecting the surface states’ spin
polarization, no significant net spin polarization is observed for
SR-Cut2, which is expected for the bulk valence bands of the
inversion symmetric (centrosymmetric) Pb1! xSnxTe system. Our
observed spin polarization configuration of the surface states is
also in qualitative agreement with the first-principles calculation
spin texture of the SnTe TCI surface states (see Supplementary
Figs S7–S9 for texture calculation); and experimental derived
topological invariant (Mirror Chern number27,28) nM¼ ! 2 also
agrees with theoretical prediction for SnTe15.

Discussion
We discuss the possibility that the observed surface states in our
data are the signature of the theoretically predicted TCI phase.
The TCI phase was predicted to be observed in the band inverted
side and absent in the non-inverted side15. In our data of the
Pb0.6Sn0.4Te samples, which lie on the inverted side, surface states
are observed, and only observed, along the two independent
mirror line (!G! !X! !G) directions. Within the first surface BZ,
two surface states are observed on each mirror line, which are
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Figure 4 | Spin polarization of topological Dirac surface states. (a) ARPES dispersion map along the mirror line direction. The white dotted lines show the
binding energies chosen for spin-resolved measurements, namely SR-Cut 1 at EB¼0.06 eV and SR-Cut 2 at EB¼0.70 eV. Inset: Measured spin polarization
profile is shown by the green and blue arrows on top of the ARPES iso-energetic contour at binding energy EB¼0.06 eV for SR-Cut1. Measured in-plane
spin-resolved intensity (b) and in-plane spin polarization (c) of the surface states (SR-Cut 1) near the Fermi level at EB¼0.06 eV. Measured in-plane spin-
resolved intensity (d) and in-plane spin polarization (e) of the bulk valence bands (SR-Cut 2) at EB¼0.70 eV. (f) Out-of-plane spin polarization
measurements of SR-Cut 1 and SR-Cut 2. The error bar is ±0.01 for data points in all spin polarization measurements. (g) Theoretically expected spin
polarization configuration of the surface states which corresponds to a mirror topological invariant (the mirror Chern number) nM¼ ! 2 (refs 27,28).
Measured spin polarization texture configuration (green and blue arrows) of the surface states (SR-Cut 1) is shown on top of the calculated surface states.
The blue and red lines are the calculated bulk bands and surface states, respectively.
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measurements are performed in the spin-resolved momentum
distribution curve mode25,26, which measures the spin-resolved
intensity and net spin polarization at a fixed binding energy along
a certain momentum space cut direction (detailed in the Methods
section). As shown in Fig. 4a, our spin-resolved measurements
are performed along the mirror line (!G! !X! !G) direction, as
the electronic and spin structure along this direction is most
critically relevant to the predicted TCI phase15. Considering that
the natural Fermi level of our x¼ 0.4 samples are very close to the
Dirac point (which is spin degenerate), the spin polarization of
the surface states are measured at 60meV below the Fermi level
to gain proper contrast, namely SR-Cut 1 in Fig. 4a. As shown in
the net spin polarization measurement of SR-Cut 1 in Fig. 4c, in
total four spins pointing in the (±) in-plane tangential direction
are revealed for the surface states along the mirror line direction.
This is well consistent with the observed two surface state cones
(four branches in total) near an !X point along the mirror line
direction. To compare and contrast the spin polarization beha-
viour of the surface states (SR-Cut 1) with that of the bulk states,
we perform spin-resolved measurement SR-Cut 2 at EB¼ 0.70 eV,
where the bulk valence bands are prominently dominated.

Indeed, in contrast to SR-Cut 1 reflecting the surface states’ spin
polarization, no significant net spin polarization is observed for
SR-Cut2, which is expected for the bulk valence bands of the
inversion symmetric (centrosymmetric) Pb1! xSnxTe system. Our
observed spin polarization configuration of the surface states is
also in qualitative agreement with the first-principles calculation
spin texture of the SnTe TCI surface states (see Supplementary
Figs S7–S9 for texture calculation); and experimental derived
topological invariant (Mirror Chern number27,28) nM¼ ! 2 also
agrees with theoretical prediction for SnTe15.

Discussion
We discuss the possibility that the observed surface states in our
data are the signature of the theoretically predicted TCI phase.
The TCI phase was predicted to be observed in the band inverted
side and absent in the non-inverted side15. In our data of the
Pb0.6Sn0.4Te samples, which lie on the inverted side, surface states
are observed, and only observed, along the two independent
mirror line (!G! !X! !G) directions. Within the first surface BZ,
two surface states are observed on each mirror line, which are
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Figure 4 | Spin polarization of topological Dirac surface states. (a) ARPES dispersion map along the mirror line direction. The white dotted lines show the
binding energies chosen for spin-resolved measurements, namely SR-Cut 1 at EB¼0.06 eV and SR-Cut 2 at EB¼0.70 eV. Inset: Measured spin polarization
profile is shown by the green and blue arrows on top of the ARPES iso-energetic contour at binding energy EB¼0.06 eV for SR-Cut1. Measured in-plane
spin-resolved intensity (b) and in-plane spin polarization (c) of the surface states (SR-Cut 1) near the Fermi level at EB¼0.06 eV. Measured in-plane spin-
resolved intensity (d) and in-plane spin polarization (e) of the bulk valence bands (SR-Cut 2) at EB¼0.70 eV. (f) Out-of-plane spin polarization
measurements of SR-Cut 1 and SR-Cut 2. The error bar is ±0.01 for data points in all spin polarization measurements. (g) Theoretically expected spin
polarization configuration of the surface states which corresponds to a mirror topological invariant (the mirror Chern number) nM¼ ! 2 (refs 27,28).
Measured spin polarization texture configuration (green and blue arrows) of the surface states (SR-Cut 1) is shown on top of the calculated surface states.
The blue and red lines are the calculated bulk bands and surface states, respectively.
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which is consistent with the theoretically calculated surface states
electronic structure shown in Fig. 1e. In cut 1 (Fig. 3d), which is
the mirror line (!G! !X! !G) direction, a pair of surface states are
observed on the Fermi level. The surface states in our Pb0.6Sn0.4Te
samples are found to have a relatively broad spectrum, which can
be possibly understood by the strong scattering in the disordered
alloy system similar to the broad spectrum of the topological
surface states in the Bi1! xSbx alloy

23. In addition to the scattering
broadening, the surface states are also observed to tail on the very
strong main valence band emission (for example, the white region
of intensity distribution in Fig. 3d). In the case of Fig. 2e (photon
energy of 24 eV), the bulk VBM locates outside the first surface
BZ. The surface state inside the first surface BZ is relatively better
isolated from the bulk bands as compared with the one outside
the first surface BZ. We thus study the dispersion along cut 2
(Fig. 3d), which only cuts across the surface states inside the first
surface BZ. Both the dispersion maps and the momentum dis-
tribution curves in cut 2 reveal that the surface states along cut 2

are nearly Dirac-like (linearly dispersive) close to the Fermi level.
In many TIs, the surface states deviate from ideal linearity24.
Fitting of the momentum distribution curves of cut 2 (see
Supplementary Fig. S6 for data analysis) shows that the experi-
mental chemical potential (EF) lies roughly at (or just below) the
Dirac point energy (ED), EF¼ED±0.02 eV. The surface states’
velocity is obtained to be 2.8±0.1 eVÅ (4.2±0.2# 105m s! 1)
along cut 2, and 1.1±0.3 eVÅ (1.7±0.4# 105m s! 1) for the two
outer branches along cut 1, respectively.

Spin polarization measurements of the surface states. We study
the spin polarization of the low-energy states of the Pb0.6Sn0.4Te
samples, which are highly dominated by the surface states near
the Fermi level. We further compare and contrast their spin
behaviour with that of the states at high binding energies away
from the Fermi level, which are highly dominated by the bulk
valence band in the same sample. Spin-resolved (SR)
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Ferroelectric Distortion Induces Dirac Gap 
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FIG. 4: Under a ferroelectric distortion with a displacement
u, the four surface Dirac points (detailed on the right) are
gapped with mass signs depending on the direction of u�.
This leads to the four gapped phases (I-IV).

depend on the symmetry of the perturbation. For exam-
ple, a perpendicular Zeeman field B is rotationally in-
variant, and hence yields m1 = m2 = m3 = m4 ∝ B.
This drives the surface into an integer quantum Hall
state. Another example is a structure distortion in which
atoms are displaced by u. In fact, SnTe distorts along
the (111) direction into a rhombohedral structure at low
temperature. This perturbation is time-reversal invariant
but breaks rotational symmetry, leading to a ferroelectric
phase. The effect of the distortion is captured by adding
to the tight-binding model (5) a modulated hopping term

H → H + δt
�

(r,r�),α

c†1α(r) · drr� u · c2α(r�) + h.c. (8)

By symmetry analysis (6), the δt term gives the following
mass terms to the surface states:

mj ∝ (u× kj
0) · ẑ, (9)

where ẑ is the surface normal. It follows that for the
rhombohedral distortion u ∝ (111), the two Dirac points
along (11̄0) direction are gapped, but the other two along
(110) remain gapless[22].

In general, all four Dirac points are gapped by the dis-
tortion unless its in-plane component u� coincides with

the direction of any kj
0. Therefore, there are four types

of fully-gapped surface ferroelectric phases depending on
the direction of u� (Fig.4). The domain wall between
two such phases (A and B) is particularly interesting, if
uA
� belong to the I-III quadrants and uB

� the II-IV quad-
rants. This domain wall carries two branches of counter-
propagating spin-polarized electrons: each branch arises
from the sign reversal of Dirac mass across the domain
wall[23]. Such one-dimensional electrons are protected
against backscattering by time reversal symmetry[24],
and hence form perfectly conducting channels.

The above analysis of surface states under mirror sym-
metry breaking also provides insight into their robustness
against time-reversal-invariant disorder. By definition,
disorder breaks mirror symmetry in a random way lo-

cally, not macroscopically. Let us assume that the dis-
order potential is slowly varying. The surface is then
an equal-weight mixture of the type I-III and type II-
IV ferroelectric domains mentioned above, with domain
walls percolating throughout the surface. Since the do-
main wall is a perfectly conducting channel, we expect
that the entire surface is conducting. The above rea-
soning resembles recent studies of disordered weak topo-
logical insulators[25–28]. Furthermore, quantum tunnel-
ing between the domain walls can be accounted for in a
Chalker-Coddington type network model, which will be
studied in the future.
On the experimental side, the surface states of SnTe we

predicted can be readily detected in angle-resolved pho-
toemission spectroscopy (ARPES) and tunneling spec-
troscopy experiments. We note that a photoemission
experiment[29] was recently performed on SnTe. The un-
derlying mirror Chern number can be deduced from the
spin polarization of surface states as in Sb[30]. More-
over, SnTe-based thin films and superlattices have re-
markably high mobility exceeding 2500cm2/Vs at room
temperature[31], which provide a promising platform for
device applications.
Finally, we relate our work to a wider class of materials,

including PbTe and PbSe. While both are topologically
trivial at ambient pressure, our first-principles calcula-
tion (Fig.2c) shows that decreasing the lattice constant
by 2% inverts the band gap and drives PbTe into a topo-
logical crystalline insulator. This band inversion is real-
ized under moderate pressure (around 3GPa in PbTe and
2GPa in PbSe [19, 21]). Alternatively, one can achieve
the topological regime by growing these materials on sub-
strates with smaller lattice constants. As a precedent,
high-quality PbTe quantum wells have been fabricated
and exhibit ballistic transport[32, 33].
We briefly comment on how our work relates to early

pioneering works, which predicted the existence of two
dimensional massless Dirac fermions at the interface of
PbTe and SnTe[34, 35], or domain wall of PbTe[36].
Our work has made it clear that only interfaces sym-
metric about the (110) mirror plane have protected gap-
less states, which are solely derived from the topological
crystalline insulator SnTe and exist even when PbTe is
removed. In light of their topological nature which we
identified, SnTe and pressurized PbTe are likely to lead
a new generation of topological materials.
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Prediction: breaking mirror symmetry generates Dirac mass

4

of two mirror branches creates an anisotropic two-dimensional Dirac point with different velocities along the parallel
and perpendicular direction. Therefore, the {001} surface states have four Dirac points located on the four equivalent
Γ̄X̄ lines. Similar considerations apply to the other two surfaces. For the {111} surface, the plane ΓL1L2 projects
onto the line Γ̄M̄ . So there are two Dirac points along each of the three equivalent lines Γ̄M̄ . For the {110} surface,
the plane ΓL1L2 projects onto the line Γ̄X̄, on which there are two Dirac points. In all cases, surface states of SnTe
have an even number of Dirac points, which can be easily distinguished from Z2 topological insulators having an odd
number. Our theoretical prediction of these surface states is the main result of this work.

