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Simple View of Solids

* alocal perspective based on orbitals and bonds

Graphite Diamond NaCl

C: 2s'2p3 => sp?2+ p,

Na(3s')+Cl(3p°) => Na*CI-

e empirical relation between structure and property

diamond = silicon = germanium # graphite; NaCl = KCI
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Band Theory of Solids

e electron in solids forms itinerant Bloch wave in periodic potential

e band insulators: a finite energy gap between occupied and empty states

silicon

h(r) = e Tuy(r)

K : crystal momentum

Uk: wavefunction within a unit cell

H(k) = (P — hk) - U(F)

2m

H(k)uk(r) — Ekuk(r)
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The Same or Not The Same

Band theory: a global structure Orbital: local approach

Wannierization /\
/\/\/\/\/\ > © o /o\ o o

Yi(r) = > ™ Rig(r)

J
$1(r1)  ¢2(r1) ...
Det | ¢1(r2) ¢2(r2) ...

77bl-c1(7“1) ka(Tl)
Det ( Uiy (r2) Y, (12) ... )

For most solids, locality is restored in band theory by transforming Bloch waves
to Wannier functions, the analog of atomic orbitals.
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The Same or Not The Same: Question of Topology

Topology: property of a manifold that is insensitive to smooth deformations.

w#(.\; =
2 -

(g=1) (9=0)

Example: genus (g) is an integer topological invariant of 2D surfaces.

Topology of electronic solids:

Question: are all gapped insulators adiabatically connected?

To answer this question requires understanding topology of occupied wavefunctions
uk(r) in the Brillouin zone, which form a manifold in Hilbert space.
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Quantum Hall Effect and Topological States of Matter

Quantum Hall state

QO Q¢ I
oJRoXe

OV VYV VY

Hall conductivity is quantized when chemical potential lies within the gap.

ny=N e?/h : only a thermodynamic principle can explain this accuracy.
(Laughlin)

Hall conductivity is a topological invariant of ground state wavefunction.
(TKNN, 1982)

(
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Topology and Modern Band Theory

Global structure of band theory has more to offer:

Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”

(Haldane, 1987)

Chern insulator: topological state of matter

* topologically distinct from conventional insulators
* nontrivial band carries Chern number

e experimental observation (Chang et al, 2013)

Breakdown of local approach: no localized Wannier function
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Edge States: Consequence of Topology

Change of topological invariant is accompanied by gap-closing.

Quantum Hall state

Q@ Q Qe
Q Q @

N YV Y Y

Quantum Hall edge states:

* onhe-way moving
e chiral anomaly

e cannot be realized in any 1D wire.
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Topological Insulators
topology meets symmetry

s E

Kramers
A 0 Uk  degeneracy

Topological insulator

* topological distinction requires time-reversal symmetry
* helical surface states with odd # of Dirac points Kane & Hasan, RMP 10
* time-reversal anomaly: avoids fermion doubling Qi & Zhang, RMP 11
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Z, Topological Invariant & Parity Criterion

Explicit formula for topological invariant: (Kane & Mele; LF & Kane; Moore & Balents ...)

H \/det =41 Wpp = (Um (k)|O|u,(—k))
k2t
/l / e computation requires a smooth gauge

e ab-initio implementation

> Sol n & Vanderbilt, Dai et al
: I t’ . t [
I(x ./. ( O Uya ov d ol I )

Parity criterion: LF & Kane, PRB 76, 045302 (2007)

* choose a canonical gauge for inversion-symmetric insulators:
u;(k)) = €;;E|u;(k)) == PO

e fixed-point formula:

— H H Eon(I';)  (Zzinvariant = parity of occupied bands)
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Origin of Topological Insulators: Parity Inversion

Gap-closing transition is generically described by four-component Dirac theory

P T

H = wT(—iUFaijw —+ mFO)w T

A m(x)

* only one mass term is allowed in P and T symmetric materials
* parity operator = Dirac mass; parity inversion = mass reversal
* Tl surface = massless domain wall fermion

Vg (,y) ol o= [ dy'm(y")dy’ /vr
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From Parity Criterion to Material Prediction

Bi-Sb alloy

Antimony

\
A /\/\

|

e T
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Prediction: Bi-Sb, strained HgTe and etc are 3D topological insulators.

