Introduction to the Stochastic Series Expansion method

Anders Sandvik, Boston University

- Illustration of concept; classical Monte Carlo example
- Detailed account of SSE for the $S=1 / 2$ Heisenberg model

This presentation is based on material available at http://physics.bu.edu/~sandvik/programs/

A simple SSE program (Fortran90) for the
2D Heisenberg model can be downloaded from this site

Warm-up: SSE for a classical problem

Classical thermal expectation value

$$
\langle f\rangle=\frac{1}{Z} \sum_{\{\sigma\}} f(\sigma) \mathrm{e}^{-\beta E(\sigma)}, \quad Z=\sum_{\{\sigma\}} \mathrm{e}^{-\beta E(\sigma)}
$$

Classical (e.g., Ising) spins: $\sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right\}$
Classical Monte Carlo: Importance sampling of spin configurations
Probability of generating a configuration

$$
P(\sigma)=\frac{1}{Z} W(\sigma), \quad W(\sigma)=\mathrm{e}^{-\beta E(\sigma)}
$$

Estimate of expectation value based on sampled configurations

$$
\langle f\rangle=\langle f\rangle_{W} \approx \frac{1}{N_{\text {samples }}} \sum_{i} f(\sigma[i])
$$

Imagine that we are not able to evaluate the exponential function How could we proceed then?

Use Taylor expansion of the exponential function

$$
\langle f\rangle=\frac{1}{Z} \sum_{\{\sigma\}} \sum_{n=0}^{\infty} f(\sigma) \frac{(-\beta E)^{n}}{n!}, \quad Z=\sum_{\{\sigma\}} \sum_{n=0}^{\infty} \frac{(-\beta E)^{n}}{n!}
$$

Expansion power n is a new "dimension" of the configuration space To ensure positive-definitness we may have to shift E (must be <0)

$$
E(\sigma) \rightarrow E(\sigma)-\epsilon
$$

The sampling weight for the configurations (\square, \mathbf{n}) is

$$
W(\sigma, n)=\frac{\beta^{n}[\epsilon-E(\sigma)]^{n}}{n!}
$$

The function to be averaged (estimator) $\mathbf{f}(\square)$ is the same as before; it does not depend on n

$$
\langle f\rangle=\langle f\rangle_{W} \approx \frac{1}{N_{\text {samples }}} \sum_{i} f(\sigma[i])
$$

However, if $f(\square)$ is a function of the energy it can be rewritten as a function of \mathbf{n} only!

Define: $H(\sigma)=\epsilon-E(\sigma)$

$$
\langle H\rangle=\frac{1}{Z} \sum_{\sigma, n} H(\sigma) W(\sigma, n), \quad Z=\sum_{\sigma, n} W(\sigma, n), \quad W(\sigma, n)=\frac{\beta^{n} H(\sigma)^{n}}{n!}
$$

Shift summation index: $\mathbf{m = n + 1}$

$$
\sum_{\sigma, n} H(\sigma) W(\sigma, n)=\sum_{\sigma, m} \frac{m}{\beta} W(\sigma, m)
$$

Therefore the energy expectation value is

$$
\langle H\rangle=\frac{1}{\beta}\langle n\rangle_{W} \Rightarrow E=\epsilon-\frac{1}{\beta}\langle n\rangle_{W}
$$

We can also easily obtain

$$
\left\langle H^{2}\right\rangle=\frac{1}{\beta^{2}}\langle n(n-1)\rangle_{W}
$$

And thus the specific heat $C=\beta^{-1}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right)$ is

$$
C=\frac{1}{\beta}\left(\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle\right)
$$

What range of expansion orders \mathbf{n} is sampled?

From the preceding results we obtain

$$
\begin{aligned}
& \langle n\rangle=\beta(\epsilon-E) \\
& \left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\beta(C+\epsilon-E)
\end{aligned}
$$

Consider low T; C $\square 0$

$$
\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\langle n\rangle
$$

Thus, for a system with N spins:
Average expansion order $\propto \beta N$
Width of distribution $\propto \sqrt{\beta N}$
These results hold true for quantum systems as well
In the quantum case \mathbf{H} consists of non-commuting operators:
H^{n} requires more complicated treatment

Quantum-mechanical SSE

Thermal expectation value

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left\{A \mathrm{e}^{-\beta H}\right\}, \quad Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}
$$

Choose a basis and Taylor expand the exponential operator

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}\langle\alpha|(-H)^{n}|\alpha\rangle
$$