Using first-principles calculations, we now explicitly demonstrate the above surface states in a slab geometry along
the [001] axis. Results for other surfaces will be published elsewhere. As predicted by the above topological band
theory, two surface bands with opposite mirror eigenvalues are found to cross each other and form a Dirac point on
the line Γ̄X̄ (Fig.3a). The Dirac velocity is found to be 1.7× 105m/s in the Γ̄X̄ direction. Interestingly, these surface
states exhibit a Lifshitz transition—a change of Fermi surface topology as a function of Fermi energy. Fig.3b shows
a set of Fermi surfaces at different energies. As the Fermi energy decreases from the Dirac point towards the valence
band, the Fermi surface initially consists of two disconnected hole pockets outside X̄; the two pockets then touch each
other and reconnect to form a large hole and a small electron pocket, both centered at X̄.

III. DISCUSSION

In order to understand both the connection between the bulk and surface bands and the effect of potential pertur-
bations at a microscopic level, we introduce a simplified tight-binding model for SnTe, detailed in Methods. Using the
tight-binding model, we now study the electronic properties of the {001} surface states under various perturbations.
Similar analysis applies to other surfaces. The doubly degenerate surface states ψα=±(Kj) at the four Dirac points
Kj have opposite mirror eigenvalues iα, and hence opposite expectation values of spin polarization perpendicular to
the Γ̄Kj direction. For convenience, we choose a natural basis in which the relative phases between the wavefunctions
at different Dirac points are fixed by the four-fold rotation relating them

C4 : ψα(Kj) → e
−iαπ/4ψα(Kj+1). (5)

In this basis, the k · p Hamiltonians at four Dirac points take an identical form:

Hsf = v⊥k1s2 − v�k2s1, (6)

Here k1 and k2 form a local right-handed coordinate system centered at each Kj , with k2 parallel to Kj .
It is important to note that the four branches of surface Dirac fermions have the same chirality, defined by the

relative sign of v⊥ and v� in (6). As such, the surface states of the topological crystalline insulator SnTe form a
“chiral” Dirac metal protected by crystal symmetries, thereby defining a new symmetry/topology universality class.
In particular, provided that mirror symmetry is present (k1 → −k1, s2 → −s2), the Dirac points here can move along
the Γ̄X̄ line but cannot annihilate with each other.

We now consider ways to engineer a band gap on the surface. Perturbations which break mirror symmetries can
generate Dirac mass term mjs3 and thus open up energy gaps Ej = 2|mj | at the Dirac points. The nature of the
gapped phase depends on the relative signs of mj , which is determined by the symmetry of the perturbation. For
example, a perpendicular magnetic field B couples to electron’s spin and yields Dirac masses of the same sign due to
rotational invariance: m1 = m2 = m3 = m4 ∝ B. This drives the surface states into an integer quantum Hall state.

Those perturbations which break the four-fold rotation symmetry of the {001} surface are particularly interesting.
One example is a structure distortion with atoms being displaced by a vector u, which can be introduced by strain
and possibly external electric field. Also, SnTe is known to spontaneously distort along the �111� direction into
a rhombohedral structure at low temperature. This perturbation is time-reversal invariant but breaks rotational
symmetry, leading to a ferroelectric phase. While this distortion has negligible effect on the band structure in the
bulk, it can dramatically affect the Dirac surface states. The effect of the distortion can be captured by adding a
modulated hopping term to the tight binding model (see Methods). By symmetry analysis (5), one can show that the
distortion gives the following anisotropic Dirac mass terms:

mj ∝ (u×Kj) · ẑ, (7)

where ẑ is the surface normal. As a result, the metallic surface acquires a band gap, which is linearly proportional
to the magnitude of structural distortion and depends on its direction. For the rhombohedral distortion u ∝ (111),
the two Dirac points along the (11̄0) direction are gapped, but the other two along the (110) direction remain gapless
due to the unbroken (110) mirror plane. The ability to continuously tune the surface band gap via applying strain

ferroelectric displacement

u

•   induced gap depends on direction of in-plane vector u  

•   rhombohedral distortion (known in SnTe) with  u along (110): 
     breaks one mirror symmetry, but preserves the other  
=> two massless Dirac fermions coexist with two massive Dirac fermions 

•   Dirac masses at k and -k have opposite sign (due to T-symmetry)
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Observation of Dirac node formation and mass acquisition in a 
topological crystalline insulator 
Okada, Serbyn et al, arXiv:1305.2823 (submitted to Science)

!
!
! !

 
Fig. 1. Crystal structure and schematic band structure of TCIs. (A) Schematic crystal 
structure of Pb1-xSnxSe. The top view reflects the [001] plane, which is the surface seen 
in STM. The Sn and Pb atoms are expected to be randomly distributed at the blue sites. 
(B) Schematic band structure of the surface state showing the surface Brillouin zone as 
a blue plane and the four pairs of Dirac nodes, each centered at the X point in 
momentum space. (C) Typical average dI/dV spectrum in zero field. (D) Schematic cuts 
along two high symmetry directions showing the surface state dispersion of one of the 
Dirac cones as well as the four important energy scales EDP1, EvH+, EvHs-, and EDP2 
representing the Dirac point associated with the primary Dirac node, the two Van Hove 
singularities associated with the saddle points in the dispersion, and the Dirac point 
energy associated with the secondary Dirac node respectively.  
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• zero-field dI/dV:  linearly dispersing Dirac fermion & Van-Hove singularity 
(Liu, Duan & LF, arXiv: 1304.0430)
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EH,L(k) =

�
m2 + δ2 + v2

x
k2
x
+ v2

y
k2
y
± 2

�
m2v2

x
k2
x
+ (m2 + δ2)k2

y
v2
y
. (4)

The corresponding surface band structure is plotted in
Fig.3. Two high-energy bands ±EH start from energy
E

X ≡
√
m2 + δ2 at X̄ and coexist in energy with bulk

bands, whereas two low-energy bands ±EL lie inside the
band gap.

The two terms m and δ arising from the lattice scale
play a key role in forming the (001) surface band struc-
ture shown in Fig.3. To start with, a finite m turns the
two flavors of massless Dirac fermions into a “bonding”
(τx = 1) and an “anti-bonding” (τx = −1) Dirac cones,
which are centered at X̄ and have energy ±m respec-
tively. If δ were zero, the lower band of the upper Dirac
cone and the upper band of the lower Dirac cone would
cross each other at E = 0 over an elliptical contour C

enclosing X̄, defined by v
2
x
k
2
x
+ v

2
y
k
2
y
= m

2. However, a
nonzero δ turns this band crossing into an anti-crossing
via hybridization. Importantly, the hybridization matrix
element depends on the direction of k, and leads to a
p-wave hybridization gap: ∆(k) = 2δ · vxkx/m, k ∈ C.

The fact that ∆(k) vanishes along the mirror-symmetric
line Γ̄X̄1 is a consequence of the unique electronic topol-
ogy of the TCI protected by mirror symmetry. As can
be seen from (2) and (3), the two low-energy bands ±EL

have opposite Mx mirror eigenvalues on the ky line X̄1Γ̄,
but identical My mirror eigenvalues on the kx line X̄1M̄ .
As a result, hybridization is strictly forbidden on X̄1Γ̄,
but allowed on X̄1M̄ . The presence of such a protected
band crossing on X̄1Γ̄, but not elsewhere, leads to a pair
of zero-energy Dirac points Λ̄1,2 located symmetrically
away from X̄1 at momenta Λ̄1,2 = (0,±

√
m2 + δ2/vy).

By linearizing band structure near each Λ̄, we obtain the
two-component massless Dirac fermion at low energy[7]

HΛ̄1
(δk) = ṽxδkxσy − vyδkyσx (5)

where δk ≡ k − Λ̄1 and the Dirac velocity along Γ̄X̄1 is
reduced from vx: ṽx = vxδ/

√
m2 + δ2.

Our k ·p theory also captures essential features of (001)
surface states at higher energy that are previously found
in ab-initio calculation[7]. As shown in Fig.3, the band
dispersion and constant energy contours evolve rapidly
and undergo a change in topology (i.e., Lifshitz transi-
tion) with increasing energy away from the Dirac point.
For |E| < δ, the Fermi surface consists of two discon-
nected Dirac pockets outside X̄. At |E| = δ, the two
pockets touch each other at two saddle points S̄1 and
S̄2 located at momentum (±m/vx, 0), resulting in a Van-
Hove singularity in density of states, shown in Fig.3. The
effective mass tensor at the saddle point is given by by
mxx = δ/v2

x
and myy = −m

2
/(δ · v2

y
). For |E| > δ, the
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FIG. 3: k ·p band structure for (001) surface states. A pair of

low-energy Dirac cones, located at Λ̄1 and Λ̄2 on the line X̄Γ̄,
is formed by the interaction between two high-energy Dirac

bands centered at X̄. k · p parameters are obtained by fit-

ting with ab-initio results (shown by red dots) on SnTe taken

from Ref.[7]: vx = 2.4eV·Å, vy = 1.3eV·Å, m = 70meV, and

δ = 26meV. Constant-energy contour evolves rapidly with

increasing energy from the Dirac point, changing from two

disconnected electron pockets to a large electron pocket and

a small hole pocket via a Lifshitz transition. At this transition

point, a saddle point S̄ on the line X̄M̄ leads to a Van-Hove

singularity in density of states at energy ES
= δ.

Fermi surface changes into two pockets of different carrier
types, both centered at X̄.
As shown in Fig.3, our k·p band structure (4) fits nicely

with the previous ab-initio calculation of SnTe (001) sur-
face in a wide energy range[7]. We point out that fur-
ther improvement can be made by incorporating addi-
tional inter-valley terms that are linear in k into our k ·p
Hamiltonian (4). By doing so we obtain a sophisticated
k · p theory with seven independent parameters, which
is intimately related to a recent study by Fang et al[35].
Since the additional terms merely modify the result of
(4) quantitatively but do not affect any essential aspect
of the (001) surface states, they play a minor role[36].
(110) surface: we end by briefly discussing another

type-II surface, (110). In this case, L1 and L2 are pro-
jected to X̄, and L3 and L4 are projected to R̄. Bulk-
boundary correspondence based on the electronic topol-
ogy of TCI predicts the existence of a pair of counter-
propagating states with opposite mirror eigenvalues on
Γ̄X̄[7]. This is confirmed by our ab-initio calculation[31]

Monday, June 3, 2013
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•  two non-dispersing Landau levels located symmetrically away from Dirac point
•  unique signature of two massive Dirac fermions with opposite masses

•  Dirac band gap engineering by strain:  topological transistor 

Fig. 3. VHS associate with change in Fermi surface topology measured by Landau level 
spectroscopy.  (A) Linecut averaged STM spectra with increasing magnetic field. (B) 
Second derivative spectra that were used to trace the peak positions. (C) Plot of LL 
peak positions with sqrt nB. (D) Plot of theoretically calculated Fermi surface area with 
energy, overlaid with experimental LL peak positions as a function of nB (see 
supplemental information for details of calculation). (E) Schematic of evolution of the 
constant energy contours in momentum space with energy showing the Lifschitz 
transition.   
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Fig. 3. VHS associate with change in Fermi surface topology measured by Landau level 
spectroscopy.  (A) Linecut averaged STM spectra with increasing magnetic field. (B) 
Second derivative spectra that were used to trace the peak positions. (C) Plot of LL 
peak positions with sqrt nB. (D) Plot of theoretically calculated Fermi surface area with 
energy, overlaid with experimental LL peak positions as a function of nB (see 
supplemental information for details of calculation). (E) Schematic of evolution of the 
constant energy contours in momentum space with energy showing the Lifschitz 
transition.   
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Part II.   Anderson Transition

Motivation:  fate of TCI surface states (in SnTe class) under disorder

•  disorder necessarily violates crystal symmetry
•  symmetry is restored after disorder averaging

•  are TCI surface states robust against strong disorder? 

disorder topology 
& crystal symmetry 

Collaboration with Charlie Kane (UPenn)
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Ferroelectricity-induced Gap
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FIG. 4: Under a ferroelectric distortion with a displacement
u, the four surface Dirac points (detailed on the right) are
gapped with mass signs depending on the direction of u�.
This leads to the four gapped phases (I-IV).

depend on the symmetry of the perturbation. For exam-
ple, a perpendicular Zeeman field B is rotationally in-
variant, and hence yields m1 = m2 = m3 = m4 ∝ B.
This drives the surface into an integer quantum Hall
state. Another example is a structure distortion in which
atoms are displaced by u. In fact, SnTe distorts along
the (111) direction into a rhombohedral structure at low
temperature. This perturbation is time-reversal invariant
but breaks rotational symmetry, leading to a ferroelectric
phase. The effect of the distortion is captured by adding
to the tight-binding model (5) a modulated hopping term

H → H + δt
�

(r,r�),α

c†1α(r) · drr� u · c2α(r�) + h.c. (8)

By symmetry analysis (6), the δt term gives the following
mass terms to the surface states:

mj ∝ (u× kj
0) · ẑ, (9)

where ẑ is the surface normal. It follows that for the
rhombohedral distortion u ∝ (111), the two Dirac points
along (11̄0) direction are gapped, but the other two along
(110) remain gapless[22].