T

/o class

(1;111)

(LF & Kane 07)
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From Parity Criterion to Material Prediction

Bi-Sb alloy Antimony
1 I I A D B
3L|Ls Lo Ls Lo Ls| +
1Egep 3X|Xa Xs Xs Xg Xo| -
L Tl | e NI TN e
S N
/\ /\ /o class (I:111)
T L

Prediction: Bi-Sb, strained HgTe and etc are 3D topological insulators. (LF & Kane 07)

Bi-Sb (111) surface

0.1 4

(e
0'.0 O'.2 O'.4 0'.6 0'.8 1'.0
r “ky(K) M

(Hsieh et al 08)

0.1 4
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From Parity Criterion to Material Prediction

Antimony

Bi-Sb alloy
A /A A
T L

1501 1 Ol W el il

b b 45

SL|Ls Lo Ls Lo Ls| +

SXN|XNe Ao Xo Xo Xo| -

{

I / l O ’l'(i‘ 'l'l) / _‘)‘ l 15

/o class (1:111)

Prediction: Bi-Sb, strained HgTe and etc are 3D topological insulators. (LF & Kane 07)

Bi-Sb (111) surface

0.1 4

a 'I|‘| |‘||'
1 3 4,5 H

>
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m 00 '
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(e
0'.0 O'.2 O'.4 0'.6 0'.8 1'.0

r “ky(K) M
(Hsieh et al 08)

Bi>Tes (111) surface

(expt: Chen et al 09;
theory: Zhang et al 09)
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Topology meets Crystallography

Crystal symmetry (point group) is a defining property of periodic solids.

Ei

w .

Question: for a given crystal symmetry, are there topologically distinct
types of energy bands with the same symmetry labels?

e

e.g., can s- and p-orbitals in diamond lattice generate a band structure
different from silicon”?

Beyond structure-property relation?
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Topological Crystalline Insulators

Proof of principle: LF, PRL 106, 106802 (2011).

a model of pxand py orbitals in tetragonal lattice with C4 symmetry

X X

04
y 7
- 4 = ;;’/‘é;'/;//j/ 7 ///1 74

* trivial phase = occupied states on a given sublattice
* a nontrivial phase: characterized by a new Z; invariant (orientability)
* protected metallic states on symmetry-preserving surfaces

=> proves the existence of topological crystalline insulators
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Prediction: Topological Crystalline Insulators in
the SnTe Material Class

Timothy Hsieh, Lin, Liu, Duan,

Hyp =mY (<1) Y cly (1) ¢ (r)
] r,o

Xt Y, €l (0) - dpy dyp e (K) +hc.

ij (er)o
+217L] Z c}a(r)xc]ﬁ(r) Sop
j  nop

e |V-VI rocksalt semiconductors:
SnTe, PbTe, PbSe

 TCl phase in SnTe protected by
(110) mirror symmetry

Bansil & LF, Nature Communications, 2012
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Band Inversion between SnTe and PbTe

Band gap of Pb1xSnxTe: (Dimmock, Melngailis & Strauss, 1966)

SnTe PbTe
band gap: 0.18eV 0.29eV

\/ \/
N o I\

<>

e even number of band inversion at four L points

e neither SnTe nor PbTe is topological insulator (LF & Kane, PRB 07)
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Origin of Band Inversion

Energy level diagram at L.

- N r N
“normal” “inverted”

Px,y.z
Sn or Pb: — < o

— |+ >< -
/ : u
Te: - — Dz

Pryz N Eg>0 Eg<0

px,y \ J g J

(i) on-site energy + p-orbital hopping (i) spin-orbit coupling

(ionicity) (covalency)

e two types of band ordering at L.:
normal = ionic insulator (trivial); inverted = topologically nontrivial ?

Monday, June 3, 2013



Mirror Symmetry and Topology

When (110) mirror symmetry is present, band inversion cannot be avoided and
iInvolves a change of band topology.

k.p theory: H =mo, +v(kysy, — kysz)ox + vk, 0,

on kx=0 plane: H(ky =0) =mo, —vkys,0, + v, k.0,

e k«=0 plane is invariant under reflection w.r.t (110)

e two sets of bands with opposite mirror eigenvalues
(sx=1 and -1)

e Chern number defined for each band separately
(Teo, LF & Kane, PRB 08)

Band inversion at L1 and L2 changes Chern number of each band by 2.

Monday, June 3, 2013



SnTe versus PbTe

Orbital analysis

" onTe W PbTe \ /
Er

Energy (eV)

L
I
1

15 -

*: weight of
Te orbitals

K L [ K L r
Momentum

e PbTe = ionic insulator Pb%*Te?2-: trivial

e SnTe is inherently inverted: topological crystalline insulator
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Inverted Band in SnTe

Band gap vs. lattice constant:

Gap energy (eV)

L

6.3 6.35 6.4 6.45 6.5 6.55 6.6

o

Lattice constant (A)

L

* inverted gap decreases to zero as lattice constant increases:

agrees with temperature and pressure dependence of band gap in SnTe,
but opposite to PbTe

* similar band inversions occur in Pb1xSnxSe, and under pressure/strain.
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Topological Surface States

Field-theoretic study of domain wall states:

% m(x)
N

. ~/n \

2D massless Dirac fermion mass domain all

SnTe (001) surface:

(c.f. Volkov & Pankratov 1985)

treats four valleys independently,
misses key effects at lattice scale

band inversion at both L1 and L

1“+”1 =?
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SnTe (001) Surface States

field theory without symmetry with mirror symmetry
/
|
: - two new Dirac nodes
I f appe rface
over appmgx ermions gapp x away from X points

* mirror symmetry forbids hybridization along I' X direction:
key to topological crystalline insulator
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Prediction: Topological Surface States

q 0.90 —
0.60 F
0.30 |

S .