Write the hamiltonian as a sum of local operators

$$
H=-\sum_{a, b} H_{a, b} \quad \begin{aligned}
& \mathbf{a}=\text { operator type (e.g., 1=diagonal, 2=off-diagonal) } \\
& \mathbf{b}=\text { lattice unit (e.g., bond connecting sites } i, \mathrm{j})
\end{aligned}
$$

such that for every $\mathbf{a}, \mathbf{b}: H_{a, b}|\alpha\rangle=h_{a, b}(\alpha)\left|\alpha^{\prime}\right\rangle$ (no branching)
Write the powers of H in terms of "strings" of these operators

$$
(-H)^{n}=\sum_{\left\{H_{a b}\right\}} \prod_{p=1}^{n} H_{a(p), b(p)}
$$

Operator strings of varying length n

- as in the classical case $\langle n\rangle=-\beta\langle H\rangle$

Fixed-length operator strings: introduce unit operator: $H_{0,0}=1$
Expansion cut-off M: add M-n unit operators to each string

- there are $\mathrm{M}!/ \mathrm{n}$!(M-n)! ways of doing this \square

$$
(-H)^{n}=\sum_{\left\{H_{a b}\right\}} \frac{(M-n)!n!}{M!} \prod_{p=1}^{M} H_{a(p), b(p)}
$$

$\mathrm{n}=$ number of non-[0,0] operators

The truncation should not be considered an approximation

- M can be chosen such that the truncation error is negligible

$$
Z=\sum_{\alpha} \sum_{\left\{H_{a b}\right\}} \frac{\beta^{n}(M-n)!}{M!}\langle\alpha| \prod_{i=1}^{M} H_{a(i), b(i)}|\alpha\rangle
$$

The terms $\left(\alpha,\left\{H_{a b}\right\}\right)$ are sampled according to weight in this sum

- requires positive-definiteness
- to this end, a constant may have to be added to diagonal H_{ab}
- there can still be a "sign problem" arising from off-diagonal H_{ab}

SSE algorithm for the $S=1 / 2$ Heisenberg model

- The algorithm for this model is particularly simple and efficient

$$
H=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Consider bipartite lattice (sign problem for frustrated systems)

- sublattice A
- sublattice B

Standard z-component basis:

$$
|\alpha\rangle=\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle, \quad S_{i}^{z}= \pm \frac{1}{2}
$$

Bond operators: bond b connects sites $i(b), j(b)$

$$
H=\sum_{b=1}^{B}\left[S_{i(b)}^{z} S_{j(b)}^{z}+\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right)\right]
$$

$$
H=-\sum_{b=1}^{B} \sum_{a=1}^{2} H_{a, b}
$$

Diagonal and off-diagonal bond operators

$$
H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \quad H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right)
$$

A minus sign in front of the off-diagonal $\mathrm{H}_{2 \mathrm{~b}}$ is neglected

- this corresponds to a sublattice rotation; 180 degree rotation in the xy-plane of the spin operators on sublattice B
- The sign is irrelevant for a bipartite lattice (will be shown later)

SSE operator string $\prod_{p=1}^{M} H_{a(p), b(p)}$
Represented in the computer program by

$$
\operatorname{opstring}[\mathrm{p}]=2 b(p)+a(p)-1
$$

Spin state I $\square>$ represented by

$$
\operatorname{spin}[\mathrm{i}]=2 S_{i}^{z}
$$

SSE partition function

$$
Z=\sum_{\alpha} \sum_{\left\{H_{a b}\right\}} \frac{\beta^{n}(M-n)!}{M!}\langle\alpha| \prod_{i=1}^{M} H_{a(i), b(i)}|\alpha\rangle
$$

Both $\mathrm{H}_{1 \mathrm{~b}}$ and $\mathrm{H}_{2 \mathrm{~b}}$ give 0 when acting on parallel spins

- non-zero matrix element $=1 / 2$ in both cases

Define propagated states

$$
|\alpha(p)\rangle=\prod_{j=1}^{p} H_{a(j), b(j)}|\alpha\rangle \quad|\alpha\rangle=|\alpha(0)\rangle
$$

For a contributing configuration: $|\alpha(M)\rangle=|\alpha(0)\rangle$ (periodic)
The configuration weight is then

$$
W\left(\alpha,\left\{H_{a b}\right\}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(M-n)!}{M!}
$$

Periodicity requires an even number of spin flips

- This is why the sign of $\mathrm{H}_{2 \mathrm{~b}}$ is irrelevant for a bipartite lattice
- For a frustrated lattice an odd number of flips is possible

Graphical representation

- 1D example; 8 spins, $\mathrm{M}=12$

1 D : bond b connects sites b and $\mathrm{b}+1$

Linked-list representation

- vertex: operator and spins before and after the operator has acted $\because \because \because \%$
- replace spins between vertices by links