In general, all four Dirac points are gapped by the dis-
tortion unless its in-plane component u� coincides with

the direction of any kj
0. Therefore, there are four types

of fully-gapped surface ferroelectric phases depending on
the direction of u� (Fig.4). The domain wall between
two such phases (A and B) is particularly interesting, if
uA
� belong to the I-III quadrants and uB

� the II-IV quad-
rants. This domain wall carries two branches of counter-
propagating spin-polarized electrons: each branch arises
from the sign reversal of Dirac mass across the domain
wall[23]. Such one-dimensional electrons are protected
against backscattering by time reversal symmetry[24],
and hence form perfectly conducting channels.

The above analysis of surface states under mirror sym-
metry breaking also provides insight into their robustness
against time-reversal-invariant disorder. By definition,
disorder breaks mirror symmetry in a random way lo-

cally, not macroscopically. Let us assume that the dis-
order potential is slowly varying. The surface is then
an equal-weight mixture of the type I-III and type II-
IV ferroelectric domains mentioned above, with domain
walls percolating throughout the surface. Since the do-
main wall is a perfectly conducting channel, we expect
that the entire surface is conducting. The above rea-
soning resembles recent studies of disordered weak topo-
logical insulators[25–28]. Furthermore, quantum tunnel-
ing between the domain walls can be accounted for in a
Chalker-Coddington type network model, which will be
studied in the future.
On the experimental side, the surface states of SnTe we

predicted can be readily detected in angle-resolved pho-
toemission spectroscopy (ARPES) and tunneling spec-
troscopy experiments. We note that a photoemission
experiment[29] was recently performed on SnTe. The un-
derlying mirror Chern number can be deduced from the
spin polarization of surface states as in Sb[30]. More-
over, SnTe-based thin films and superlattices have re-
markably high mobility exceeding 2500cm2/Vs at room
temperature[31], which provide a promising platform for
device applications.
Finally, we relate our work to a wider class of materials,

including PbTe and PbSe. While both are topologically
trivial at ambient pressure, our first-principles calcula-
tion (Fig.2c) shows that decreasing the lattice constant
by 2% inverts the band gap and drives PbTe into a topo-
logical crystalline insulator. This band inversion is real-
ized under moderate pressure (around 3GPa in PbTe and
2GPa in PbSe [19, 21]). Alternatively, one can achieve
the topological regime by growing these materials on sub-
strates with smaller lattice constants. As a precedent,
high-quality PbTe quantum wells have been fabricated
and exhibit ballistic transport[32, 33].
We briefly comment on how our work relates to early

pioneering works, which predicted the existence of two
dimensional massless Dirac fermions at the interface of
PbTe and SnTe[34, 35], or domain wall of PbTe[36].
Our work has made it clear that only interfaces sym-
metric about the (110) mirror plane have protected gap-
less states, which are solely derived from the topological
crystalline insulator SnTe and exist even when PbTe is
removed. In light of their topological nature which we
identified, SnTe and pressurized PbTe are likely to lead
a new generation of topological materials.
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Breaking mirror symmetry uniformly generates mass for Dirac surface states:

4

of two mirror branches creates an anisotropic two-dimensional Dirac point with different velocities along the parallel
and perpendicular direction. Therefore, the {001} surface states have four Dirac points located on the four equivalent
Γ̄X̄ lines. Similar considerations apply to the other two surfaces. For the {111} surface, the plane ΓL1L2 projects
onto the line Γ̄M̄ . So there are two Dirac points along each of the three equivalent lines Γ̄M̄ . For the {110} surface,
the plane ΓL1L2 projects onto the line Γ̄X̄, on which there are two Dirac points. In all cases, surface states of SnTe
have an even number of Dirac points, which can be easily distinguished from Z2 topological insulators having an odd
number. Our theoretical prediction of these surface states is the main result of this work.

Using first-principles calculations, we now explicitly demonstrate the above surface states in a slab geometry along
the [001] axis. Results for other surfaces will be published elsewhere. As predicted by the above topological band
theory, two surface bands with opposite mirror eigenvalues are found to cross each other and form a Dirac point on
the line Γ̄X̄ (Fig.3a). The Dirac velocity is found to be 1.7× 105m/s in the Γ̄X̄ direction. Interestingly, these surface
states exhibit a Lifshitz transition—a change of Fermi surface topology as a function of Fermi energy. Fig.3b shows
a set of Fermi surfaces at different energies. As the Fermi energy decreases from the Dirac point towards the valence
band, the Fermi surface initially consists of two disconnected hole pockets outside X̄; the two pockets then touch each
other and reconnect to form a large hole and a small electron pocket, both centered at X̄.

III. DISCUSSION

In order to understand both the connection between the bulk and surface bands and the effect of potential pertur-
bations at a microscopic level, we introduce a simplified tight-binding model for SnTe, detailed in Methods. Using the
tight-binding model, we now study the electronic properties of the {001} surface states under various perturbations.
Similar analysis applies to other surfaces. The doubly degenerate surface states ψα=±(Kj) at the four Dirac points
Kj have opposite mirror eigenvalues iα, and hence opposite expectation values of spin polarization perpendicular to
the Γ̄Kj direction. For convenience, we choose a natural basis in which the relative phases between the wavefunctions
at different Dirac points are fixed by the four-fold rotation relating them

C4 : ψα(Kj) → e
−iαπ/4ψα(Kj+1). (5)

In this basis, the k · p Hamiltonians at four Dirac points take an identical form:

Hsf = v⊥k1s2 − v�k2s1, (6)

Here k1 and k2 form a local right-handed coordinate system centered at each Kj , with k2 parallel to Kj .
It is important to note that the four branches of surface Dirac fermions have the same chirality, defined by the

relative sign of v⊥ and v� in (6). As such, the surface states of the topological crystalline insulator SnTe form a
“chiral” Dirac metal protected by crystal symmetries, thereby defining a new symmetry/topology universality class.
In particular, provided that mirror symmetry is present (k1 → −k1, s2 → −s2), the Dirac points here can move along
the Γ̄X̄ line but cannot annihilate with each other.

We now consider ways to engineer a band gap on the surface. Perturbations which break mirror symmetries can
generate Dirac mass term mjs3 and thus open up energy gaps Ej = 2|mj | at the Dirac points. The nature of the
gapped phase depends on the relative signs of mj , which is determined by the symmetry of the perturbation. For
example, a perpendicular magnetic field B couples to electron’s spin and yields Dirac masses of the same sign due to
rotational invariance: m1 = m2 = m3 = m4 ∝ B. This drives the surface states into an integer quantum Hall state.

Those perturbations which break the four-fold rotation symmetry of the {001} surface are particularly interesting.
One example is a structure distortion with atoms being displaced by a vector u, which can be introduced by strain
and possibly external electric field. Also, SnTe is known to spontaneously distort along the �111� direction into
a rhombohedral structure at low temperature. This perturbation is time-reversal invariant but breaks rotational
symmetry, leading to a ferroelectric phase. While this distortion has negligible effect on the band structure in the
bulk, it can dramatically affect the Dirac surface states. The effect of the distortion can be captured by adding a
modulated hopping term to the tight binding model (see Methods). By symmetry analysis (5), one can show that the
distortion gives the following anisotropic Dirac mass terms:

mj ∝ (u×Kj) · ẑ, (7)

where ẑ is the surface normal. As a result, the metallic surface acquires a band gap, which is linearly proportional
to the magnitude of structural distortion and depends on its direction. For the rhombohedral distortion u ∝ (111),
the two Dirac points along the (11̄0) direction are gapped, but the other two along the (110) direction remain gapless
due to the unbroken (110) mirror plane. The ability to continuously tune the surface band gap via applying strain

ferroelectric displacement

u

•  sign of induced gap depends on direction of u:  

1D helical edge states at domain wall: 

+
-

+
-

+
+

-
-•  perfect conducting channel 

   w/o backscattering
•  detection by STM, AFM

Hsieh, Lin, Liu, Duan, Bansil & LF, Nature Communications, 2012
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 Anomalous Action of Symmetry on Gapped Boundary

+
-

+
-

+
+

-
-

mirror

Topological crystalline insulator:  
•  action of mirror on a gapped surface leads to a state in a different Z2 class.
•  pristine TCI surface is half-way in between two Z2 distinct states 

Topological insulator:  
•  action of time reversal on a gapped surface changes Hall conductance by one
•  pristine TI surface is at a quantum Hall plateau transition

Breaking symmetry leads to a gapped surface with “anomaly”
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Robustness of TCI Surface States

•  TCI surface states must remain delocalized even under strong disorder on 
the surface.

<u>=0
disordered surface:

mirror symmetric on average.

•  If disordered surface were localized, there must be one helical mode localized 
on either left or right boundary, which would contradict mirror symmetry. 

+
+

-
+

-

+
- -

(LF, to appear)

•  similar delocalization in weak TI 
  

c.f. Ringel, Kraus & Stern, 12; 
      Mong, Bardarson & Moore, 12
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Anderson Localization in Two Dimensions

Hikami, Larkin, Nagaoka, 1980 

g

β(g)

g

β(g)

Orthogonal class
(T-invariant, spinless)

Symplectic class
(T-invariant, spin-orbit)

•  all states are localized under strong disorder
•  one-parameter scaling based on conductance

Conventional wisdom: 

Abrahams, Anderson, Liccoardello 
& Ramakrishnan, 1979

MI

Monday, June 3, 2013



Anderson Transition in Symplectic Class

Single-parameter scaling theory is wrong, because 

•  it does not distinguish two localized phases: trivial & 2D TI
•  it cannot explain absence of localization under strong disorder on TCI

g

β(g)

MI
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Field Theory

Nonlinear sigma model in replica limit N=0 

Q ∈ O(2N)/O(N)×O(N) is order parameter for metal-insulator transition 

Z =
�

Q

e−S0[Q]
S0[Q] =

1

32πt

�
d2rTr[(∇Q)2]
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Topological Defects in Field Theory

Nonlinear sigma model in replica limit N=0 

Q ∈ O(2N)/O(N)×O(N) is order parameter for metal-insulator transition 

New ingredient:   vortices in NLsM π1(O(2N)/O(N)×O(N)) = Z2

LF & Kane, PRL 109, 246605 (2012).