@ 0.00

LUl I /. \
-0.30 } &
-0.60 | 4 “

= /////

-0.90

X

001 surface states consist of four Dirac cones located away from X

e spin-momentum locking with same chirality: cannot be realized in 2D
* Fermi surface topology change (Lifshitz transition) at higher energy
* Van-Hove singularity: possible interaction-driven phenomena
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Experiments

Received 6 Aug 2012 | Accepted 8 Oct 2012 | Published 13 Nov 2012

Observation of a topological crystalline insulator

phase and topological phase transition in
Pb1_X5nXTe

Xu, Hasan et al:

Tanaka et al- gl‘lt”yfgics LETTERS

PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI:10.1038/NPHYS2442

Experimental realization of a topological
crystalline insulator in SnTe

Dziawa et al: natute

) LETTERS
materials

PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI: 10.1038/NMAT3449

Topological crystalline insulator states
in Pb;_,Sn,Se
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Tanaka et al: surface states observed in SnTe, but not in PTe

b SnTe PbTe

Binding energy (eV)

Dziawa et al:  temperature driven phase transition in Pbo.77Sno.23Se
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Xu et al: spin-resolved measurements

d b
Pb, SNy 4Te
>
& :
\LI:IED 1.0 0.5 0.0 -0.5 -1
A —1
k, (A7)
C Cut 1 (in-plane)  Surface € Cut2(in-plane) Bulk

Meas. spin pol. (P,)

-04 -02 00 02 04

Sk = k—k(X)
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IV-VI Family of Topological Crystalline Insulators

a versatile platform

e 3D Dirac material
* very high mobility

e extraordinary tunability by alloying and temperature:
ferromagnetism, superconductivity, ferroelectricity ...

* thin films and quantum wells

* potential device applications: tunable electronics & spintronics
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Ferroelectric Distortion Induces Dirac Gap

Prediction: breaking mirror symmetry generates Dirac mass

ferroelectric displacement
¢ 0 ¢,
S & .0
¢ 0o ¢

m -

* induced gap depends on direction of in-plane vector u
m; x (ux Kj) - 2,

 rhombohedral distortion (known in SnTe) with u along (110):
breaks one mirror symmetry, but preserves the other

=> two massless Dirac fermions coexist with two massive Dirac fermions

 Dirac masses at k and -k have opposite sign (due to T-symmetry)

Monday, June 3, 2013



Observation of Dirac node formation and mass acquisition in a
topological crystalline insulator
Okada, Serbyn et al, arXiv:1305.2823 (submitted to Science)

bulk
D
0
S <« surface
£ 50 E\pgs
D]
&
S E
~ 100 bri
S
= EvHs
-150 Epp;
<€ p— —>
I X M

dl/dV (arb. unit)

e zero-field dI/dV: linearly dispersing Dirac fermion & Van-Hove singularity
(Liu, Duan & LF, arXiv: 1304.0430)
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Observation of Dirac node formation and mass acquisition in a
topological crystalline insulator

Okada, Serbyn et al, arXiv:1305.2823 (submitted to Science)

C B
0' E 5
— 0
=) > o
= g ! : ! EVHS+
. L 50 \\ : /I
5 250 R A
= \ S II 2
% S - \T‘*\Ql"'r'EJf
= Z "¢/ Epp
I R [ A 5
-100} : %
.Q \\ E II %‘ EVHS
N R . | @ EDP2
-100  -50 0 10 55 0 5 10
12
Bias Voltage (mV) +sgn(n)*(InBl)

* two non-dispersing Landau levels located symmetrically away from Dirac point
* unique signature of two massive Dirac fermions with opposite masses

* Dirac band gap engineering by strain: topological transistor

Monday, June 3, 2013



Part ll. Anderson Transition

Motivation: fate of TCI surface states (in SnTe class) under disorder

o disorder necessarily violates crystal symmetry
e symmetry is restored after disorder averaging
e are TCI surface states robust against strong disorder?