- linked vertex list used in some parts of the program

A vertex has 4 "legs", numbered $1=0,1,2,3$:

position \mathbf{p} of operator in operator string opstring [p], vertex leg l \square position v in linked vertex list: $v=1+l+4^{*}(p-1)$
vertexlist[v] contains the element \# to which v is linked

Sampling the SSE configurations; updates

1) Diagonal update

- replace unit operator by diagonal operator, and vice versa $H_{0,0} \leftrightarrow H_{1, b}$

2) Off-diagonal update (local or loop)

- change the operator type, diagonal \leftrightarrow off-diagonal, for two (local) or several (loop) operators

$$
\left\{H_{a_{1}, b_{1}}, H_{a_{2}, b_{2}}, \ldots, H_{a_{m}, b_{m}}\right\} \leftrightarrow\left\{H_{3-a_{1}, b_{1}}, H_{3-a_{2}, b_{2}}, \ldots, H_{3-a_{m}, b_{m}}\right\}
$$

3) Flip spins in the state $\mid \square>$

- unconstrained "free" spins; weight unchanged after flip
- only possible at high temperatures; strictly not necessary

$$
S_{i}^{z} \rightarrow-S_{i}^{z}
$$

Updates satisfy detailed balance:

$$
P_{\text {accept }}(A \rightarrow B)=\min \left(\frac{W(B) P_{\text {select }}(B \rightarrow A)}{W(A) P_{\text {select }}(A \rightarrow B)}, 1\right)
$$

Diagonal update

- Carried out in opstring [p] for $\mathrm{p}=1, \ldots, \mathrm{M}$
- State $\mid \square(p-1)>$ stored in spin []

Insertion of a diagonal operator if opstring [p]=0

Generate bond index b at random, attempt opstring $[p]=2 * b$

- can only be done if $\operatorname{spin}[i(b)] \neq \operatorname{spin}[j(b)]$
- n increases by 1 ; weight ratio

$$
\frac{W(n+1)}{W(n)}=\frac{\beta / 2}{M-n}
$$

Removal of a diagonal operator if opstring $[p] \neq 0$

- n decreases by 1 ; weight ratio

$$
\frac{W(n-1)}{W(n)}=\frac{M-n+1}{\beta / 2}
$$

B ways of selecting b but only one way of removing an operator;

$$
\frac{\dot{P}_{\text {select }}(b \rightarrow 0)}{P_{\text {select }}(0 \rightarrow b)}=B
$$

Accept probabilities: $P_{\text {accept }}(n \rightarrow n+1)=\min \left(\frac{B \beta / 2}{M-n}, 1\right)$

$$
P_{\text {accept }}(n \rightarrow n-1)=\min \left(\frac{M-n+1}{B \beta / 2}, 1\right)
$$

Local off-diagonal update (obsolete)

Change type of 2 operators on the same bond

- cannot always be done; check for constraining operators
- no weight change; accept with fixed probability (e.g., $\mathrm{P}=1$)

Note: periodic boundary conditions in the "propagation" direction - update spanning across the boundary affects the stored state I $\square>$

Local updates typically are not very efficient

- critical slowing-down
- no winding-number or particle-number fluctuations

Loop update

- carried out in the linked-vertex-list representation
- move "vertically" along links and "horizontally" on the same operator
- spins flipped at all vertex-legs visited; operator type changes; weight unchanged
- construct all loops, flip with probability 1/2 (as in Swendsen-Wang)

Monte Carlo step

- a cycle of diagonal updates $(p=1, \ldots, M$ in opstring[p])
- construction of the linked vertex list
- construct all loops, flip each with probability $1 / 2$
- map updated vertex list back to opstring[], spin[]

Starting the simulation

- "empty" perator string, opstring[p]=0, p=1, .., M
- M is arbitrary, e.g., $M=20$
- random spin state; spin[p]=+1,-1

Determining the cut-off M

- after each, MC step, compare expansion order n with M
\bullet if $M-n<n / a$, with, e.g., $a=3$, then $M=n+n / a$

Generalization of loop update; directed loops

In the case of the isotropic $S=\mathbf{1 / 2}$ model

- There are only 4 non- 0 vertices
- The operators uniquely define all loops
- Loops are non-self-intersecting

Directed loops

- In general, there are more than 4 allowed vertices
- A vertex is entered at some entrance leg
- The path can proceed (exit) through any of the 4 legs
- Exit probabilities are obtained from directed-loop equations
- Loops can back-track ("bounce") and self-intersect
- Bounces can be avoided for some models (more efficient)
(a) \uparrow
(b) \uparrow
(c) $\uparrow \downarrow$
(d)
凡