Z =
�

Q

vNvortex[Q]e−S0[Q]S0[Q] =
1

32πt

�
d2rTr[(∇Q)2]

2

metries. For a layered WTI it is translation by one layer.
For the TCI studied in Ref.[22], it is a mirror symmetry.
Breaking the symmetry gaps the surface, leading to local-
ization. However, applying the symmetry to the gapped
state leads to a topologically distinct localized state, so
that there exists a 1D helical edge mode at the interface
between the two localized states. If the symmetry is re-
spected on average, then the system is at the boundary
between the two localized states. It is clear that even for
strong disorder, the system can not be localized at this
point because a change in topological class can only occur
when extended states are present at the Fermi energy.

To develop a field theory for this delocalization, we
use the fermionic replica theory introduced by Efetov
et al.[13]. Our analysis closely parallels that of Ryu, et
al.[9]. We consider a system with average Hamiltonian
H0 and Gaussian correlated TR invariant disorder. Us-
ing the replica trick, the disorder averaged product of
retarded and advanced Green’s functions can be gener-
ated from the partition function Z =

�
D[ψ̄,ψ]e−S , with

S =

�
d2r[ψ̄a((H0−E)δab+ iηΛab)ψb−

g

2
(ψ̄aψb)(ψ̄bψa)]

(1)
Here a = 1, ..., 2N is an index for N retarded and N
advanced replicas, and Λ = 1N ⊕ (−1)N , where 1N is
a N × N identity matrix. g is a coupling constant that
characterizes the disorder strength, and ψa is a Grassman
field that includes (suppressed) spin, position and possi-
bly orbital indices. ψ̄a ≡ ψT

a iσ
y, where σ acts on the spin

indices. TR requires σyH0σy = H∗
0, so iσy(H0 − E) is a

skew symmetric matrix. For η = 0, (1) is invariant un-
der O(2N) rotations among the replicas, which is broken
down to O(N)×O(N) by η.

A theory of the Nambu Goldstone modes associated
with this symmetry breaking is formulated by Hubbard
Stratonovich decoupling the four fermion interaction, and
performing a saddle point expansion about the broken
symmetry state. After freezing the massive modes, the
saddle point is characterized by a 2N × 2N matrix field
Q = OTΛO, with O ∈ O(2N). Distinct values of Q
belong to the coset G/H = O(2N)/O(N) × O(N) and
satisfy Q = QT , Q2 = 1. A theory for the long wave-
length fluctuations in Qab is obtained by integrating ψa

in the background of a spatially varying Qab. This gives
Zeff =

�
D[Q]e−Seff [Q] with

e−Seff [Q] =

�
D[ψ̄,ψ]e−

�
d2r[ψ̄a[(H0−E)δab+i∆Qab]ψb]

(2)
Here ∆ is a parameter characterizing the bare scattering
time that is determined self consistently at the saddle
point. Expanding in gradients gives the NLσM,

S0
eff [Q] =

1

32πt

�
d2rTr[(∇Q)2], (3)

where the coupling constant t characterizes the disorder

strength and is related at lowest order to the resistivity,
σ = (2πt)−1e2/h. The renormalization of t at long wave-
lengths is described by the perturbative renormalization
group (RG) equation[13, 14, 27–29]

dt/d� = β(t), β(t) = 2(N − 1)t2 + ... (4)

In the replica limit, N → 0, the weak coupling fixed point
t = 0 is stable, indicating the stability of the symplectic
metal phase, characterized by weak antilocalization.
Eq. 3 is not the whole story because topologically

non trivial configurations of Q can have important non-
perturbative effects. There are two types of topological
configurations associated with the nontrivial homotopy
groups π1(G/H) = π2(G/H) = Z2[10]. π2(G/H) allows
a topological term that prevents localization on the sur-
face of 3D TI[8, 9]. That term is absent in purely 2D
systems as well as WTI or TCI surfaces. For our prob-
lem, the crucial topological objects are point-like defects
similar to vortices that are allowed by the non trivial
π1(G/H). These defects are necessary for localization,
and their contribution to Zeff encodes the distinction be-
tween a trivial insulator and TI.
The role of vortices can be understood by considering

an inhomogeneous 2D system in which a TI in region
S with boundary C is surrounded by a trivial insulator
(Fig. 1a). Imagine integrating out ψa in (2) in the pres-
ence of a vortex configuration Qab(r). Since the interior
of S has a finite gap, the dominant contribution comes
from the 1D helical edge states at the boundary C. On
C, Qab(r ∈ C) is a non-singular and non-contractible
configuration corresponding to the nontrivial element of
π1(G/H). Repeating the analysis of Ryu et al.[9] for
1D helical states, we find a topological term in the 1D
NLσM[10],

e−Seff [Q] ∝ (−1)n(C) (5)

where n(C) = 0, 1 is the Z2 homotopy class of Q on C.
Importantly, since Q is defined in all space (except at the
cores of vortices), n(C) is equal to the number of vortices
inside the TI mod 2. This leads to a bulk characterization
of the TI based on the 2D NLσM: in the TI the fugacity
v of Z2 vortices is negative. In the trivial insulator the
topological term is absent and v > 0, which is obvious for
vanishing spin-orbit coupling since e−Seff [Q] is a perfect
square due to spin degeneracy.

At the transition between the trivial and TI, v must
pass through zero. This suggests v = 0 at the WTI sur-
face. To demonstrate this explicitly, we model a WTI
as a layered 2D TI with helical edge modes H = vxσxkx
stacked in the y direction with separation a. Coupling be-
tween layers gaps the surface, except at two Dirac points
at (kx, ky) = (0, 0) and (0,π/a). Indexing the Dirac
points by τz = ±1, the surface states are described by

H0 = vxσxkx + vyσyτzky +mσyτy (6)

To determine vortex fugacity v: 
integrate out Grassman variables in the presence of a vortex

3

FIG. 1: (a) A 2D TI (m < 0) in region S with boundary C
is surrounded by trivial insulator (m > 0). The sign of Zeff

depends on the number of vortices in S. (b) For m = 0 the
eigenvalues of Heff in (10) exhibit a linear zero crossing, which
leads to a vanishing vortex fugacity.

The symmetry of the WTI under translation by one layer

is described by exp(ipya) = τz. Dimerization of the layers

breaks this translation symmetry, and generates a mass

term mσyτy[19]. This is the only mass that respects TR.

The topologically distinct dimerization patterns are dis-

tinguished by sgn(m). The sign reversal of the Dirac

mass m also describes the low-energy theory of the 2D

transition between a trivial and topological insulator[30].

Eq, 3 should include a sum over vortex configurations

in Q. The vortex fugacity is determined by comparing

(2) in the presence and absence of vortices. Consider the

simplest vortex configuration involving a single retarded

and advanced pair of replicas. This can be expressed in

terms of a one parameter family of Q’s of the form

Q(θ) = 1N−1 ⊕
�

cos θ sin θ
sin θ − cos θ

�
⊕ 1N−1. (7)

A Z2 vortex is then a configuration where θ winds by an

odd multiple of 2π.
The Grassman integral in (2) defines a Pfaffian, so that

the vortex fugacity may be written

v =
Pf[iσyD(Q)]

Pf[iσyD(Q0)]
, (8)

where Q is a vortex configuration, and Q0 = Λ. In the

space of the two nontrivial replicas we have

D(Q) = (H0 − E) + i∆(µz
cos θ + µx

sin θ). (9)

Here µz is a Pauli matrix in the space of the two non-

trivial replicas. To evaluate the Pfaffian, we use a

trick similar to that used by Ryu et al.[9], and compute

(Pf[iσyD])
2
= det[iσyD] = det[µyD]. This is useful be-

cause µyD ≡ Heff
is a Hermitian operator given by

H
eff

= µy
(H0 − E) +∆(µx

cos θ − µz
sin θ), (10)

so the determinant is the product of its real eigenval-

ues. The TR symmetry of the original H0 becomes a

particle-hole symmetry, {Heff ,Ξ} = 0, with Ξ = µyσyK.

Moreover, when m = 0, Heff
decouples into two indepen-

dent Hamiltonians for τz = ±1. Each is identical to a

topological superconductor in class D, with θ playing the

role of the superconducting phase. There are two zero

modes indexed by τz = ±1 bound to the core of a Z2

vortex. For m �= 0, the zero modes couple and split (Fig.

1b). Thus det[µyD] has a second order zero at m = 0,

so Pf[iσyD] has a first order zero, which involves a sign

change as a function of m. This shows that v = 0 for

m = 0, so isolated Z2 vortices are forbidden at the WTI

surface. With multiple vortices the zero modes will split

even for m = 0, leading to a nonzero Pfaffian. However,

since the splitting vanishes exponentially in the separa-

tion, the vortices will be confined by a linear potential.

It is thus clear that the vortex fugacity v is a cru-

cial variable in the NLσM. The TI and trivial insula-

tor involve vortex proliferation and are distinguished by

sgn(v). For v = 0, qualitatively different behavior is ex-
pected reflecting the delocalization of the WTI or TCI

surfaces. For v = 0 the target space of the NLσM effec-
tively lifts to its double cover, G̃/H̃ = SO(2N)/SO(N)×
SO(N), for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃
have identical local structure, their perturbative β func-

tions will be identical. It is useful to first consider this

behavior as a function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even for v = 0.

This phase is “less disordered” than the v �= 0 disordered

phase, though. The confinement of Z2 vortices leads to

a topological order similar to a Z2 spin liquid[31]. This

can be seen by placing the system in a torus: there are

four topologically disconnected sectors corresponding to

the homotopy classes of Q ∈ G/H along the two large

loops. When v is turned on in this disordered phase, the

Z2 vortices immediately condense. The v = 0 line thus

describes a first order transition between the v > 0 and

v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is sta-

ble and describes an ordered phase, which is present even

for d ≤ 2[32]. More importantly, the arguments for the

absence of localization under strong disorder presented

above prove that for v = 0 the NLSM at strong coupling

cannot be in a disordered phase. It is useful to consider

the critical value N = 1 that separates these behaviors.

The theory for N = 1 is simply the XY model, and Q is

fully parameterized by θ in (7). Eq. 3 becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1
, is flat, β(t) = 0 to all orders.

Vortices modify the behavior. For small t, 2π vortices in

θ are bound, and the system flows to a fixed line param-

eterized by t. For t > t∗ = 1/16 vortices unbind at a KT

transition[24] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1 − �, with � � 1. To lowest order in � and v,

v is given by Pfaffian of kernel:
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2

metries. For a layered WTI it is translation by one layer.
For the TCI studied in Ref.[22], it is a mirror symmetry.
Breaking the symmetry gaps the surface, leading to local-
ization. However, applying the symmetry to the gapped
state leads to a topologically distinct localized state, so
that there exists a 1D helical edge mode at the interface
between the two localized states. If the symmetry is re-
spected on average, then the system is at the boundary
between the two localized states. It is clear that even for
strong disorder, the system can not be localized at this
point because a change in topological class can only occur
when extended states are present at the Fermi energy.

To develop a field theory for this delocalization, we
use the fermionic replica theory introduced by Efetov
et al.[13]. Our analysis closely parallels that of Ryu, et
al.[9]. We consider a system with average Hamiltonian
H0 and Gaussian correlated TR invariant disorder. Us-
ing the replica trick, the disorder averaged product of
retarded and advanced Green’s functions can be gener-
ated from the partition function Z =

�
D[ψ̄,ψ]e−S , with

S =

�
d2r[ψ̄a((H0−E)δab+ iηΛab)ψb−

g

2
(ψ̄aψb)(ψ̄bψa)]

(1)
Here a = 1, ..., 2N is an index for N retarded and N
advanced replicas, and Λ = 1N ⊕ (−1)N , where 1N is
a N × N identity matrix. g is a coupling constant that
characterizes the disorder strength, and ψa is a Grassman
field that includes (suppressed) spin, position and possi-
bly orbital indices. ψ̄a ≡ ψT

a iσ
y, where σ acts on the spin

indices. TR requires σyH0σy = H∗
0, so iσy(H0 − E) is a

skew symmetric matrix. For η = 0, (1) is invariant un-
der O(2N) rotations among the replicas, which is broken
down to O(N)×O(N) by η.