‘].r

disorder topology
& crystal symmetry

Collaboration with Charlie Kane (UPenn)
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Ferroelectricity-induced Gap

Breaking mirror symmetry uniformly generates mass for Dirac surface states:

ferroelectric displacement

¢ 0 ¢,
111

"‘Yk‘ + 4+
¢ o ¢

1D helical edge states at domain wall:

e perfect conducting channel . - )
w/0 backscattering T

e detection by STM, AFM T

Hsieh, Lin, Liu, Duan, Bansil & LF, Nature Communications, 2012
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Anomalous Action of Symmetry on Gapped Boundary

Breaking symmetry leads to a gapped surface with “anomaly”

Topological crystalline insulator:
e action of mirror on a gapped surface leads to a state in a different Z> class.
» pristine TCI surface is half-way in between two Z> distinct states

- mirror -+

l\_ — +/'_

+ —

Topological insulator:
e action of time reversal on a gapped surface changes Hall conductance by one
e pristine Tl surface is at a quantum Hall plateau transition
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Robustnhess of TCIl Surface States

= <u>=0 +
+\- disordered surface: +/—
+ mirror symmetric on average. =

e |f disordered surface were localized, there must be one helical mode localized
on either left or right boundary, which would contradict mirror symmetry.

* TCI surface states must remain delocalized even under strong disorder on

the surface. (LF, to appear)

e similar delocalization in weak Tl  c.f. Ringel, Kraus & Stern, 12;
Mong, Bardarson & Moore, 12
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Anderson Localization in Two Dimensions

Conventional wisdom:

* all states are localized under strong disorder
* one-parameter scaling based on conductance

Orthogonal class
(T-invariant, spinless)

B(9)
A

Abrahams, Anderson, Liccoardello
& Ramakrishnan, 1979

(T-invariant, spin-orbit)

1

Symplectic class

Hikami, Larkin, Nagaoka, 1980
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Anderson Transition in Symplectic Class

3(9)
A

7/ T~
I M

Single-parameter scaling theory is wrong, because

* it does not distinguish two localized phases: trivial & 2D Tl
* it cannot explain absence of localization under strong disorder on TCI
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Field Theory

Nonlinear sigma model in replica limit N=0

L2 2= e Sl
@

50lQ) = 355

Q@ € O(2N)/O(N) x O(N) is order parameter for metal-insulator transition
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Topological Defects in Field Theory

Nonlinear sigma model in replica limit N=0

1

) - NvorteX[Q] —S [Q]
o [ rT((VQ)? Z=) v e

S0lQ] =

Q@ € O(2N)/O(N) x O(N) is order parameter for metal-insulator transition

New ingredient: vortices in NLsM | m1(O(2N)/O(N) x O(N)) = Zo

To determine vortex fugacity v:
integrate out Grassman variables in the presence of a vortex

o—Ser[Q] _ / Dl e~ J CridalHo—E)ou+iAQu 1

Pflioc? D(Q)]
Pflicv D(Qo)]’

v is given by Pfaffian of kernel: v =

LF & Kane, PRL 109, 246605 (2012).
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Vortex Fugacity: a Sign of Topology

Consider a 2D system near the transition between trivial and topological:

Hy = vpo,ky +vyoy7ky + moyTy,

* m<0 and m>0 are distinct gapped phases
* m=0 for surface of TCI, protected by mirror symmetry

sinf@ —cosf

Vortex configuration of Q:  Q(8) = 1y_1 & (COSH sl 6 ) D 1n_1.

Evaluate Pfaffian: Pf = H V& (b)

1
e spectrum is particle-hole symmetric 3 >< m
* level crossing in vortex core as m changes sign

Vortex fugacity v characterizes different phases:

v>0 for trivial insulator, v<O0 for 2D topological insulator
v=0 at the transition, or for surface of TCI
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Two-Parameter Scaling Theory

N=1: xy model Sy_; = 1 d*r(VO)?.

167t
* B(t)=0
e vortices become relevant at t=1/16 (KT transition)

N=1-¢: € expansion towards replica limit (¢=1) (a)

~

dt/dl = —eB(t) +v> B(t) =12+ ...
dv/dl = (2 — (8t) ).

* smallt, v flows to 0: symplectic metal

* two new fixed points at v#0:
transition from metal to trivial/topological insulator
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(b)

Delocalization of TCI surface states implies:

e M-I & M-TI transition
fixed points

critical metal with
| universal conductivity

Ly

e vortex proliferation is the sole mechanism of localization
* NLsM in the replica limit cannot be disordered at v=0.
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Anderson Localization v.s.Anderson Transition

E(g) Orthogonal Oxx y Un!'tary

Y Y Y

= L]

0 1/2 1 3/2 2
Oxy (62/ h)

* delocalization at criticality

e all states are localized

v Symplectic

(a)

e metal-insulator transition
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Anderson Localization v.s.Anderson Transition

E(g) Orthogonal

7

e all states are localized

>

v Symplectic

(a)

e metal-insulator transition

Unitar
0XX Y y y

Y

a2\

0 1/2 1 3/2 2
Oxy (62/ h)

* delocalization at criticality

l

2 p¥a
| A £

Y Y

e

topological phase transition
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Thank you !
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