A theory of the Nambu Goldstone modes associated
with this symmetry breaking is formulated by Hubbard
Stratonovich decoupling the four fermion interaction, and
performing a saddle point expansion about the broken
symmetry state. After freezing the massive modes, the
saddle point is characterized by a 2N × 2N matrix field
Q = OTΛO, with O ∈ O(2N). Distinct values of Q
belong to the coset G/H = O(2N)/O(N) × O(N) and
satisfy Q = QT , Q2 = 1. A theory for the long wave-
length fluctuations in Qab is obtained by integrating ψa

in the background of a spatially varying Qab. This gives
Zeff =

�
D[Q]e−Seff [Q] with

e−Seff [Q] =

�
D[ψ̄,ψ]e−

�
d2r[ψ̄a[(H0−E)δab+i∆Qab]ψb]

(2)
Here ∆ is a parameter characterizing the bare scattering
time that is determined self consistently at the saddle
point. Expanding in gradients gives the NLσM,

S0
eff [Q] =

1

32πt

�
d2rTr[(∇Q)2], (3)

where the coupling constant t characterizes the disorder

strength and is related at lowest order to the resistivity,
σ = (2πt)−1e2/h. The renormalization of t at long wave-
lengths is described by the perturbative renormalization
group (RG) equation[13, 14, 27–29]

dt/d� = β(t), β(t) = 2(N − 1)t2 + ... (4)

In the replica limit, N → 0, the weak coupling fixed point
t = 0 is stable, indicating the stability of the symplectic
metal phase, characterized by weak antilocalization.
Eq. 3 is not the whole story because topologically

non trivial configurations of Q can have important non-
perturbative effects. There are two types of topological
configurations associated with the nontrivial homotopy
groups π1(G/H) = π2(G/H) = Z2[10]. π2(G/H) allows
a topological term that prevents localization on the sur-
face of 3D TI[8, 9]. That term is absent in purely 2D
systems as well as WTI or TCI surfaces. For our prob-
lem, the crucial topological objects are point-like defects
similar to vortices that are allowed by the non trivial
π1(G/H). These defects are necessary for localization,
and their contribution to Zeff encodes the distinction be-
tween a trivial insulator and TI.
The role of vortices can be understood by considering

an inhomogeneous 2D system in which a TI in region
S with boundary C is surrounded by a trivial insulator
(Fig. 1a). Imagine integrating out ψa in (2) in the pres-
ence of a vortex configuration Qab(r). Since the interior
of S has a finite gap, the dominant contribution comes
from the 1D helical edge states at the boundary C. On
C, Qab(r ∈ C) is a non-singular and non-contractible
configuration corresponding to the nontrivial element of
π1(G/H). Repeating the analysis of Ryu et al.[9] for
1D helical states, we find a topological term in the 1D
NLσM[10],

e−Seff [Q] ∝ (−1)n(C) (5)

where n(C) = 0, 1 is the Z2 homotopy class of Q on C.
Importantly, since Q is defined in all space (except at the
cores of vortices), n(C) is equal to the number of vortices
inside the TI mod 2. This leads to a bulk characterization
of the TI based on the 2D NLσM: in the TI the fugacity
v of Z2 vortices is negative. In the trivial insulator the
topological term is absent and v > 0, which is obvious for
vanishing spin-orbit coupling since e−Seff [Q] is a perfect
square due to spin degeneracy.

At the transition between the trivial and TI, v must
pass through zero. This suggests v = 0 at the WTI sur-
face. To demonstrate this explicitly, we model a WTI
as a layered 2D TI with helical edge modes H = vxσxkx
stacked in the y direction with separation a. Coupling be-
tween layers gaps the surface, except at two Dirac points
at (kx, ky) = (0, 0) and (0,π/a). Indexing the Dirac
points by τz = ±1, the surface states are described by

H0 = vxσxkx + vyσyτzky +mσyτy (6)

Consider a 2D system near the transition between trivial and topological:

3

FIG. 1: (a) A 2D TI (m < 0) in region S with boundary C
is surrounded by trivial insulator (m > 0). The sign of Zeff

depends on the number of vortices in S. (b) For m = 0 the
eigenvalues of Heff in (10) exhibit a linear zero crossing, which
leads to a vanishing vortex fugacity.

The symmetry of the WTI under translation by one layer

is described by exp(ipya) = τz. Dimerization of the layers

breaks this translation symmetry, and generates a mass

term mσyτy[19]. This is the only mass that respects TR.

The topologically distinct dimerization patterns are dis-

tinguished by sgn(m). The sign reversal of the Dirac

mass m also describes the low-energy theory of the 2D

transition between a trivial and topological insulator[30].

Eq, 3 should include a sum over vortex configurations

in Q. The vortex fugacity is determined by comparing

(2) in the presence and absence of vortices. Consider the

simplest vortex configuration involving a single retarded

and advanced pair of replicas. This can be expressed in

terms of a one parameter family of Q’s of the form

Q(θ) = 1N−1 ⊕
�

cos θ sin θ
sin θ − cos θ

�
⊕ 1N−1. (7)

A Z2 vortex is then a configuration where θ winds by an

odd multiple of 2π.
The Grassman integral in (2) defines a Pfaffian, so that

the vortex fugacity may be written

v =
Pf[iσyD(Q)]

Pf[iσyD(Q0)]
, (8)

where Q is a vortex configuration, and Q0 = Λ. In the

space of the two nontrivial replicas we have

D(Q) = (H0 − E) + i∆(µz
cos θ + µx

sin θ). (9)

Here µz is a Pauli matrix in the space of the two non-

trivial replicas. To evaluate the Pfaffian, we use a

trick similar to that used by Ryu et al.[9], and compute

(Pf[iσyD])
2
= det[iσyD] = det[µyD]. This is useful be-

cause µyD ≡ Heff
is a Hermitian operator given by

H
eff

= µy
(H0 − E) +∆(µx

cos θ − µz
sin θ), (10)

so the determinant is the product of its real eigenval-

ues. The TR symmetry of the original H0 becomes a

particle-hole symmetry, {Heff ,Ξ} = 0, with Ξ = µyσyK.

Moreover, when m = 0, Heff
decouples into two indepen-

dent Hamiltonians for τz = ±1. Each is identical to a

topological superconductor in class D, with θ playing the

role of the superconducting phase. There are two zero

modes indexed by τz = ±1 bound to the core of a Z2

vortex. For m �= 0, the zero modes couple and split (Fig.

1b). Thus det[µyD] has a second order zero at m = 0,

so Pf[iσyD] has a first order zero, which involves a sign

change as a function of m. This shows that v = 0 for

m = 0, so isolated Z2 vortices are forbidden at the WTI

surface. With multiple vortices the zero modes will split

even for m = 0, leading to a nonzero Pfaffian. However,

since the splitting vanishes exponentially in the separa-

tion, the vortices will be confined by a linear potential.

It is thus clear that the vortex fugacity v is a cru-

cial variable in the NLσM. The TI and trivial insula-

tor involve vortex proliferation and are distinguished by

sgn(v). For v = 0, qualitatively different behavior is ex-
pected reflecting the delocalization of the WTI or TCI

surfaces. For v = 0 the target space of the NLσM effec-
tively lifts to its double cover, G̃/H̃ = SO(2N)/SO(N)×
SO(N), for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃
have identical local structure, their perturbative β func-

tions will be identical. It is useful to first consider this

behavior as a function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even for v = 0.

This phase is “less disordered” than the v �= 0 disordered

phase, though. The confinement of Z2 vortices leads to

a topological order similar to a Z2 spin liquid[31]. This

can be seen by placing the system in a torus: there are

four topologically disconnected sectors corresponding to

the homotopy classes of Q ∈ G/H along the two large

loops. When v is turned on in this disordered phase, the

Z2 vortices immediately condense. The v = 0 line thus

describes a first order transition between the v > 0 and

v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is sta-

ble and describes an ordered phase, which is present even

for d ≤ 2[32]. More importantly, the arguments for the

absence of localization under strong disorder presented

above prove that for v = 0 the NLSM at strong coupling

cannot be in a disordered phase. It is useful to consider

the critical value N = 1 that separates these behaviors.

The theory for N = 1 is simply the XY model, and Q is

fully parameterized by θ in (7). Eq. 3 becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1
, is flat, β(t) = 0 to all orders.

Vortices modify the behavior. For small t, 2π vortices in

θ are bound, and the system flows to a fixed line param-

eterized by t. For t > t∗ = 1/16 vortices unbind at a KT

transition[24] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1 − �, with � � 1. To lowest order in � and v,
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FIG. 1: (a) A 2D TI (m < 0) in region S with boundary C
is surrounded by trivial insulator (m > 0). The sign of Zeff

depends on the number of vortices in S. (b) For m = 0 the
eigenvalues of Heff in (10) exhibit a linear zero crossing, which
leads to a vanishing vortex fugacity.

The symmetry of the WTI under translation by one layer

is described by exp(ipya) = τz. Dimerization of the layers

breaks this translation symmetry, and generates a mass

term mσyτy[19]. This is the only mass that respects TR.

The topologically distinct dimerization patterns are dis-

tinguished by sgn(m). The sign reversal of the Dirac

mass m also describes the low-energy theory of the 2D

transition between a trivial and topological insulator[30].

Eq, 3 should include a sum over vortex configurations

in Q. The vortex fugacity is determined by comparing

(2) in the presence and absence of vortices. Consider the

simplest vortex configuration involving a single retarded

and advanced pair of replicas. This can be expressed in

terms of a one parameter family of Q’s of the form

Q(θ) = 1N−1 ⊕
�

cos θ sin θ
sin θ − cos θ

�
⊕ 1N−1. (7)

A Z2 vortex is then a configuration where θ winds by an

odd multiple of 2π.
The Grassman integral in (2) defines a Pfaffian, so that

the vortex fugacity may be written

v =
Pf[iσyD(Q)]

Pf[iσyD(Q0)]
, (8)

where Q is a vortex configuration, and Q0 = Λ. In the

space of the two nontrivial replicas we have

D(Q) = (H0 − E) + i∆(µz
cos θ + µx

sin θ). (9)

Here µz is a Pauli matrix in the space of the two non-

trivial replicas. To evaluate the Pfaffian, we use a

trick similar to that used by Ryu et al.[9], and compute

(Pf[iσyD])
2
= det[iσyD] = det[µyD]. This is useful be-

cause µyD ≡ Heff
is a Hermitian operator given by

H
eff

= µy
(H0 − E) +∆(µx

cos θ − µz
sin θ), (10)

so the determinant is the product of its real eigenval-

ues. The TR symmetry of the original H0 becomes a

particle-hole symmetry, {Heff ,Ξ} = 0, with Ξ = µyσyK.

Moreover, when m = 0, Heff
decouples into two indepen-

dent Hamiltonians for τz = ±1. Each is identical to a

topological superconductor in class D, with θ playing the

role of the superconducting phase. There are two zero

modes indexed by τz = ±1 bound to the core of a Z2

vortex. For m �= 0, the zero modes couple and split (Fig.

1b). Thus det[µyD] has a second order zero at m = 0,

so Pf[iσyD] has a first order zero, which involves a sign

change as a function of m. This shows that v = 0 for

m = 0, so isolated Z2 vortices are forbidden at the WTI

surface. With multiple vortices the zero modes will split

even for m = 0, leading to a nonzero Pfaffian. However,

since the splitting vanishes exponentially in the separa-

tion, the vortices will be confined by a linear potential.

It is thus clear that the vortex fugacity v is a cru-

cial variable in the NLσM. The TI and trivial insula-

tor involve vortex proliferation and are distinguished by

sgn(v). For v = 0, qualitatively different behavior is ex-
pected reflecting the delocalization of the WTI or TCI

surfaces. For v = 0 the target space of the NLσM effec-
tively lifts to its double cover, G̃/H̃ = SO(2N)/SO(N)×
SO(N), for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃
have identical local structure, their perturbative β func-

tions will be identical. It is useful to first consider this

behavior as a function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even for v = 0.

This phase is “less disordered” than the v �= 0 disordered

phase, though. The confinement of Z2 vortices leads to

a topological order similar to a Z2 spin liquid[31]. This

can be seen by placing the system in a torus: there are

four topologically disconnected sectors corresponding to

the homotopy classes of Q ∈ G/H along the two large

loops. When v is turned on in this disordered phase, the

Z2 vortices immediately condense. The v = 0 line thus

describes a first order transition between the v > 0 and

v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is sta-

ble and describes an ordered phase, which is present even

for d ≤ 2[32]. More importantly, the arguments for the

absence of localization under strong disorder presented

above prove that for v = 0 the NLSM at strong coupling

cannot be in a disordered phase. It is useful to consider

the critical value N = 1 that separates these behaviors.

The theory for N = 1 is simply the XY model, and Q is

fully parameterized by θ in (7). Eq. 3 becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1
, is flat, β(t) = 0 to all orders.

Vortices modify the behavior. For small t, 2π vortices in

θ are bound, and the system flows to a fixed line param-

eterized by t. For t > t∗ = 1/16 vortices unbind at a KT

transition[24] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1 − �, with � � 1. To lowest order in � and v,

Vortex Fugacity: a Sign of Topology

•  m<0 and m>0 are distinct gapped phases
•  m=0 for surface of TCI, protected by mirror symmetry 

Vortex configuration of Q: 

Evaluate Pfaffian:
�

i

�
ξiPf = 

•  spectrum is particle-hole symmetric
•  level crossing in vortex core as m changes sign  

Vortex fugacity v characterizes different phases: 

v<0 for 2D topological insulator v>0 for trivial insulator, 
v=0 at the transition, or for surface of TCI

v>0 v<0
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FIG. 2: (a,c) RG flow diagrams based on (12). The stable

fixed point at (t, v) = (0, 0) is the symplectic metal (SM).

The unstable fixed points at (t∗,±v∗) approach the KT tran-

sition for � = 1 − N � 1 and for N → 0 are identified with

the Anderson transition. (c) includes a third fixed point at

(tm, 0), along with a fixed point at (ts, 0) describing a direct

transition between TI and I. (b) and (d) are phase diagrams

corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but

small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v
2

dv/d� = (2− (8t)
−1

)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t
∗
= 1/16, v

∗
= ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. They describe a transi-

tion between the ordered and disordered phases of the

O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0

we identify these fixed points with the Anderson transi-

tion between the symplectic metal and the localized triv-

ial/topological insulator. Our theory implies that these

two transitions have identical bulk critical behaviors, as

the total number of Z2 vortices in a closed system is al-

ways even and hence their total contribution to the par-

tition function is always positive.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[28]. The small value of t∗ is well within

the range of this perturbation theory. The second or-

der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e
2
/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-

mates in previous model studies, which give σ∗ ∼ 1.4e2/h

and ν ∼ 2.7[16, 33–35], though early work on the metal

to TI transition found ν = 1.6[15]. We suggest two possi-

ble origins of the discrepancy, depending on the behavior

of the N = 0 NLσM at strong coupling, which cannot be

accessed in the present analysis. One possibility is that

for N → 0, β(t) < 0 for all t along the line v = 0. The

corresponding RG flow and phase diagrams are shown

in Fig.2a-b. In this case, the symplectic metal-insulator

transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow

convergence of the � expansion similar to the d = 2 + �
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes

sign at a critical point tm on the line v = 0, as hypoth-

esized in Ref. 8 in a different context. In fact, tm is

present for N = 1 − �. For N = 1, double vortices are

allowed, and will in general have non zero fugacity. The

theory with both single and double vortices can be ana-

lyzed using a dual sine-gordon theory,

S =

�
d
2
r
t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,

v2 becomes relevant at tm = 1/4. When v2 flows to

strong coupling, v = 0 describes a first order transition

similar to the case when N > 1. It is unlikely that this

first order transition persists to N = 0, which is a the-

ory of disordered non-interacting electrons. Instead, the

most likely scenario is a continuous direct transition be-

tween trivial insulator and TI controlled by a strong cou-

pling fixed point ts, as indicated in Fig. 2c-d. In this sce-

nario, while the ultimate critical behavior is controled by

the identical fixed points (t∗,±v∗), finite size crossover

effects associated with tm, ts could obscure the behavior.
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N=1:  xy model

3

FIG. 1: (a) A 2D TI (m < 0) in region S with boundary C
is surrounded by trivial insulator (m > 0). The sign of Zeff

depends on the number of vortices in S. (b) For m = 0 the
eigenvalues of Heff in (10) exhibit a linear zero crossing, which
leads to a vanishing vortex fugacity.

The symmetry of the WTI under translation by one layer

is described by exp(ipya) = τz. Dimerization of the layers

breaks this translation symmetry, and generates a mass

term mσyτy[19]. This is the only mass that respects TR.

The topologically distinct dimerization patterns are dis-

tinguished by sgn(m). The sign reversal of the Dirac

mass m also describes the low-energy theory of the 2D

transition between a trivial and topological insulator[30].

Eq, 3 should include a sum over vortex configurations

in Q. The vortex fugacity is determined by comparing

(2) in the presence and absence of vortices. Consider the

simplest vortex configuration involving a single retarded

and advanced pair of replicas. This can be expressed in

terms of a one parameter family of Q’s of the form

Q(θ) = 1N−1 ⊕
�

cos θ sin θ
sin θ − cos θ

�
⊕ 1N−1. (7)

A Z2 vortex is then a configuration where θ winds by an

odd multiple of 2π.
The Grassman integral in (2) defines a Pfaffian, so that

the vortex fugacity may be written

v =
Pf[iσyD(Q)]

Pf[iσyD(Q0)]
, (8)

where Q is a vortex configuration, and Q0 = Λ. In the

space of the two nontrivial replicas we have

D(Q) = (H0 − E) + i∆(µz
cos θ + µx

sin θ). (9)

Here µz is a Pauli matrix in the space of the two non-

trivial replicas. To evaluate the Pfaffian, we use a

trick similar to that used by Ryu et al.[9], and compute

(Pf[iσyD])
2
= det[iσyD] = det[µyD]. This is useful be-

cause µyD ≡ Heff
is a Hermitian operator given by

H
eff

= µy
(H0 − E) +∆(µx

cos θ − µz
sin θ), (10)

so the determinant is the product of its real eigenval-

ues. The TR symmetry of the original H0 becomes a

particle-hole symmetry, {Heff ,Ξ} = 0, with Ξ = µyσyK.

Moreover, when m = 0, Heff
decouples into two indepen-

dent Hamiltonians for τz = ±1. Each is identical to a

topological superconductor in class D, with θ playing the

role of the superconducting phase. There are two zero

modes indexed by τz = ±1 bound to the core of a Z2

vortex. For m �= 0, the zero modes couple and split (Fig.

1b). Thus det[µyD] has a second order zero at m = 0,

so Pf[iσyD] has a first order zero, which involves a sign

change as a function of m. This shows that v = 0 for

m = 0, so isolated Z2 vortices are forbidden at the WTI

surface. With multiple vortices the zero modes will split

even for m = 0, leading to a nonzero Pfaffian. However,

since the splitting vanishes exponentially in the separa-

tion, the vortices will be confined by a linear potential.

It is thus clear that the vortex fugacity v is a cru-

cial variable in the NLσM. The TI and trivial insula-

tor involve vortex proliferation and are distinguished by

sgn(v). For v = 0, qualitatively different behavior is ex-
pected reflecting the delocalization of the WTI or TCI

surfaces. For v = 0 the target space of the NLσM effec-
tively lifts to its double cover, G̃/H̃ = SO(2N)/SO(N)×
SO(N), for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃
have identical local structure, their perturbative β func-

tions will be identical. It is useful to first consider this

behavior as a function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even for v = 0.

This phase is “less disordered” than the v �= 0 disordered

phase, though. The confinement of Z2 vortices leads to

a topological order similar to a Z2 spin liquid[31]. This

can be seen by placing the system in a torus: there are

four topologically disconnected sectors corresponding to

the homotopy classes of Q ∈ G/H along the two large

loops. When v is turned on in this disordered phase, the

Z2 vortices immediately condense. The v = 0 line thus

describes a first order transition between the v > 0 and

v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is sta-

ble and describes an ordered phase, which is present even

for d ≤ 2[32]. More importantly, the arguments for the

absence of localization under strong disorder presented

above prove that for v = 0 the NLSM at strong coupling

cannot be in a disordered phase. It is useful to consider

the critical value N = 1 that separates these behaviors.

The theory for N = 1 is simply the XY model, and Q is

fully parameterized by θ in (7). Eq. 3 becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1
, is flat, β(t) = 0 to all orders.

Vortices modify the behavior. For small t, 2π vortices in

θ are bound, and the system flows to a fixed line param-

eterized by t. For t > t∗ = 1/16 vortices unbind at a KT

transition[24] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1 − �, with � � 1. To lowest order in � and v,

•   β(t) = 0 
•   vortices become relevant at t=1/16 (KT transition) 

N=1-ε:  ε expansion towards replica limit (ε=1) 
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FIG. 2: (a,c) RG flow diagrams based on (12). The stable

fixed point at (t, v) = (0, 0) is the symplectic metal (SM).

The unstable fixed points at (t∗,±v∗) approach the KT tran-

sition for � = 1 − N � 1 and for N → 0 are identified with

the Anderson transition. (c) includes a third fixed point at

(tm, 0), along with a fixed point at (ts, 0) describing a direct

transition between TI and I. (b) and (d) are phase diagrams

corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but

small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v
2

dv/d� = (2− (8t)
−1

)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t
∗
= 1/16, v

∗
= ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. They describe a transi-

tion between the ordered and disordered phases of the

O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0

we identify these fixed points with the Anderson transi-

tion between the symplectic metal and the localized triv-

ial/topological insulator. Our theory implies that these

two transitions have identical bulk critical behaviors, as

the total number of Z2 vortices in a closed system is al-

ways even and hence their total contribution to the par-

tition function is always positive.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[28]. The small value of t∗ is well within

the range of this perturbation theory. The second or-

der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e
2
/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-

mates in previous model studies, which give σ∗ ∼ 1.4e2/h

and ν ∼ 2.7[16, 33–35], though early work on the metal

to TI transition found ν = 1.6[15]. We suggest two possi-

ble origins of the discrepancy, depending on the behavior

of the N = 0 NLσM at strong coupling, which cannot be

accessed in the present analysis. One possibility is that

for N → 0, β(t) < 0 for all t along the line v = 0. The

corresponding RG flow and phase diagrams are shown

in Fig.2a-b. In this case, the symplectic metal-insulator

transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow

convergence of the � expansion similar to the d = 2 + �
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes

sign at a critical point tm on the line v = 0, as hypoth-

esized in Ref. 8 in a different context. In fact, tm is

present for N = 1 − �. For N = 1, double vortices are

allowed, and will in general have non zero fugacity. The

theory with both single and double vortices can be ana-

lyzed using a dual sine-gordon theory,

S =

�
d
2
r
t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,

v2 becomes relevant at tm = 1/4. When v2 flows to

strong coupling, v = 0 describes a first order transition

similar to the case when N > 1. It is unlikely that this

first order transition persists to N = 0, which is a the-

ory of disordered non-interacting electrons. Instead, the

most likely scenario is a continuous direct transition be-

tween trivial insulator and TI controlled by a strong cou-

pling fixed point ts, as indicated in Fig. 2c-d. In this sce-

nario, while the ultimate critical behavior is controled by

the identical fixed points (t∗,±v∗), finite size crossover

effects associated with tm, ts could obscure the behavior.

We thank Anton Akhmerov, Jens Bardarson and Ady

Stern for interesting discussions. C.L.K was supported

by NSF grant DMR 0906175. L.F. was supported by

startup funds from MIT.

[1] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

[2] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

[3] C.L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[5] X.L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).

[6] A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).

β̃(t) = t2 + ...

•  small t, v flows to 0:  symplectic metal

•  two new fixed points at v≠0: 
    transition from metal to trivial/topological insulator 
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for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃ have iden-

tical local structure, their perturbative β functions will

be identical. It is useful to consider this behavior as a

function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even in the ab-

sence of vortices. This phase is “less disordered” than the

disordered phase with v �= 0, though. The confinement

of Z2 vortices leads to a topological order similar to a Z2

spin liquid[26]. This can be clearly seen by placing the

system in a torus: there are four topologically discon-

nected sectors corresponding to the homotopy classes of

Q ∈ G/H along the two large loops. When v is turned

on in this disordered phase, the Z2 vortices immediately

condense. The v = 0 line thus describes a first order

transition between the v > 0 and v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is

stable, and we know from the arguments presented above

that even at strong coupling there must be delocalization

for v = 0. It is useful to consider the critical value N = 1

that separates these behaviors. The theory for N = 1 is

simply the XY model, and Q is fully parameterized by θ
in (7). The action (3) becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1, is flat, β(t) = 0 to all orders,

but vortices modify the behavior. For small t, 2π vor-

tices in θ are bound, and the system flows to a fixed line

parameterized by t. For t > t∗ = 1/16 vortices unbind at

a KT transition[20] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1− �, with � � 1. To lowest order in �, the KT

flow equations to lowest order in v are modified by the

nonzero (but small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v2

dv/d� = (2− (8t)−1
)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t∗ = 1/16, v∗ = ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. These fixed points describe

a transition between the ordered and disordered phases

of the O(2N)/O(N) × O(N) NLσM for N < 1. For

N → 0 we identify these fixed points with the Anderson

transition between the symplectic metal and the localized

trivial/topological insulator. These two metal-insulator

FIG. 2: (a) RG flow diagram based on (12). The stable fixed
point at (t, v) = (0, 0) is the symplectic metal (SM). The two
unstable fixed points at (t∗,±v∗) approach the KT transition
for � = 1 − N � 1 and for N → 0 are identified with the
Anderson transition. (c) is a flow diagram which includes an
third fixed point at (tm, 0), along with a fixed point at (ts, 0)
which describes a direct transition between TI and I. (b) and
(d) are phase diagrams corresponding to (a) and (c).

transitions have identical bulk critical behaviors, which

is expected from the fact that the total number of Z2

vortices in a closed system is always even.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[23]. The small value of t∗ is well within

the range of this perturbation theory. The second order

term gives only 6% correction and the higher terms are

even smaller. Using the first term from Eq. 4 we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e2/h, ν ∼ 1.4. (14)

These values are rather different from numerical es-

timates of critical exponents in previous model studies,

which give σ∗ ∼ 1.4e2/h and ν ∼ 2.7[27–29]. We sug-

gest two possible origins of the discrepancy, depending

on the behavior of the N = 0 NLσM at strong coupling,

which cannot be accessed in the present analysis. One

possibility is that for N → 0, β(t) < 0 for all t along the

line v = 0. The corresponding RG flow and phase dia-

grams are shown in Fig.2a-b. In this case, the symplectic

metal-insulator transition is governed by the fixed point

(t∗, v∗). The discrepancy in exponents is then most likely

due to the slow convergence of the � expansion similar to

the d = 2 + � expansion for the 3D Anderson transition.

M-I & M-TI transition 
fixed points
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FIG. 2: (a,c) RG flow diagrams based on (12). The stable

fixed point at (t, v) = (0, 0) is the symplectic metal (SM).

The unstable fixed points at (t∗,±v∗) approach the KT tran-

sition for � = 1 − N � 1 and for N → 0 are identified with

the Anderson transition. (c) includes a third fixed point at

(tm, 0), along with a fixed point at (ts, 0) describing a direct

transition between TI and I. (b) and (d) are phase diagrams

corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but

small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v
2

dv/d� = (2− (8t)
−1

)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t
∗
= 1/16, v

∗
= ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. They describe a transi-

tion between the ordered and disordered phases of the

O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0

we identify these fixed points with the Anderson transi-

tion between the symplectic metal and the localized triv-

ial/topological insulator. Our theory implies that these

two transitions have identical bulk critical behaviors, as

the total number of Z2 vortices in a closed system is al-

ways even and hence their total contribution to the par-

tition function is always positive.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[28]. The small value of t∗ is well within

the range of this perturbation theory. The second or-

der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e
2
/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-

mates in previous model studies, which give σ∗ ∼ 1.4e2/h

and ν ∼ 2.7[16, 33–35], though early work on the metal

to TI transition found ν = 1.6[15]. We suggest two possi-

ble origins of the discrepancy, depending on the behavior

of the N = 0 NLσM at strong coupling, which cannot be

accessed in the present analysis. One possibility is that

for N → 0, β(t) < 0 for all t along the line v = 0. The

corresponding RG flow and phase diagrams are shown

in Fig.2a-b. In this case, the symplectic metal-insulator

transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow

convergence of the � expansion similar to the d = 2 + �
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes

sign at a critical point tm on the line v = 0, as hypoth-

esized in Ref. 8 in a different context. In fact, tm is

present for N = 1 − �. For N = 1, double vortices are

allowed, and will in general have non zero fugacity. The

theory with both single and double vortices can be ana-

lyzed using a dual sine-gordon theory,

S =

�
d
2
r
t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,

v2 becomes relevant at tm = 1/4. When v2 flows to

strong coupling, v = 0 describes a first order transition

similar to the case when N > 1. It is unlikely that this

first order transition persists to N = 0, which is a the-

ory of disordered non-interacting electrons. Instead, the

most likely scenario is a continuous direct transition be-

tween trivial insulator and TI controlled by a strong cou-

pling fixed point ts, as indicated in Fig. 2c-d. In this sce-

nario, while the ultimate critical behavior is controled by

the identical fixed points (t∗,±v∗), finite size crossover

effects associated with tm, ts could obscure the behavior.
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for which π1(G̃/H̃) = 0. Since G/H and G̃/H̃ have iden-

tical local structure, their perturbative β functions will

be identical. It is useful to consider this behavior as a

function of the replica number, N .

For N > 1, β(t) > 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even in the ab-

sence of vortices. This phase is “less disordered” than the

disordered phase with v �= 0, though. The confinement

of Z2 vortices leads to a topological order similar to a Z2

spin liquid[26]. This can be clearly seen by placing the

system in a torus: there are four topologically discon-

nected sectors corresponding to the homotopy classes of

Q ∈ G/H along the two large loops. When v is turned

on in this disordered phase, the Z2 vortices immediately

condense. The v = 0 line thus describes a first order

transition between the v > 0 and v < 0 phases.

The behavior for N → 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is

stable, and we know from the arguments presented above

that even at strong coupling there must be delocalization

for v = 0. It is useful to consider the critical value N = 1

that separates these behaviors. The theory for N = 1 is

simply the XY model, and Q is fully parameterized by θ
in (7). The action (3) becomes

SN=1 =
1

16πt

�
d2r(∇θ)2. (11)

Since the target space, S1, is flat, β(t) = 0 to all orders,

but vortices modify the behavior. For small t, 2π vor-

tices in θ are bound, and the system flows to a fixed line

parameterized by t. For t > t∗ = 1/16 vortices unbind at

a KT transition[20] to a disordered phase.

We now consider the behavior for N < 1, treating N
as a continuous variable. Since Z2 vortices are present

for all N , it is reasonable to examine their effects as a

function on N . We find that the theory can be controlled

for N = 1− �, with � � 1. To lowest order in �, the KT

flow equations to lowest order in v are modified by the

nonzero (but small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v2

dv/d� = (2− (8t)−1
)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t∗ = 1/16, v∗ = ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. These fixed points describe

a transition between the ordered and disordered phases

of the O(2N)/O(N) × O(N) NLσM for N < 1. For

N → 0 we identify these fixed points with the Anderson

transition between the symplectic metal and the localized

trivial/topological insulator. These two metal-insulator

FIG. 2: (a) RG flow diagram based on (12). The stable fixed
point at (t, v) = (0, 0) is the symplectic metal (SM). The two
unstable fixed points at (t∗,±v∗) approach the KT transition
for � = 1 − N � 1 and for N → 0 are identified with the
Anderson transition. (c) is a flow diagram which includes an
third fixed point at (tm, 0), along with a fixed point at (ts, 0)
which describes a direct transition between TI and I. (b) and
(d) are phase diagrams corresponding to (a) and (c).

transitions have identical bulk critical behaviors, which

is expected from the fact that the total number of Z2

vortices in a closed system is always even.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[23]. The small value of t∗ is well within

the range of this perturbation theory. The second order

term gives only 6% correction and the higher terms are

even smaller. Using the first term from Eq. 4 we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e2/h, ν ∼ 1.4. (14)

These values are rather different from numerical es-

timates of critical exponents in previous model studies,

which give σ∗ ∼ 1.4e2/h and ν ∼ 2.7[27–29]. We sug-

gest two possible origins of the discrepancy, depending

on the behavior of the N = 0 NLσM at strong coupling,

which cannot be accessed in the present analysis. One

possibility is that for N → 0, β(t) < 0 for all t along the

line v = 0. The corresponding RG flow and phase dia-

grams are shown in Fig.2a-b. In this case, the symplectic

metal-insulator transition is governed by the fixed point

(t∗, v∗). The discrepancy in exponents is then most likely

due to the slow convergence of the � expansion similar to

the d = 2 + � expansion for the 3D Anderson transition.
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FIG. 2: (a) RG flow diagram based on (12). The stable fixed
point at (t, v) = (0, 0) is the symplectic metal (SM). The two
unstable fixed points at (t∗,±v∗) approach the KT transition
for � = 1 − N � 1 and for N → 0 are identified with the
Anderson transition. (c) is a flow diagram which includes an
third fixed point at (tm, 0), along with a fixed point at (ts, 0)
which describes a direct transition between TI and I. (b) and
(d) are phase diagrams corresponding to (a) and (c).

transitions have identical bulk critical behaviors, which

is expected from the fact that the total number of Z2

vortices in a closed system is always even.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[23]. The small value of t∗ is well within

the range of this perturbation theory. The second order

term gives only 6% correction and the higher terms are

even smaller. Using the first term from Eq. 4 we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e2/h, ν ∼ 1.4. (14)

These values are rather different from numerical es-

timates of critical exponents in previous model studies,

which give σ∗ ∼ 1.4e2/h and ν ∼ 2.7[27–29]. We sug-

gest two possible origins of the discrepancy, depending

on the behavior of the N = 0 NLσM at strong coupling,

which cannot be accessed in the present analysis. One

possibility is that for N → 0, β(t) < 0 for all t along the

line v = 0. The corresponding RG flow and phase dia-

grams are shown in Fig.2a-b. In this case, the symplectic

metal-insulator transition is governed by the fixed point

(t∗, v∗). The discrepancy in exponents is then most likely

due to the slow convergence of the � expansion similar to

the d = 2 + � expansion for the 3D Anderson transition.

(b)
critical metal with
universal conductivity

Delocalization of TCI surface states implies: 
•  vortex proliferation is the sole mechanism of localization 
•  NLsM in the replica limit cannot be disordered at v=0.
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FIG. 26 Two-parameter flow diagram of the Pruisken σ-
model, as first proposed in (Khmelnitskii, 1984).

rough predictions for parameters of the critical behav-
ior (Pruisken and Burmistrov, 2005). This is because a
controllable calculation in this framework can only be
performed at weak coupling, σxx ! 1, while the fixed
points are at strong coupling, σxx ∼ 1. In this situation,
numerical simulations are particularly important; their
results will be reviewed in Sec. VI.C.5–VI.C.7.

2. Further analytical approaches

A great deal of effort has been invested by many re-
searchers in order to attack the problem of the QH transi-
tion from the analytical side. In addition to the Pruisken
model, Sec. VI.C.1, several other analytical frameworks
have been used. While this activity has not led to an ul-
timate success in the quantitative description of critical
behavior, a variety of important connections between the
models has been established. In particular, it has been
shown that the σ-model (6.7) is also obtained as a contin-
uum limit of the Chalker-Coddington network described
in Sec.VI.C.4 (Zirnbauer, 1997). Further, either of these
two models can be mapped onto a quantum antiferromag-
netic superspin chain (Kondev and Marston, 1997; Lee,
1994; Marston and Tsai, 1999; Zirnbauer, 1994, 1997).
Unfortunately, attempts to find an integrable deforma-
tion of this spin chain have failed. A further approach to
QH criticality is based on the model of Dirac fermions;
it will be reviewed in Sec. VI.G.2.

3. Quest for conformal field theory

Another line of activity is the search for a conformal
field theory of the QH transition. The guiding principle is
related to the fact that a relative of the Pruisken’s model,
the O(3) σ-model with θ = π topological term, describ-
ing a 1D quantum antiferromagnet with half-integer spin,
flows under renormalization to a SU(2) WZW model.
This means that the target space – which is the 2-sphere
O(3)/O(2) = SU(2)/U(1)=S2 for the O(3) σ-model –

is promoted to the group SU(2) (isomorphic to the 3-
sphere S3) at criticality. The idea is thus to identify
the corresponding critical theory for the QH problem,
with a hope that it is of the WZW type and is solv-
able by the methods of the conformal field theory. Such
a proposal was made in Zirnbauer (1999), along with
a detailed analysis of constraints on the sought fixed-
point theory. The target space of the theory conjec-
tured by Zirnbauer is a real form of the complex super-
group PSL(2|2). Its base MF × MB is a product of
the 3-sphere MF = SU(2) = S3 and the 3-hyperboloid
SL(2, )/SU(2) = H3. A model of the same type was also
proposed in (Bhaseen et al., 2000) and most recently in
(Tsvelik, 2007). The proposed theories have the form of
the WZW model, see Sec. VI.A.5,

S[g] =
1

8πt

∫

d2xStr∂µg−1∂µg + iSWZ[g], (6.8)

where iSWZ is the WZ term (6.2). The peculiarity of the
WZW models on the considered manifold is that they
are critical at any value of the coupling constant t and
level k ∈ . While (Zirnbauer, 1999) argues for k =
1, (Bhaseen et al., 2000) considers the model with Kac-
Moody symmetry, k = 1/t. The later condition restricts
1/t to be integer but facilitates the analysis of the model.
Very recently, it was proposed (Tsvelik, 2007) that the
later model with k = 8 may be the required fixed-point
theory.

Both variants of the theory make a prediction for
the statistics of critical eigenfunctions. Specifically, it
is found that the multifractality spectrum is exactly
parabolic,

∆q = γq(1 − q) ; (6.9)

f(α) = 2 − (α − α0)
2/4(α0 − 2) ; α0 = 2 + γ , (6.10)

with α0 − 2 = 4t in the case of (Zirnbauer, 1999) and
α0−2 = 2t for (Bhaseen et al., 2000). This prediction of
parabolicity of ∆q and f(α) indeed agrees with numerical
simulations, Sec. VI.C.7, supporting this type of models.
However, many questions related to the above conjec-
tures remain open. In particular, if there is a whole line
of fixed points (parametrized by t), then is there univer-
sality at the QH transition? If yes, how is it established?
From the numerical point of view, there is no indication
of non-universality at present.

4. Chalker-Coddington network

The Chalker-Coddington network (CCN) model was
introduced in Chalker and Coddington (1988) as an ef-
fective description of the IQHE in a smooth random po-
tential. In brief, the model is motivated in the following
way. One considers electrons in a Landau level broad-
ened by a potential with large correlation length. The
electrons then drift along equipotential lines and tun-
nel between the lines near saddle points of the random

4

FIG. 2: (a,c) RG flow diagrams based on (12). The stable

fixed point at (t, v) = (0, 0) is the symplectic metal (SM).

The unstable fixed points at (t∗,±v∗) approach the KT tran-

sition for � = 1 − N � 1 and for N → 0 are identified with

the Anderson transition. (c) includes a third fixed point at

(tm, 0), along with a fixed point at (ts, 0) describing a direct

transition between TI and I. (b) and (d) are phase diagrams

corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but

small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v
2

dv/d� = (2− (8t)
−1

)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t
∗
= 1/16, v

∗
= ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. They describe a transi-

tion between the ordered and disordered phases of the

O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0

we identify these fixed points with the Anderson transi-

tion between the symplectic metal and the localized triv-

ial/topological insulator. Our theory implies that these

two transitions have identical bulk critical behaviors, as

the total number of Z2 vortices in a closed system is al-

ways even and hence their total contribution to the par-

tition function is always positive.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[28]. The small value of t∗ is well within

the range of this perturbation theory. The second or-

der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e
2
/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-

mates in previous model studies, which give σ∗ ∼ 1.4e2/h

and ν ∼ 2.7[16, 33–35], though early work on the metal

to TI transition found ν = 1.6[15]. We suggest two possi-

ble origins of the discrepancy, depending on the behavior

of the N = 0 NLσM at strong coupling, which cannot be

accessed in the present analysis. One possibility is that

for N → 0, β(t) < 0 for all t along the line v = 0. The

corresponding RG flow and phase diagrams are shown

in Fig.2a-b. In this case, the symplectic metal-insulator

transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow

convergence of the � expansion similar to the d = 2 + �
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes

sign at a critical point tm on the line v = 0, as hypoth-

esized in Ref. 8 in a different context. In fact, tm is

present for N = 1 − �. For N = 1, double vortices are

allowed, and will in general have non zero fugacity. The

theory with both single and double vortices can be ana-

lyzed using a dual sine-gordon theory,

S =

�
d
2
r
t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,

v2 becomes relevant at tm = 1/4. When v2 flows to

strong coupling, v = 0 describes a first order transition

similar to the case when N > 1. It is unlikely that this

first order transition persists to N = 0, which is a the-

ory of disordered non-interacting electrons. Instead, the

most likely scenario is a continuous direct transition be-

tween trivial insulator and TI controlled by a strong cou-

pling fixed point ts, as indicated in Fig. 2c-d. In this sce-

nario, while the ultimate critical behavior is controled by

the identical fixed points (t∗,±v∗), finite size crossover

effects associated with tm, ts could obscure the behavior.
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FIG. 26 Two-parameter flow diagram of the Pruisken σ-
model, as first proposed in (Khmelnitskii, 1984).
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performed at weak coupling, σxx ! 1, while the fixed
points are at strong coupling, σxx ∼ 1. In this situation,
numerical simulations are particularly important; their
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the corresponding critical theory for the QH problem,
with a hope that it is of the WZW type and is solv-
able by the methods of the conformal field theory. Such
a proposal was made in Zirnbauer (1999), along with
a detailed analysis of constraints on the sought fixed-
point theory. The target space of the theory conjec-
tured by Zirnbauer is a real form of the complex super-
group PSL(2|2). Its base MF × MB is a product of
the 3-sphere MF = SU(2) = S3 and the 3-hyperboloid
SL(2, )/SU(2) = H3. A model of the same type was also
proposed in (Bhaseen et al., 2000) and most recently in
(Tsvelik, 2007). The proposed theories have the form of
the WZW model, see Sec. VI.A.5,

S[g] =
1

8πt

∫

d2xStr∂µg−1∂µg + iSWZ[g], (6.8)

where iSWZ is the WZ term (6.2). The peculiarity of the
WZW models on the considered manifold is that they
are critical at any value of the coupling constant t and
level k ∈ . While (Zirnbauer, 1999) argues for k =
1, (Bhaseen et al., 2000) considers the model with Kac-
Moody symmetry, k = 1/t. The later condition restricts
1/t to be integer but facilitates the analysis of the model.
Very recently, it was proposed (Tsvelik, 2007) that the
later model with k = 8 may be the required fixed-point
theory.

Both variants of the theory make a prediction for
the statistics of critical eigenfunctions. Specifically, it
is found that the multifractality spectrum is exactly
parabolic,

∆q = γq(1 − q) ; (6.9)

f(α) = 2 − (α − α0)
2/4(α0 − 2) ; α0 = 2 + γ , (6.10)

with α0 − 2 = 4t in the case of (Zirnbauer, 1999) and
α0−2 = 2t for (Bhaseen et al., 2000). This prediction of
parabolicity of ∆q and f(α) indeed agrees with numerical
simulations, Sec. VI.C.7, supporting this type of models.
However, many questions related to the above conjec-
tures remain open. In particular, if there is a whole line
of fixed points (parametrized by t), then is there univer-
sality at the QH transition? If yes, how is it established?
From the numerical point of view, there is no indication
of non-universality at present.

4. Chalker-Coddington network

The Chalker-Coddington network (CCN) model was
introduced in Chalker and Coddington (1988) as an ef-
fective description of the IQHE in a smooth random po-
tential. In brief, the model is motivated in the following
way. One considers electrons in a Landau level broad-
ened by a potential with large correlation length. The
electrons then drift along equipotential lines and tun-
nel between the lines near saddle points of the random
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FIG. 2: (a,c) RG flow diagrams based on (12). The stable

fixed point at (t, v) = (0, 0) is the symplectic metal (SM).

The unstable fixed points at (t∗,±v∗) approach the KT tran-

sition for � = 1 − N � 1 and for N → 0 are identified with

the Anderson transition. (c) includes a third fixed point at

(tm, 0), along with a fixed point at (ts, 0) describing a direct

transition between TI and I. (b) and (d) are phase diagrams

corresponding to (a) and (c).

the KT flow equations are modified by the nonzero (but

small) β(t) ≡ (N − 1)β̃(t),

dt/d� = −�β̃(t) + v
2

dv/d� = (2− (8t)
−1

)v. (12)

To this order, we are free to set the coefficient of v2 to

one by rescaling v. The RG flows are shown in Fig. 2.

There are two fixed points at

t
∗
= 1/16, v

∗
= ±[�β̃(t∗)]1/2 (13)

For small �, these fixed points are within perturbative

range of the KT fixed point. They describe a transi-

tion between the ordered and disordered phases of the

O(2N)/O(N) × O(N) NLσM for N < 1. For N → 0

we identify these fixed points with the Anderson transi-

tion between the symplectic metal and the localized triv-

ial/topological insulator. Our theory implies that these

two transitions have identical bulk critical behaviors, as

the total number of Z2 vortices in a closed system is al-

ways even and hence their total contribution to the par-

tition function is always positive.

By expanding (12) about the fixed point, we can iden-

tify the critical conductivity and the correlation length

exponent associated with the symplectic Anderson tran-

sition. To lowest order in � we find σ∗ = (2πt∗)−1e2/h =

(8/π)e2/h, and ν = 2t∗/(�β̃(t∗))1/2. While β̃(t∗) is not

known exactly, β(t) has been computed perturbatively

up to order t5[28]. The small value of t∗ is well within

the range of this perturbation theory. The second or-

der term gives only 6% correction and the higher terms

are even smaller. Using the first term from (4) we find

ν = (2/�)1/2. Extrapolating to � = 1 gives

σ∗ ∼ 2.5e
2
/h, ν ∼ 1.4. (14)

These values are rather different from numerical esti-

mates in previous model studies, which give σ∗ ∼ 1.4e2/h

and ν ∼ 2.7[16, 33–35], though early work on the metal

to TI transition found ν = 1.6[15]. We suggest two possi-

ble origins of the discrepancy, depending on the behavior

of the N = 0 NLσM at strong coupling, which cannot be

accessed in the present analysis. One possibility is that

for N → 0, β(t) < 0 for all t along the line v = 0. The

corresponding RG flow and phase diagrams are shown

in Fig.2a-b. In this case, the symplectic metal-insulator

transition is governed by the fixed point (t∗, v∗). The dis-
crepancy in exponents is then most likely due to the slow

convergence of the � expansion similar to the d = 2 + �
expansion for the 3D Anderson transition.

A second possibility is that for N → 0, β(t) changes

sign at a critical point tm on the line v = 0, as hypoth-

esized in Ref. 8 in a different context. In fact, tm is

present for N = 1 − �. For N = 1, double vortices are

allowed, and will in general have non zero fugacity. The

theory with both single and double vortices can be ana-

lyzed using a dual sine-gordon theory,

S =

�
d
2
r
t

π
(∇ϕ)2 + v cosϕ+ v2 cos 2ϕ, (15)

where v2 is the fugacity for double vortices. When v = 0,

v2 becomes relevant at tm = 1/4. When v2 flows to

strong coupling, v = 0 describes a first order transition

similar to the case when N > 1. It is unlikely that this

first order transition persists to N = 0, which is a the-

ory of disordered non-interacting electrons. Instead, the

most likely scenario is a continuous direct transition be-

tween trivial insulator and TI controlled by a strong cou-

pling fixed point ts, as indicated in Fig. 2c-d. In this sce-

nario, while the ultimate critical behavior is controled by

the identical fixed points (t∗,±v∗), finite size crossover

effects associated with tm, ts could obscure the behavior.
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